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Abstract

During the last years the concept of multi-resolution modeling has
gained special attention in many fields of computer graphics and
geometric modeling. In this paper we generalize powerful multi-
resolution techniques to arbitrary triangle meshes without requiring
subdivision connectivity. Our major observation is that the hierar-
chy of nested spaces which is the structural core element of most
multi-resolution algorithms can be replaced by the sequence of in-
termediate meshes emerging from the application of incremental
mesh decimation. Performing such schemes with local frame cod-
ing of the detail coefficients already provides effective and efficient
algorithms to extract multi-resolution information from unstruc-
tured meshes. In combination with discrete fairing techniques, i.e.,
the constrained minimization of discrete energy functionals, we ob-
tain very fast mesh smoothing algorithms which are able to reduce
noise from a geometrically specified frequency band in a multi-
resolution decomposition. Putting mesh hierarchies, local frame
coding and multi-level smoothing together allows us to propose
a flexible and intuitive paradigm for interactive detail-preserving
mesh modification. We show examples generated by our mesh
modeling tool implementation to demonstrate its functionality.

1 Introduction

Traditionally, geometric modeling is based on piecewise polyno-
mial surface representations [8, 16]. However, while special poly-
nomial basis functions are well suited for describing and modify-
ing smooth triangular or quadrilateralpatches, it turns out to be
rather difficult to smoothly join several pieces of a composite sur-
face along common (possibly trimmed) boundary curves. As flex-
ible patch layout is crucial for the construction of non-trivial geo-
metric shapes, spline-based modeling tools do spend much effort to
maintain the global smoothness of a surface.

Subdivision schemes can be considered as an algorithmic gen-
eralization of classical spline techniques enabling control meshes
with arbitrary topology [2, 5, 6, 18, 22, 39]. They provide easy
access to globally smooth surfaces of arbitrary shape by iteratively
applying simple refinement rules to the given control mesh. A se-
quence of meshes generated by this process quickly converges to a
smooth limit surface. For most practical applications, the refined
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meshes are already sufficiently close to the smooth limit after only
a few refinement steps.

Within a multi-resolution framework, subdivision schemes pro-
vide a set of basis functionsφi; j = φ(2i �� j) which are suitable to
build a cascade of nested spacesVi = span([φi; j ] j ) [4, 33]. Since the
functionsφi; j are defined by uniform refinement of a given control
meshM0 �=V0, the spacesVi have to be isomorphic to meshesMi
with subdivision connectivity.

While being much more flexible than classical (tensor-product)
spline techniques, the multi-resolution representation based on the
uniform refinement of a polygonal base mesh is still rather rigid.
When analyzing a given meshMk, i.e., when decomposing the
mesh into disjoint frequency bandsWi =Vi+1nVi , we have toinvert
the uniform refinement operationVi !Vi+1. Hence, the input mesh
always has to be topologically isomorphic to an iteratively refined
base grid. In general this requires a global remeshing/resampling
of the input data prior to the multi-resolution analysis [7]. More-
over, if we want to fuse several separately generated subdivision
meshes (e.g. laser range scans) into one model, restrictive compat-
ibility conditions have to be satisfied. Hence, subdivision schemes
are able to deal with arbitrarytopologybut not with arbitrarycon-
nectivity!

Thescalesof subdivision based multi-resolution mesh represen-
tations are defined in terms of topological distances. Since every
vertexpi; j on each level of subdivisionMi represents the weight
coefficient of a particular basis functionφi; j with fixed support, its
region of influence is determined by topological neighborhood in
the mesh instead of geometric proximity. Being derived from the
regular functional setting, the refinement rules of stationary subdi-
vision schemes only depend on the valences of the vertices but not
on the length of the adjacent edges. Hence, surface artifacts can
occur when the given base mesh is locally strongly distorted.

Assume we have a subdivision connectivity mesh and want to
apply modifications on a specific scaleVi . The usual way to im-
plement this operation is to run a decomposition scheme several
steps until the desired resolution level is reached. On this level
the meshMi is modified and the reconstruction starting withM 0

i
yields the final result. The major draw-back of this procedure is the
fact that coarse basis functions exist for the coarse-mesh vertices
only and hence all low-frequency modifications have to bealigned
to the grid imposed by the subdivision connectivity. Shifted low-
frequency modifications can be faked by moving agroupof vertices
from a finer scale simultaneously but this annihilates the mathemat-
ical elegance of multi-resolution representations.

A standard demo example for multi-resolution modeling is
pulling the nose tip of a human head model. Depending on the
chosen scale either the whole face is affected or just the nose is
elongated. On uniformly refined meshes this operation only works
if a coarse-scale control vertex happens to be located right at the
nose tip. However, for anautomaticremeshing algorithm it is very
difficult, if not impossible, to place the coarse-scale vertices at the
semantically relevant features of an object.

In this paper we present an alternative approach to multi-
resolution modeling which avoids these three major difficulties, i.e.
the restriction to subdivision connectivity meshes, the restriction to
basis functions with fixed support and the alignment of potential
coarser-scale modifications.
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The first problem is solved by using mesh hierarchies which
emerge from the application of a mesh decimation scheme. In Sec-
tion 2 we derive the necessary equipment to extract multi-resolution
information from arbitrary meshes and geometrically encode detail
information with respect to local frames which adapt to the local
geometry of the coarser approximation of the object.

