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Abstract

Multiresolution analysis has been proposed as a basic tool supporting com-
pression, progressive transmission, and level-of-detail control of complex
meshes in a unified and theoretically sound way.

We extend previous work on multiresolution analysis of meshes in two ways.
First, we show how to perform multiresolution analysis of colored meshes
by separately analyzing shape and color. Second, we describe efficient al-
gorithms and data structures that allow us to incrementally construct lower
resolution approximations to colored meshes from the geometry and color
wavelet coefficients at interactive rates. We have integrated these algorithms
in a prototype mesh viewer that supports progressive transmission, dynamic
display at a constant frame rate independent of machine characteristics and
load, and interactive choice of tradeoff between the amount of detail in ge-
ometry and color. The viewer operates as a helper application to Netscape,
and can therefore be used to rapidly browse and display complex geometric
models stored on the World Wide Web.

CR Categories and Subject Descriptors: I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling — surfaces and object rep-
resentations; J.6 [Computer-Aided Engineering]: Computer-Aided Design
(CAD).

Additional Keywords: Geometric modeling, wavelets, multiresolution
analysis, texture mapping, viewer.

1 Introduction

Three-dimensional meshes of large complexity are rapidly becom-
ing commonplace. Laser scanning systems, for example, routinely
produce geometric models with hundreds of thousands of vertices,
each of which may contain additional information, such as color.

Working with such complex meshes poses a number of problems.
They require a large amount of storage and consequently are slow
to transmit. Additionally, they contain more faces than can be in-
teractively displayed on any current hardware.

Existing viewers either do not deal with these problems at all, or do
so only in crude ways, for example by showing wireframes or by
displaying only a fraction of the faces during dynamic viewing, and
then switching back to surfaces once the motion has stopped.
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A more sophisticated way of coping with both the transmission
and dynamic display problems is to use a precomputed sequence of
lower detail approximations to the mesh. Such approximations can
be computed, for example, using the method of Rossignac and Bor-
rel [9]. During transmission, a cruder approximation is displayed
while the next more detailed approximation is received. For dy-
namic display, one chooses the highest detail approximation com-
patible with a desired frame rate.

A major disadvantage of this approach is that the total amount of
data that has to be transmitted and stored is larger than the descrip-
tion of the full resolution mesh. In fact, there is a tradeoff between
granularity (the difference in resolution between successive models)
on the one hand and transmission time and storage requirements on
the other hand.

Previous work [1, 5, 6, 10] has demonstrated that, at least in princi-
ple, multiresolution analysis offers a unified and theoretically sound
way of dealing with these problems. A multiresolution representa-
tion of a mesh consists of a simple approximation called the base
mesh, together with a sequence of correction terms called wavelet
coefficients which supply the missing detail. The key point is that
truncated sequences of wavelet coefficients define approximations
to the mesh with fewer faces.

Although promising, previous work is lacking in at least two ways.
First, either color or geometry were represented in multiresolution
form, but not both. Second, algorithms for reconstructing and dis-
playing multiresolution meshes were much too slow for interactive
use.

In this paper we address both of these deficiencies. We deal with
complex colored meshes using separate multiresolution representa-
tions for geometry and color that are combined only at display time.
We also describe efficient algorithms and data structures that allow
us to incrementally construct and render lower resolution approx-
imations to the mesh from the color and geometry wavelet coeffi-
cients at interactive rates.

The separation of color and geometry, together with our incremen-
tal algorithms, allows the efficient implementation of the following
features:

� Progressive transmission: We first transmit and display the base
mesh and then transmit the wavelet coefficients in decreasing or-
der of magnitude. As wavelets are received, they are incorpo-
rated into the approximation, and the approximation is periodi-
cally re-rendered. In the examples we have tried the approxima-
tion rapidly converges to the original mesh (see Color Plates 1(a–
d)). Only a small penalty is incurred for progressive transmission
(see Section 5.1).