To overcome the problems arising from the fixed support and
aligned distribution of subdivision basis functions, we drop the
structural concept of considering a surface in space to be a linear
combination of scalar-valued basis functions. On each level of de-
tail, the lower-frequency components of the geometric shape are
simply characterized by energy minimization (fairing). In Section 3
we overview the discrete fairing technique [19, 38] and show how a
combination with the non-uniform mesh hierarchy leads to highly
efficient mesh optimization algorithms. Due to the local smoothing
properties of the fairing operators, we are able to define ageomet-
ric threshold for the wavelength up to which a low-pass filter should
remove noise.

With an efficient hierarchical mesh smoothing scheme available,
we propose a flexible mesh modification paradigm in Section 4.
The basic idea is to let the designer freely define the region of in-
fluence and the characteristics of the modification which both can
be adapted to the surface geometry instead of being determined by
the connectivity. The selected region defines the ”frequency” of the
modification since it provides the boundary conditions for a con-
strained energy minimization. Nevertheless the detail information
within the selected region is preserved and does change according
to the global modification. Exploiting the efficient schemes from
Section 3 leads to interactive response times for moderately com-
plex models.

Throughout the paper, we consider a modeling scenario where
a triangle meshM with arbitrary connectivity isgiven (no from-
scratch design). All modifications just alter the position of the ver-
tices but not their adjacency. In particular, we do not consider ad
infinitum subdivision to establish infinitesimal smoothness. The
given meshM = Mk represents per definition the finest level of
detail.

2 Multi-resolution representations

Most schemes for the multi-resolution representation and modifica-
tion of triangle meshes emerge from generalizing harmonic analysis
techniques like the wavelet transform [1, 23, 30, 33]. Since the fun-
damentals have been derived in the scalar-valued functional setting
IRd! IR, difficulties emerge from the fact that manifolds in space
are in general not topologically equivalent to simply connected re-
gions in IRd.

The philosophy behind multi-resolution modeling on surfaces
is hence to mimic the algorithmic structure of the related func-
tional transforms and preserve some of the important properties
like locality, smoothness, stability or polynomial precision which
have related meaning in both settings [9, 12, 40]. Accordingly, the
nested sequence of spaces underlying the decomposition into dis-
joint frequency bands is thought of being generated bottom-up from
a coarse base mesh up to finer and finer resolutions. This implies
that subdivision connectivity is mandatory on higher levels of de-
tail. Not only the mesh has to consist of large regular regions with
isolated extra-ordinary vertices in between. Additionally, we have
to make sure that the topological distance between the singulari-
ties is the same for every pair of neighboring singularities and this
topological distance has to be a power of 2.

Such special topological requirements prevent the schemes from
being applicable to arbitrary input meshes. Global remeshing and
resampling is necessary to obtain a proper hierarchy which gives
rise to alias-errors and requires involved computations [7].

Luckily, the restricted topology is not necessary to define dif-
ferent levels of resolution or approximation for a triangle mesh.

In the literature on mesh decimation we find many examples for
hierarchies built on arbitrary meshes [11, 15, 20, 24, 27, 31, 35].
The key is always to build the hierarchy top-down by eliminating
vertices from the current mesh (incremental reduction, progressive
meshes). Running a mesh decimation algorithm, we can stop, e.g.,
every time a certain percentage of the vertices is removed. The in-
termediate meshes can be used as a level-of-detail representation
[15, 23].

In both cases, i.e., the bottom-up or the top-down generation
of nested (vertex-) grids, the multi-resolution concept is rigidly at-
tached to topological entities. This makes sense if hierarchies are
merely used to reduce the complexity of the representation. In the
context of multi-resolution modeling, however, we want the hierar-
chy not necessarily to rate meshes according to theircoarsenessbut
rather according to theirsmoothness(cf. Fig 1).

We will use multi-resolution hierarchies for two purposes. First
we want to derive highly efficient algorithms for mesh optimiza-
tion. In Section 3 we will see that topologically reduced meshes are
the key to significantly increase the performance (levels of coarse-
ness). On the other hand, we want to avoid any restrictions that are
imposed by topological peculiarities. In particular, when interac-
tively modifying a triangle mesh, we do not want any alignment.
The supportof a modification should have no influence onwhere
this modification can be applied (levels of smoothness).

To describe the different set-ups for multi-resolution repre-
sentation uniformly, we define a generic decomposition scheme
A = (AΦjAΨ)T (analysis) as a general procedure that transforms a
given meshMi into a coarser/smoother oneMi�1 = AΦMi plus de-
tail coefficientsDi�1 = AΨMi. In the standard wavelet setting the
cardinalities satisfy #Di�1+#Mi�1 = #Mi since decomposition is
a proper basis transform.

If a (bi-orthogonal) wavelet basis is not known, we have to
store more detail information (#Di�1 + #Mi�1 > #Mi) since the
reconstruction operatorA�1 might be computationally expensive
or not even uniquely defined. Well-known examples for this kind
of decomposition with extra detail coefficients are the Laplacian-
pyramid type of representation in [40] and the progressive mesh
representation [15].

WhenAΦ is merely a smoothing operator which does not change
the topological mesh structure ofMi we haveAΨ = Id�AΦ and
#Di�1 = #Mi�1 = #Mi .

2.1 Local Frames

In a multi-resolution representation of a geometric objectM = Mk,
the detail coefficientsDi�1 describe the difference between two ap-
proximationsMi�1 and Mi having different levels of detail. For
parametric surfaces, the detail coefficients, i.e., the spatial location
of the vertices inMi have to be encoded relative to the local ge-
ometry of the coarser approximationMi�1. This is necessary since
modifications on the coarser level should have an intuitive effect on
the geometric features from finer scales.