� Performance tuning: By truncating the color and geometry ex-
pansions we can obtain lower detail approximations of the mesh
with essentially any desired number of faces. During dynamic
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display, we truncate the expansions at a level of detail that can be
rendered with the desired frame rate. We monitor the frame rate
and dynamically modify the level of detail in response to chang-
ing machine load.

� Automatic texture map generation: The separation between
color and geometry and the way in which they are represented
allows us to take advantage of texture-mapping hardware, as de-
scribed in Section 3.3. Color Plates 1(g) and 1(h) illustrate the
gains obtained by exploiting texture mapping. For a given num-
ber of polygons, texture mapping allows display of a far better
approximation (Color Plate 1(h)), as all the polygons can be ded-
icated to capturing geometric detail. Color can always be dis-
played at full resolution because adding color detail does not in-
crease the polygon count.

� Adapting to user preferences: Color and geometry expansions
can be truncated independently. In the absence of texture map-
ping, the number of faces of the resulting mesh will depend on
the truncation thresholds. There will in general be many combi-
nations of color threshold and geometry threshold that result in
approximately the same number of faces (see Color Plates 1(e–
g)). Automatically finding the combination giving the “best look-
ing” approximation seems to be a hard problem, as it will cer-
tainly depend on the model itself. Instead, we allow the user to
interactively choose the tradeoff.

To demonstrate our ideas, we have built a prototype viewer running
as a helper application for Netscape. As demonstrated in the accom-
panying videotape, our viewer can be used to rapidly browse and
display complex geometric models stored on the World Wide Web.

The rest of the paper is organized as follows. In Section 2 we present
a brief summary of multiresolution analysis of colored meshes. In
Section 3 we describe the basic data structures and algorithms for ef-
ficiently constructing and rendering truncated models. In Section 4
we sketch the architecture of our viewer. In Section 5 we present the
results of several numerical experiments. Finally, Section 6 contains
a discussion and ideas for future work.

2 Background

In this section we first present a synopsis of multiresolution analy-
sis for piecewise linear functions on triangular meshes. For a more
complete exposition, see Stollnitz et al. [11]. We then describe how
to convert an arbitrary colored mesh to a parametric form amenable
to multiresolution analysis.

2.1 Multiresolution analysis

The central idea of multiresolution analysis is to decompose a func-
tion into a low resolution (“coarse”) part and a sequence of correc-
tion (“detail”) terms at increasing resolutions. Multiresolution anal-
ysis for functions on Rn was formalized by Meyer [8] and Mallat [7].
Lounsbery [5] and Lounsbery et al. [6] extended multiresolution
analysis to a class of functions including functions defined on trian-
gular meshes, which we call level J piecewise linear. A function f
defined on a triangular mesh M0 is called level J piecewise linear
if it is piecewise linear on the mesh MJ obtained by performing J
recursive 4-to-1 subdivisions of the faces of M0 (see Figure 1).

Let V̂j denote the vector space of level j piecewise linear functions
on M0. Let �̂j

i denote the unique level j piecewise linear function as-
suming value 1 at vertex i and value 0 at all other vertices of Mj.
These level j hat functions form a basis of V̂j. In the context of mul-
tiresolution analysis they are often referred to as scaling functions.
The spaces V̂0, V̂1, : : : form a nested sequence, as required by mul-
tiresolution analysis.
Figure 1 Recursive 4-to-1 splitting of a tetrahedron: (a)M0, (b) M1,
(c) M2.

Besides a nested sequence of spaces, the other basic ingredient of
multiresolution analysis is an inner product. We use the inner prod-
uct

hf j gi =
X

T

Z
x2T

f (x) g(x) dx,

where the sum is taken over all faces of M0 and dx is the area ele-
ment, normalized so that all faces of M0 have unit area.

Given a nested sequence of function spaces and an inner product, we
can now define wavelets. The orthogonal complements Ŵj of V̂j in
V̂j+1, for 0 � j < J, are called orthogonal wavelet spaces. A wavelet
basis for V̂J consists of the level 0 scaling functions, together with
bases for the wavelet spaces Ŵ0, . . . , ŴJ�1. Given such a wavelet
basis, we can express any level J piecewise linear function f on M0

as a linear combination of scaling functions and wavelets at various
levels.

Ideally we would like the wavelets, together with the level 0 scal-
ing functions, to form an orthonormal basis for V̂J. We could then
calculate the best k term L2 approximation to a function f 2 V̂J by
keeping the k terms of the expansion with the largest coefficients.
On the other hand, we want wavelets to have small support so that
the contribution to the approximation from each wavelet term can be
rapidly incorporated into the model. Unfortunately, orthogonality of
wavelet spaces and small spatial support of wavelets are conflicting
goals. As small spatial support is essential for applications, we relax
the orthogonality requirement.

Lounsbery et al. [6] stipulate a priori the size k of the support and
then construct biorthogonal wavelets  ̂j

i that span Ŵj and are as or-
thogonal as possible to V̂j. The wavelets obtained in this way are
called k-disk wavelets [11].

More precisely, consider a vertex i of Mj+1 that is located at the mid-
point of an edge e of Mj. The k-disk wavelet centered at vertex i is a
function of the form

 ̂
j
i = �̂j+1

i +
X
v2Nk

sj
v�̂

j
v , (1)

where Nk denotes a set of level j vertices in a neighborhood of vertex
i. The neighborhoods Nk are defined recursively. The neighborhood
N0 for the 0-disk wavelet consists of the endpoints of e; the neigh-
borhood Nk contains the vertices of all triangles incident on Nk�1

(see Figure 2). The wavelet consisting of only the level j + 1 scaling
function is called the lazy wavelet.

The coefficients sj
iv are chosen to minimize the norm of the orthog-

onal projection of  ̂j
i onto V̂j. They are determined by solving the

following system of linear equations:X
v2Nk

h�̂j
u j �̂

j
vi sj

iv = �h�̂j
u j �̂

j+1
i i, for all u 2 Nk.

Note that the system is local to vertex i. The size of the system for
0-disk wavelets is only 2� 2. For larger values of k the size of the



system depends on the valence of the parent vertices; in regular re-
gions of the mesh where all vertices have valence 6, the system has
size 10� 10 for k = 1, and size 24� 24 for k = 2.

The process of expressing a level J piecewise linear function in
terms of level 0 scaling functions and wavelets is called filterbank
analysis. For a description see Stollnitz et al. [11].

Figure 2 (a) The support of the 1-disk wavelet ̂j
i . Dark shaded area:

N0-neighborhood of center edge; light shaded area: faces added to
form N1-neighborhood. (b) The triangles required to introduce  ̂j

i

during reconstruction. (c) The graph of ̂j
i .

2.2 Conversion of colored meshes to multiresolution form

Multiresolution analysis of a colored mesh M is based on the
premise that M is defined parametrically by two vector valued
level J piecewise linear functions, a geometry function fgeom and a
color function fcolor, each mapping a triangular base mesh M0 into
R3.

Typically, M will not be given in this form, but instead in the form of
vertices, edges, and faces, vertex positions, and vertex colors. In or-
der to apply multiresolution analysis, M must be converted to para-
metric form. We do this by first applying the remeshing algorithm
of Eck et al. [1]. The output of the remeshing algorithm is a base
mesh M0 with a relatively small number of faces, a parameteriza-
tion � : M0 ! M, and an approximation of� by a level J piecewise
linear embedding fgeom : M0 ! R3 of the form fgeom =

P
i fi �̂

J
i ,

where fi are vectors in R3 representing the geometric positions of
the vertices of MJ .

We next apply the filter bank analysis algorithm of Lounsberyet al.
[6] to obtain a wavelet expansion of fgeom. Note that this analysis will
generate a vector of three coefficients for each wavelet, one for each
of the three coordinate functions. We sort these coefficient vectors in
order of decreasing length and then store them together with iden-
tifiers for the wavelets (center vertex and level) in a file called the
geometry-wavelet file.