First proposed by [10] it has become standard to derive local
coordinate frames from the partial derivative information of the
coarse representationMi�1. Since we do not assume the existence
of any global structure or auxiliary information in the sequence of
meshesMi , we have to rely on intrinsic geometric properties of
the triangles themselves. Depending on the intended application
we assign the local frames to the triangles or the vertices ofMi�1.
A detail vector is then defined by three coordinate values[u;v;n]
plus an indexi identifying the affine frameFi = [pi;Ui ;Vi ;Ni ] with
respect to which the coordinates are given.

2.1.1 Vertex-based frames

We can use any heuristic to estimate the normal vectorNi at a vertex
pi in a polygonal mesh, e.g., taking the average of the adjacent tri-
angle normals. The vectorUi = E� (ETNi)Ni is obtained by pro-



Figure 1: The well-known Stanford-Bunny. Although the original mesh does not have subdivision connectivity, mesh decimation algorithms
easily generate a hierarchy of topologically simplified meshes. On the other hand, multi-resolution modeling also requires hierarchies of
differentlysmoothapproximations. Notice that the meshes in the lower row have identical connectivity.

jecting any adjacent edgeE into the tangent plane andVi :=Ni�Ui .
The data structure for storing the meshMi�1 has to make sure that
E is uniquely defined, e.g. as the first member in a list of neighbors.

2.1.2 Face-based frames

It is tempting to simply use the local frame which is given by two
triangle edges and their cross product. However, this will not lead to
convincing detail reconstruction after modifying the coarser level.
The reason for this is that the local frames would be rigidly attached
to one coarse triangle. In fact, tracing the dependency over several
levels of detail shows that the original mesh is implicitly partitioned
into sub-meshes being assigned to the same coarse triangleT. Ap-
plying a transformation toT implies the same transformation for all
vertices being defined relative toT. This obviously leads to artifacts
between neighboring sub-meshes in the fine mesh.

A better choice is to use local low order polynomial interpolants
or approximants that depend on more than one single triangle. Let
p0, p1, andp2 be the vertices of a triangleT 2Mi�1 andp3, p4,
andp5 be the opposite vertices of the triangles adjacent toT (cf.
Fig. 2). To construct a quadratic polynomial

F(u;v) = f+ufu+vfv+
u2

2
fuu+uvfuv+

v2

2
fvv

approximating thepi we have to define a parameterization first.
Note that the particular choice of this parameterization controls the
quality of the approximant. Since we want to take the geometric
constellation of thepi into account, we define a parameterization
by projecting the vertices into the supporting plane ofT.

Exploiting the invariance of the polynomial interpolant with re-
spect to affine re-parameterizations, we can requireF(0;0) := p0,
F(1;0) := p1, andF(0;1) := p2 which implies

f = p0

fu = p1�p0� 1
2 fuu

fv = p2�p0� 1
2 fvv:

(1)

Let the verticesp3, p4, andp5 be projected to(u3;v3), (u4;v4), and
(u5;v5) according to the frame[p0;p1;p2]. To additionally stabilize
the interpolation scheme, we introduce a tension parameterτ2 [0;1]
which trades approximation error atp3, p4, andp5 for minimizing
the bending energyf2uu+2f2uv+ f2vv. Using (1) we obtain0BBBBBBB@
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which has to be solved in a least squares sense.

To compute the detail coefficients[û; v̂;h] for a pointq with re-
spect toT, we start from the center(u;v) = ( 1

3 ;
1
3) and simple New-

ton iteration steps(u;v) (u;v)+ (4u;4v) with d = q�F(u;v)
and �
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quickly converge to the pointF(û; v̂) with the detail vectord per-
pendicular to the surfaceF(u;v). The third coefficient is then
h= sign(dT(Fu�Fv))kdk.

Although the parameter values(û; v̂) can lie outside the unit tri-
angle (which occasionally occurs for extremely distorted configu-
rations) the detail coefficient[û; v̂;h] is still well-defined and recon-
struction works. Notice that the scheme might produce counter-
intuitive results if the maximum dihedral angle betweenT and one
of its neighbors becomes larger thanπ

2 . In this case the parameter-



ization for p3, p4, andp5 could be derived by rotation aboutT ’s
edges instead of projection.

P0

P2

P1

P3

P4

P5

Q

Figure 2: Vertex labeling for the construction of a local frame.

Obviously, the detail coefficient[û; v̂;h] is not coded with respect
to a local frame in the narrow sense. However, it has a similar se-
mantics. Recovering the vertex positionq0 requires to construct the
approximating polynomialF0(u;v) for the possibly modified ver-
ticesp0i , evaluate at(û; v̂) and move in normal direction byh. The
distanceh is a measure for the ”size” of the detail.

In our current implementation on a SGI R10000/195 MHz work-
station the analysisq! [û; v̂;h] takes about 20µSwhile the recon-
struction[û; v̂;h]! q takes approximately 8µS. Since a progressive
mesh representation introduces two triangles per vertex split, this
means that for the reconstruction of a mesh with 105 triangles, the
computational overhead due to the local frame representation is less
than half a second.

2.2 Decomposition and reconstruction

To complete our equipment for the multi-resolution set-up we have
to define the decomposition and reconstruction operations which
separate the high-frequency detail from the low-frequency shape
and eventually recombine the two to recover the original mesh.
We apply different strategies depending on whether decomposition
generates a coarser approximation of the original geometry or a
smoother approximation.