We now turn to multiresolution analysis of color. Color is originally
given at the vertices of M, and can be extended to all of M by linear
interpolation. The parametrization � : M0 ! M obtained during
remeshing induces a color function  on M0. To construct a level J
piecewise linear approximation fcolor to , we sample  at the ver-
tices of MJ . As in the case of geometry, we then compute the wavelet
expansion of fcolor by filterbank analysis and store the wavelet coef-
ficient vectors in order of decreasing length in a color-wavelet file.

The base mesh M0, its vertex positions (the coefficients of the level 0
scaling functions in the expansion of fgeom) and its vertex colors are
stored in a base file. The geometry-wavelet file, the color-wavelet
file, and the base file constitute the input to our multiresolution
viewer.

3 Algorithms and data structures

In this section we describe the algorithms and data structures that
form the basis of our multiresolution viewer. We assume that the
colored mesh is represented in multiresolution form, i.e., by a base
mesh and wavelet expansions of the color and geometry functions.

At the full resolution, the number of faces ofMJ is 4J times the num-
ber of faces of M0. The faces of MJ can be naturally organized into
a tree Q. The root of Q has as many children as there are faces in the
base mesh, while every other internal node has four children. Each
leaf of Q corresponds to a face of MJ . This tree organization was
also used by Schroeder and Sweldens [10]. The mesh is rendered by
traversing the tree Q, evaluating fgeom and fcolor at the vertices, and
generating a colored triangle for each leaf.

In the absence of texture-mapping hardware, color and geometry are
handled identically, so we will couch the discussion in terms of ge-
ometry alone. The use of texture mapping is the topic of Section 3.3.

First some terminology: let f r
geom denote the approximation to

fgeom obtained by summing the scaling functions and the largest r
wavelets, and let Qr denote the smallest subtree of Q we for which
f r
geom is linear on each leaf.

For progressive transmission we first transmit the base meshM0 and
the coefficients of the level 0 scaling functions. The associated tree
Q0 consists only of the root node and as many leaves as there are
faces in the base mesh. As wavelets arrive, we incrementally grow
Qr and update f r

geom, and periodically render the mesh.

Use of the wavelet representation for performance tuned view-
ing and level-of-detail control is based on the observation that for
small r, the tree Qr will also be small, and therefore rendering Qr

will result in many fewer triangles than rendering Q. In principle
we could generate approximations with almost any desired number
of faces by growing from the base mesh. For efficiency reasons we
cache trees and vertex positions for a sequence of approximations,
and then grow the desired tree from the closest approximation with
fewer than the desired number of faces.

3.1 Data structures

As previously stated, the primary data structure used to represent the
mesh is a tree Q, which has as many descendents from the root as
there are faces in the base mesh and is a quadtree for all other levels.

We represent all nodes of Q, except for the root, with the following
data structure:

type Face = record
level: Integer
children[4]: array of pointer to Face
cornerVertex[3]: array of pointer to Vertex
edgeVertex[3]: array of pointer to Vertex

end record

A face is said to be of level j if it is a face of Mj. The array corner-
Vertex has pointers to three vertices of the face, and the arrayedge-
Vertex has pointers to three vertices that subdivide the edges of this
face.

We represent vertices with the following data structure:

type Vertex = record
parentV[2]: array of pointer to Vertex
parentF[2]: array of pointer to Face
fGeom: XYZposition
fColor: RGBcolor
g: XYZvector
hGeom[ ]: array of HatFunctionCoefficients
hColor[ ]: array of HatFunctionCoefficients

end record

The array parentV contains pointers to the two vertices on either end
of the edge that the vertex subdivides — these are calledparent ver-
tices of the vertex. The array parentF contains pointers to the two



faces on either side of the edge that the vertex subdivides — these
are called the parent faces of the vertex. A vertex is said to be of
level j if it was created at the j-th level of subdivision, i.e., if its par-
ent faces are of level j�1. The fields fGeom and fColor contain the
values of f r

geom and f r
color at the vertex. The role of hGeom and hColor

is explained in Section 3.2.