In either case the decomposition operatorA is applied to the orig-
inal meshMi and the detailsDi�1 are coded in local frame coordi-
nates with respect toMi�1. Since the reconstruction is an extrapo-
lation process, it is numerically unstable. To stabilize the operation
we have to make the details as small as possible, i.e., when encod-
ing the spatial position of a pointq 2 IR3 we pick that local frame
on Mi�1 which is closest toq.

Usually the computational complexity of generating the detail
coefficients is higher than the complexity of the evaluation during
reconstruction. This is an important feature since for interactive
modeling the (dynamic) reconstruction has to be done in real-time
while the requirements for the (static) decomposition are not as de-
manding.

2.2.1 Mesh decimation based decomposition

When performing an incremental mesh decimation algorithm, each
reduction step removes one vertex and retriangulates the remain-
ing hole [15, 31]. We use a simplified version of the algorithm
described in [20] that controls the reduction process in order to op-
timize the fairness of the coarse mesh while keeping the global ap-
proximation error below a prescribed tolerance.

The basic topological operation is thehalf edge collapsewhich
shifts one vertexp into an adjacent vertexq and removes the two
degenerate triangles. In [20] a fast algorithm is presented to deter-
mine that triangleT in the neighborhood of the collapse which lies

closest to the removed vertexp. The position ofp is then coded
with respect to the local frame associated with this triangle.

The inverse operation of an edge collapse is thevertex split[15].
Since during reconstruction the vertices are inserted in the reverse
order of their removal, it is guaranteed that, whenp is inserted, the
topological neighborhood looks the same as when it was deleted
and hence the local frame to transform the detail coefficient forp
back into world coordinates is well-defined.

During the iterative decimation, each intermediate mesh could
be considered as one individual level of detail approximation. How-
ever, if we want to define disjoint frequency bands, it is reasonable
to consider a whole sub-sequence of edge collapses as one atomic
transformation from one levelMi to Mi�1.

There are several criteria to determine which levels mark the
boundaries between successive frequency bands. One possibility
is to simply defineMi to be the coarsest mesh that still keeps a
maximum tolerance of less than someεi to the original data. Al-
ternatively we can require the number of vertices inMi�1 to be a
fixed percentage of the number of vertices inMi . This simulates
the geometric decrease of complexity known from classical multi-
resolution schemes. We can also let the human user decide when
a significant level of detail is reached by allowing her to browse
through the sequence of incrementally reduced meshes.

In order to achieve optimal performance with the multi-level
smoothing algorithm described in the next section, we decided in
our implementation to distribute the collapses evenly over the mesh:
When a collapsep! q is performed, all vertices adjacent toq are
locked for further collapsing (independent set of collapses). If no
more collapses are possible, the current mesh defines the next level
of detail and all vertices are un-locked. One pass of this reduction
scheme removes about 25% of the vertices in average.

2.2.2 Mesh smoothing based decomposition

For multi-resolutionmodelingwe have to separate high frequency
features from the global shape in order to modify both individu-
ally. Reducing the mesh complexity cannot help in this case since
coarser meshes do no longer have enough degrees of freedom to
be smooth, i.e., to have small angles between adjacent triangles.
Hence, the decomposition operatorAΦ becomes a mere smooth-
ing operator that reduces the discrete bending energy in the mesh
without changing the topology (cf. Section 3).

A natural way to define the detail coefficients would be to store
the difference vectors between the original vertex positionq and
the shifted positionq0 with respect to the local frame defined at
q0. However, in view of numerical stability this choice is not op-
timal. Depending on the special type of smoothing operatorAΦ
the vertices can move ”within” the surface such that another vertex
p0 2Mi�1 = AΦMi could lie closer toq thanq0 (cf. Fig. 3).

Figure 3: Although the bending energy minimizing smoothing op-
eratorAΦ is applied to aplanetriangulation, the vertices are moved
within the plane since linear operators always do the fairing with re-
spect to a specific parameterization (cf. Section 3).

To stabilize the reconstruction, i.e., to minimize the length of the
detail vectors, we apply a simple local search procedure to find the



nearest vertexp0 2 Mi�1 to q and express the detail vector with
respect to the local frame atp0 or one of its adjacent triangles. This
searching step does not noticeably increase the computation time
(which is usually dominated by the smoothing operationAΦ) but
leads to much shorter detail vectors (cf. Fig 4).

Figure 4: The shortest detail vectors are obtained by representing
the detail coefficients with respect to the nearest local frame (left)
instead of attaching the detail vectors to the topologically corre-
sponding original vertices.

3 Discrete fairing

From CAGD it is well-known that constrained energy minimization
is a very powerful technique to generate high quality surfaces [3, 13,
25, 28, 37]. For efficiency, one usually defines a simple quadratic
energy functionalE( f ) and searches among the set of functions
satisfying prescribed interpolation constraints for that functionf
which minimizesE .

Transferring the continuous concept of energy minimization to
the discrete setting of triangle mesh optimization leads to the dis-
crete fairing approach [19, 38]. Local polynomial interpolants are
used to estimate derivative information at each vertex by divided
difference operators. Hence, the differential equation characteriz-
ing the functions with minimum energy is discretized into a linear
system for the vertex positions.

Since this system is global and sparse, we apply iterative solving
algorithms like the Gauß-Seidel-scheme. For such algorithms one
iteration step merely consists in the application of a simple local
averaging operator. This makes discrete fairing an easy accessible
technique for mesh optimization.

3.1 The umbrella-algorithm

The most prominent energy functionals that are used in the theory
and practice of surface design are the membrane energy

EM( f ) :=
Z

f 2
u + f 2

v (2)

which prefers functions with smaller surface area and the thin plate
energy

ETP( f ) :=
Z

f 2
uu+2 f 2

uv+ f 2
vv (3)

which punishes strong bending. The variational calculus leads to
simple characterizations of the corresponding minimum energy sur-
faces

4 f = fuu+ fvv = 0 (4)

or
42 f = fuuuu+2 fuuvv+ fvvvv = 0 (5)

respectively. Obviously, low degree polynomials satisfy both differ-
ential equations and hence appropriate (Dirichlet-) boundary condi-
tions have to be imposed which make the semi-definite functionals
EM andETP positive-definite.

The discrete fairing approach discretizes either the energy func-
tionals (2–3) [19, 38] or the corresponding Euler-Lagrange equa-
tions (4–5) [17, 36] by replacing the differential operators with di-
vided difference operators. To construct these operators, we have to
choose an appropriate parameterization in the vicinity of each ver-
tex. In [38] for example a discrete analogon to the exponential map
is chosen. In [17] theumbrella-algorithmis derived by choosing a
symmetric parameterization

(ui ;vi) :=
�

cos(2π
i
n
);sin(2π

i
n
)
�
; i = 0; : : : ;n�1 (6)

with n being the valence of the center vertexp (cf. Fig 5). This pa-
rameterization does not adapt to the local geometric constellation
but it simplifies the construction of the corresponding difference
operators which are otherwise obtained by solving a Vandermonde
system for local polynomial interpolation. With the special param-
eterization (6) the discrete analogon of the Laplacian4 f turns out
to be the umbrella-operator

U(p) =
1
n

n�1

∑
i=0

pi � p

with pi being the direct neighbors ofp (cf. Fig. 5). The umbrella-
operator can be applied recursively leading to

U2(p) =
1
n

n�1

∑
i=0

U(pi) � U(p)

as a discretization of42 f .

...

P

P

P
P

P

2
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Figure 5: To compute the discrete Laplacian, we need the 1-
neighborhood of a vertexp (! umbrella-operator).

The boundary conditions are imposed to the discrete problem
by freezing certain vertices. When minimizing the discrete version
of EM we hold a closed boundary polygon fixed and compute the
membrane that is spanned in between. For the minimization ofETP
we need two rings of boundary vertices, i.e., we keep a closed strip
of triangles fixed. This imposes a (discrete)C1 boundary condition
to the optimization problem (cf. Fig 6). All internal vertices can
be moved freely to minimize the global energy. The properly cho-
sen boundary conditions imply positive-definiteness of the energy
functional and guarantee the convergence of the iterative solving
algorithm [29].

The characteristic (linear) system for the corresponding uncon-
strained minimization problem has rowsU(pi) = 0 or U2(pi) = 0
respectively for the free verticespi . An iterative solving scheme
approaches the optimal solution by solving each row of the system
separately and cycling through the list of free vertices until a stable
solution is reached. In case of the membrane energyEM this leads
to the local update rule

pi  pi +U(pi) (7)



and for the thin plate energyETP , we obtain

pi  pi� 1
ν

U2(pi) (8)

with the ”diagonal element”

ν = 1+
1
ni

∑
j

1
ni; j

whereni andni; j are the valences of the center vertexpi and its j th
neighbor respectively.

Figure 6: A closed polygon or a closed triangle strip provideC0

or C1 boundary conditions for the discrete fairing. On the left the
triangle mesh minimizesEM on the right it minimizesETP.

Although the rule (8) can be implemented recursively, the perfor-
mance is optimized if we use a two step process where all umbrella
vectorsU(pi) are computed in a first pass andU2(pi) in the sec-
ond. This avoids double computation but it also forces us to use in
fact a plain Jacobi-solver since no intermediate updates from neigh-
boring vertices can be used. However the(n+2) : 2 speed-up for
a vertex with valencen amortizes the slower convergence of Jacobi
compared to Gauß-Seidel.

3.2 Connection to Taubin’s signal processing ap-
proach

The local update operator (7) in the iterative solving scheme for
constrained energy minimization is exactly the Laplace smoothing
operator proposed by Taubin in [34] where he derived it (also in the
context of mesh smoothing) from a filter formalism based on gener-
alized Fourier analysis for arbitrary polygonal meshes. In his paper,
Taubin starts with a matrix version of the scaled update rule (7)

[p0i] := (I +λU) [pi ]

whereλ is a damping factor and formally rewrites it by using a
transfer function notation

f (k) := 1�λk

with respect to the eigenbasis of the (negative) Laplace operator.
Since no proper boundary conditions are imposed, the continued
filtering by f (k) leads to severe shrinking and hence he proposes
combined filters

f (k) := (1�λk)(1�µk) (9)

whereλ andµ are set in order to minimize the shrinking. A feasible
heuristic is to choose apass-band frequency

kPB =
1
λ
+

1
µ
2 [0:01: : :0:1]

and setλ andµ while observing the stability of the filter.