Vertices of level j > 0 are indexed by the base face they lie in, to-
gether with their barycentric coordinates within the face. As it is of-
ten necessary to find the node representing a vertex from its index,
we maintain an auxiliary hash table that maps vertex indices to ver-
tex nodes. Whenever a vertex is created, it is added to the table.

3.2 Algorithms

Suppose we have already constructed the face tree Qr and evalu-
ated f r

geom at all its vertices. Adding a wavelet requires growing Qr

into Qr+1 and evaluating f r+1
geom. For efficiency reasons we do not re-

evaluate f r+1
geom for every new wavelet. Instead we gather a sequence

of s wavelets, then evaluate f r+s
geom when the new mesh is rendered.

We now describe the gather and evaluate stages.

3.2.1 The gather stage

Gathering a wavelet  ̂j
i with wavelet coefficient aj

i involves three
steps:

1. Decompose the term  ̂
j
i into a sum of hat functions at level j and

j + 1 according to Equation (1).

2. For each hat function in the decomposition, grow the current face
tree to accommodate it. A face tree is said to accommodate a
function if the function is linear over each face. This process is
described more fully below.

3. For each hat function in the decomposition �̂j0
v , j0 = j, j + 1,

centered at vertex v, update the hGeom field of v:
v.hGeom[j0] += aj

is
j0

v , where sj0
v is the coefficient of �̂

j0
v in

the decomposition of step 1.

The most complicated part of gathering is growing the current face
tree Qr to accommodate a level j hat function �̂j

v centered at a ver-
tex v. We call a level j vertex complete if its parent faces have been
subdivided. (By definition, all level 0 vertices are complete.) As
each vertex has pointers to its two parent faces (nil if a parent face
does not exist), it is easy to test a vertex for completeness.

Clearly, Qr can accommodate a hat function �̂j
v if the level j neigh-

bors of vertex v are complete. Thus, there is a simple recursive pro-
cedure to make a vertex complete:

� Make its two parent vertices complete;

� Subdivide the two parent faces of the vertex.

Whenever a new vertex w is created in the completion process, f r
geom

is evaluated at the vertex, and the value is recorded in w.fGeom.
Since f r

geom is linear on the edges of Qr, this evaluation is accom-
plished by averaging the fGeom values of w’s parent vertices.

While this growing process is simple, it can generate more than the
minimum number of triangles needed to accommodate a hat func-
tion (see Figure 3).

3.2.2 The evaluate stage

Recall that wavelets are added in two stages. In thegather stage the
face tree is grown so that it contains all the faces necessary to ac-
commodate the new wavelets. At this stage we also compute the val-
ues of the current approximation f r

geom at the newly introduced ver-
Figure 3 Making a vertex complete: (a) A vertex to be made com-
plete. (The dashed faces are the minimal number that must be added
to make the vertex complete.) (b) The parent vertices are created and
made complete by subdividing their parent faces. (c) Subdividing the
parent faces of the vertex makes it complete.

tex positions. The wavelets are decomposed into hat functions, and
the coefficient arrays for their center vertices are updated. The new
geometry function f r+s

geom is not evaluated until the tree is rendered, at
which time the contributions from all the hat functions are summed
in a single tree traversal. We will now describe this evaluation stage.

Let g denote the sum of all the hat functions gathered since the
last evaluation stage, and let gk denote the partial sum obtained by
adding all the contributions from hat functions of levelk or smaller.
By construction g = gL, where L is the maximum level of any leaf of
Qr+s. Note that since gk is linear over the faces of level k and above,
it is completely determined by its values at the vertices of Qr+s of
level k and less.

We now present an inductive procedure to compute the values ofgL

at all of the vertices of Qr+s.

It is easy to compute the values of g0 at the level 0 vertices — they
are the coefficients of the gathered level 0 hat functions.