Obviously, the update rule for the difference equationU(pi) = 0
which characterizes meshes with minimum membrane energy cor-
responds to a special low-pass filter with transfer functionfU(k) =
(1� k). For the minimization of the total curvature, characterized
by U2(pi) = 0, the iteration rule (8) can be re-written in transfer
function notation as

fU2(k) = (1� 1
ν

k2) = (1+
1p
ν

k)(1� 1p
ν

k)

which corresponds to a combined Laplace filter of the form (9)
with pass-band frequencykPB = 0. Although this is not optimal
for reducing the shrinking effect, we observe that the transfer func-
tion happens to have a vanishing derivative atk = 0. From sig-
nal processing theory it is known that this characterizes maximal
smoothness [26], i.e., among the two step Laplace filters, theU2-
filter achieves optimal smoothing properties. To stabilize the filter
we might want to introduce a damping factor 0< σ <

1
2ν into the

update-rule

pi  pi� σ
ν

U2(pi)

3.3 Multi-level smoothing

A well-known negative result from numerical analysis is that
straight forward iterative solvers like the Gauß-Seidel scheme are
not appropriate for large sparse problems [32]. More sophisticated
solvers exploit knowledge about thestructureof the problem. The
important class of multi-grid solvers achieve linear running times
in the number of degrees of freedom by solving the same problem
on grids with different step sizes and combining the approximate
solutions [14].

For difference (= discrete differential) equations of elliptic type
the Gauß-Seidel iteration matrices have a special eigenstructure that
causes high frequencies in the error to be attenuated very quickly
while for lower frequencies no practically useful rate of conver-
gence can be observed. Multi-level schemes hence solve a given
problem on a very coarse scale first. This solution is used to predict
initial values for a solution of the same problem on the next refine-
ment level. If these predicted values have only small deviations
from the true solution in low-frequency sub-spaces, then Gauß-
Seidel performs well in reducing the high-frequency error. The
alternating refinement and smoothing leads to highly efficient varia-
tional subdivision schemes [19] which generate fair high-resolution
meshes with a rate of several thousand triangles per second (linear
complexity!).

As we saw in Section 2, the bottom-up way to build multi-
resolution hierarchies is just one of two possibilities. To get rid
of the restriction that the uniform multi-level approach to fairing
cannot be applied to arbitrary meshes, we generate the hierarchy
top-down by incremental mesh decimation.

A complete V-cycle multi-grid solver recursively applies opera-
tors Φi = ΨPΦi�1 RΨ where the first (right)Ψ is a generic (pre-
)smoothing operator — a Gauß-Seidel scheme in our case.R is a
restriction operator to go one level coarser. This is where the mesh
decimation comes in. On the coarser level, the same scheme is ap-
plied recursively,Φi�1, until on the coarsest level the number of
degrees of freedom is small enough to solve the system directly (or
any other stopping criterion is met). On the way back-up, the pro-
longation operatorP inserts the previously removed vertices to go
one level finer again.P can be considered as a non-regular subdi-
vision operator which has to predict the positions of the vertices in
the next level’s solution. The re-subdivided mesh is an approxima-
tive solution with mostly high frequency error. (Post-)smoothing
by some more iterationsΨ removes the noise and yields the final
solution.

Fig 7 shows the effect of multi-level smoothing. On the left you
see the original bunny with about 70K triangles. In the center left,



Figure 7: Four versions of the Stanford bunny. On the left the original data set. In the center left the same object after 200 iterations of the
non-shrinking Laplace-filter. On the center right and far right the original data set after applying the multi-level umbrella filter with three or
six levels respectively.

we applied the Laplace-filter proposed in [34] withλ = 0:6307 and
µ= �0:6732. The iterative application of the local smoothing op-
erator

pi  pi + [λjµ] U(pi) (10)

removes the highest frequency noise after a few iterations but does
not have enough impact to flatten out the fur even after several hun-
dred iterations. On the right you see the meshes after applying a
multi-level smoothing with the following schedule: Hierarchy lev-
els are generated by incremental mesh decimation where each level
has about 50% of the next finer level’s vertices. The pre-smoothing
rule (8) is applied twice on every level before going downwards
and five times after coming back up. On the center right model
we computed a three level V-cycle and on the far right model a
six level V-cycle. Notice that the computation time of the multi-
level filters (excluding restriction and prolongation) corresponds to
about(2+ 5)(1+ 0:5+ 0:52 + : : :) < 14 double-steps of the one-
level Laplace-Filter (10).

3.4 Geometric filtering

The bunny example in Fig. 7 is well suited for demonstrating the
effect of multi-level smoothing but we did not impose any bound-
ary conditions and thus we applied the smoothing as a mere filter
and not as a solving scheme for a well-posed optimization prob-
lem. This is the reason why we could use the number of levels to
control the impact of the smoothing scheme on the final result. For
constrained optimization, it does not make any sense to stop the
recursion after a fixed number of decimation levels: we always re-
duce the mesh down to a small fixed number of triangles. Properly
chosen boundary condition will ensure the convergence to the true
solution and prevent the mesh from shrinking.

Nevertheless, we can exploit the effect observed in Fig. 7 to de-
fine more sophisticated geometric low-pass filters. Since the sup-
port of the Laplace-filters is controlled by the neighborhood relation
in the underlying mesh, the smoothing characteristics are defined
relative to a ”topological wavelength”. Noise which affects every
other vertex is removed very quickly independent from the length
of the edges while global distortions affecting a larger sub-mesh are
hardly reduced. Forgeometricfilters however we would like to set
the pass-band frequency in terms of Euclidian distances by postu-
lating that all geometric features being smaller than some threshold
ε are considered as noise and should be removed.

Such filters can be implemented by using an appropriate mesh
reduction scheme that tends to generate intermediate meshes with
strong coherence in the length of the edges. In [20] we propose a
mesh decimation scheme that rates the possible edge collapses ac-
cording to some generic fairness functional. A suitable objective
function for our application is to maximize theroundnessof trian-
gles, i.e., the ratio of its inner circle radius to its longest edge. If
the mesh decimation scheme prefers those collapses that improve
the global roundness, the resulting meshes tend to have only little

variance in the lengths of the edges. For the bunny example, we can
keep the standard deviation from the average edge length below one
percent for incremental decimation down to about 5K triangles.

By selecting the lowest levelM0 down to which the V-cycle
multi-level filtering iterates, we set the thresholdε = ε(M0) for
detail being removed by the multi-level smoothing scheme. The
thresholding works very well due to the strong local and poor global
convergence of the iterative update rule (8). Fig. 8 shows the base
meshes for the multi-level smoothing during the computation of the
two right bunnies of Fig. 7.

Figure 8: Base meshes where the V-cycle recursion stopped when
generating the right models in Fig. 7. The final meshes do not loose
significant detail (watch the silhouette). Notice how in the left ex-
ample the fur is removed but the bunny’s body preserved while in
the right example the leg and the neck start to disappear.

4 Multi-resolution modeling on triangle
meshes

In this section we describe a flexible and intuitive multi-resolution
mesh modeling metaphor which exploits the techniques presented
in the last two sections. As we discussed in the introduction, our
goal is to get rid of topological restrictions for the mesh but also
to get rid of difficulties emerging from the alignment of the basis
functions in a hierarchical representation and the rigid shape of the
basis function’s support.

From a designer’s point of view, we have to distinguish threese-
manticlevels of detail. These levels are defined relative to a specific
modeling operation since, of course, in a multi-resolution environ-
ment the features that are detail in a (global) modification become
the global shape for a minute adjustment.

� Theglobal shapeis that part of the geometry that is the subject
of the current modification. Intuitively, the designer selects a
piece of the global shape and applies a transformation to it.

� Thestructural detailare features that are too small to be mod-
ified by hand but still represent actual geometry. This detail
should follow the modification applied to the global shape in a



Figure 9: The wooden cat modelMk (178K triangles, left) is in progressive mesh representation. The high resolution is necessary to avoid
alias errors in the displacement texture. The center left modelMi (23K triangles) is extracted by stopping the mesh reduction when a
prescribed complexity is reached. On this level interactive mesh modification is done which yields the modelM 0

i (center right). The final
resultM 0

k (right) is obtained by running the reconstruction on the modified mesh.

geometrically intuitive manner. The preservation of structural
detail during interactive modeling is crucial for plausible vi-
sual feed-back (cf. the eyes and ears of the wooden cat model
in Fig. 9).

� The textural detaildoes not really describe geometric shape.
It is necessary to let the surface appear more realistic and is
often represented by displacement maps [21]. In high qual-
ity mesh models it is the source for the explosive increase in
complexity (cf. the wood texture in Fig. 9).

Having identified these three semantic levels of detail, we suggest a
mesh modeling environment which provides flexible mesh modifi-
cation functionality and allows the user to adapt the mesh complex-
ity to the available hardware resources.

In an off-line preprocessing step, an incremental mesh decima-
tion algorithm is applied and the detail coefficients are stored with
respect to local frames as explained in Section 2.2.1. This trans-
forms the highly complex input model into a progressive-mesh type
multi-resolution representation without any remeshing or resam-
pling. The representation allows the user to choose an appropriate
number of triangles for generating a mesh model that is fine enough
to contain at least all the structural detail but which is also coarse
enough to be modified in realtime. This pre-process removes the
textural detail prior to the actual interactive mesh modification.

Suppose the original mesh modelMk is transformed into the pro-
gressive mesh sequence[Mk; : : : ;M0] with M0 being the coarsest
base mesh. If the user picks the meshMi and applies modifications
then this invalidates the subsequence[Mi�1; : : : ;M0]. If the work-
ing resolution is to be reduced afterwards toM j ( j < i) then the in-
termediate meshes have to be recomputed by online mesh decima-
tion. The textural detail encoded in the subsequence[Mk; : : : ;Mi+1]
however remains unchanged since it is stored with respect to local
frames such that reconstruction starting from a modified meshM 0

i
leads to the intended resultM 0

k. Fig. 9 shows an example of this
procedure.

4.1 Interactive mesh modeling by discrete fairing

The most important feature in the proposed multi-resolution mesh
modeling environment is the modification functionality itself (mod-
eling metaphor) which hides the mesh connectivity to the designer.

The designer starts by marking an arbitrary region on the mesh
Mi . In fact, she picks a sequence of surface points (not necessarily
vertices) on the triangle mesh and these points are connected either
by geodesics or by projected lines. The strip of trianglesS which
are intersected by the geodesic (projected) boundary polygon sep-
arates an interior regionM� and an exterior regionMi n (M� [S).

The interior regionM� is to be affected by the following modifica-
tion.

A second polygon (not necessarily closed) is marked within the
first one to define thehandle. The semantics of this arbitrarily
shaped handle is quite similar to the handle metaphor in [37]: when
the designer moves or scales the virtual tool, the same geometric
transformation is applied to the rigid handle and the surrounding
meshM� follows according to a constrained energy minimization
principle.

The freedom to define the boundary stripS and the handle geom-
etry allows the designer to build ”custom tailored” basis functions
for the intended modification. Particularly interesting is the defini-
tion of a closedhandle polygon which allows to control the char-
acteristics of a bell-shaped dent: For the same regionM�, a tiny
ring-shaped handle in the middle causes a rather sharp peak while a
bigger ring causes a wider bubble (cf. Fig 10). Notice that the mesh
vertices in the interior of the handle polygon move according to the
energy minimization.

Figure 10: Controlling the characteristics of the modification by the
size of a closed handle polygon.

Since we are working on triangle meshes, the energy minimiza-
tion on M� is done by discrete fairing techniques (cf. Section 3).
The boundary trianglesS provide the correctC1 boundary condi-
tions for minimizing the thin plate energy functional (3).

The handle imposes additional interpolatory constraints on the
location only — derivatives should not be affect by the handle.
Hence, we cannot have triangles being part of the handle geome-
try. We implemented the handle constraint in the following way:
like the boundary polygon, the handle polygon defines a strip of
triangles being intersected by it. Whether the handle polygon is
open or closed, we find two polygons of mesh edges on either side
of that strip. We take any one of the two polygons and collect ev-
ery other mesh vertex in a set ofhandle vertices. Keeping these
handle vertices fixed during the mesh optimization is the additional
interpolatory constraint.



The reason for freezing only every other handle vertex is that
three fixed vertices directly connected by two edges build a rigid
constellation leaving no freedom to adjust theanglebetween them.
During discrete optimization this would be the source of undesired
artifacts in the smooth mesh.

With the boundary conditions properly set we perform the thin
plate energy minimization by using the umbrella algorithm de-
scribed in Section 3.1. To obtain interactive response times, we
exploit the multi-level technique: a mesh decimation algorithm is
applied to the meshM�[ S to build up a hierarchy. Then starting
from the coarsest level, we apply theU2 smoothing filter alternat-
ing with mesh refinement. This process is fast enough to obtain sev-
eral frames per second when modeling with meshes of #M� � 5K
triangles (SGI R10000/195MHz). Typically, we set the ratio of the
complexities between successive meshes in the hierarchy to 1 : 2 or
1 : 4 and iterate the smoothing filter 3 to 5 times on each level.

During the interactive mesh smoothing we do not compute the
full V-cycle algorithm of Sect. 3.3. In fact, we omit the pre-
smoothing and always start from the coarsest level. When a ver-
tex is inserted during a mesh refinement step we place it initially
at its neighbor’s center of gravity unless the vertex is a handle ver-
tex. Handle vertices are placed at the location prescribed by the
designer’s interaction (handle interpolation constraint). Hence the
mesh is computed from scratch in every iteration instead of just up-
dating the last position. This is very important for the modeling
dialog since only the current position, orientation and scale of the
handle determines the smoothed mesh and not the whole history of
movements.

For the fast convergence of the optimization procedure it turns
out to be important that the interpolation constraints imposed by the
handle vertices show up already on rather coarse levels in the mesh
hierarchy. Otherwise their impact cannot propagate far enough
through the mesh such that cusps remain in the smoothed mesh
which can only be removed by an excessive number of smoothing
iterations. This additional requirement can easily be included into
the mesh reduction scheme by lowering the priority ranking of col-
lapses involving handle vertices.

4.2 Detail preservation

If the modified meshM 0

�
is merely defined by constrained energy

minimization, we obviously loose all the detail of the originally
selected submeshM�. Since only the boundary and the handle ver-
tices put constraints on the mesh, all other geometric features are
smoothed out.

To preserve the detail, we use the multi-resolution representa-
tion explained in Section 2.2.2. After the boundaryS and the han-
dle polygon are defined but before the handle is moved by the de-
signer, we apply the multi-level smoothing scheme once. Although

the original meshM� and the smoothed meshfM� are topologically
equivalent, they do have different levels of (geometric) resolution
and hence constitute a two-scale decomposition based on varying
levels of smoothness. We encode the differenceD� between the
two meshes, i.e., the detail coefficients for the verticespi 2M� by
storing the displacement vectors with respect to the local frame as-

sociated with the nearest triangle infM�.
When the designer moves the handle, the bottom-up mesh

smoothing is performed to re-adjust the mesh to the new interpo-

lation conditions. On the resulting smooth meshfM 0

�
, the detailD�

is added and the final meshM 0

�
is rendered on the screen. Due to

the geometric coding of the detail information, this leads to intuitive
changes in the surface shape (cf. Figs. 11, 12). The ”frequency” of
the modification is determined by the size of the area, i.e., by the
boundary conditions and the fact that thesupporting meshis opti-
mal with respect to the thin-plate functional.

5 Conclusions and future work

We presented a new approach to multi-resolution mesh represen-
tation and modeling which does not require the underlying trian-
gle mesh to have subdivision connectivity. By adapting multi-level
techniques known from numerical analysis to the non-regular set-
ting of arbitrary mesh hierarchies, we are able to approximately
solve constrained mesh optimization in realtime. Combining the
two results allows us to present a flexible metaphor for interactive
mesh modeling where the shape of the modification is controlled
by energy minimization while the geometric detail is preserved and
updated according to the change of the global shape.

Our current implementation of an experimental mesh model-
ing tool already provides sufficient functionality to apply sophis-
ticated realtime modifications to arbitrary input meshes with up to
100K triangles. However, all changes do affect thegeometryof the
meshes only. So far we did not considertopologicalmodifications
of triangle meshes. In the future, when modifying a given mesh,
we would like new vertices to be inserted where the mesh is locally
stretched too much and, on the other hand, we would like vertices
to be removed when strong global modification causes local self-
intersection of the reconstructed detail.
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