Next we describe how to compute the values ofgk+1 at all vertices of
Qr+s of level k + 1 and smaller from the values of gk at all vertices
of level k and smaller. Let hk+1

v denote the coefficient of the level
k +1 hat function centered at v. If v is a vertex of level k or less, then
gk+1(v) = gk(v) + hk+1

v . If v is a level k + 1 vertex, then it splits an
edge connecting its two level k parent vertices, Therefore, gk(v) is
the average of the values of gk at its parent vertices, and gk+1(v) =
gk(v) + hk+1

v .

The calculation of gL can be performed efficiently during a breadth
first traversal of Qr+s, as summarized in the pseudocode given in Fig-
ure 4.

3.3 Treatment of color

As mentioned earlier, in the absence of texture-mapping hardware
color and geometry are handled identically: both color and geome-
try wavelets are gathered and evaluated as described in the previous
section.

Representing colored meshes in multiresolution form makes it easy
to exploit texture mapping hardware. The basic idea is to associate
a region of texture memory with each face of the base mesh. If the
full resolution model is subdivided to level J, a 2J � 2J texture map
is allocated, but only the lower diagonal is actually used. (To reduce
the wasted texture memory, we pair adjacent base mesh faces when-
ever possible. We then allocate a square region of texture memory
to the pair.)

Since geometry is represented parametrically by a piecewise linear
function over MJ , there is a straightforward solution for the nor-
mally difficult problem of generating texture coordinates for arbi-
trary meshes. The texture coordinates for any vertex are simply the
pre-image of the vertex under the parametrization. Therefore, the
corner vertices of a base mesh face have texture coordinates (0,0),
(1,0), and (0,1), and the texture coordinates for every other vertex
are the average of its parents’ coordinates. The image displayed in



procedure Evaluate()
queue Level 0 faces
do while queue != empty

currentFace GetFirstFace(queue)
currentLevel  currentFace.level
if IsSubdivided(currentFace) then

for each cornerVertex v of currentFace do
v.g += v.hGeom[currentLevel]
v.hGeom[currentLevel] 0

end for
for each edgeVertex e of currentFace do

if e has two parent faces then
f e will be visited twice, so add 1/2 per visitg
e.g += 0.25 (e.parentV[1].g+e.parentV[2].g)

else
e.g += 0.5 (e.parentV[1].g+e.parentV[2].g)

end if
end for
for each i 2 0, 1, 2, 3 do

Append currentFaces.children[i] to queue
else

for each cornerVertex v of currentFace
v.fGeom += v.g + v.hGeom[currentLevel]
v.g v.hGeom[currentLevel] 0

end for
AddToDisplayList(currentFace)

end if
end while

end procedure

Figure 4

Figure 5 illustrates texture mapping. The base mesh has been ren-
dered with only the scaling functions of fgeom, but with all of the
terms of fcolor.

The texture map associated with a face of the base mesh is initial-
ized by linearly interpolating between the colors at the vertices of
the face (i.e., the level 0 color scaling function coefficients). The
texture map is updated as soon as color wavelets are received, es-
sentially by “painting” the wavelet into the texture map. Since the
addition of color wavelets does not increase the triangle count, sys-
tems with texture-mapping hardware color can always display color
at its highest resolution.

4 Viewer Architecture

Our viewer, written in OpenGL and Motif for Silicon Graphics Iris
workstations, is configured as a helper application for Netscape.
When a multiresolution-surface link is followed, the viewer appli-
cation opens an HTTP connection for the base mesh file. After re-
ceiving the base mesh, the viewer displays it in a graphics window
(see Figure 5) and opens two parallel HTTP connections, one for
the color wavelets file and one for the geometry wavelets file. As
wavelet coefficients are received they are incorporated as described
in Section 3, and the model is periodically redisplayed. Color Plates
1(a–d) illustrate a model at various stages of transmission. Assum-
ing a 64Kbs link (ISDN speeds), the images shown represent, from
top to bottom, the model after 3 seconds, 17 seconds, 59 seconds,
and 180 seconds (the full model).

In standard operation, the quality of the model displayed in the
viewer is controlled by the slider labeledFrame Time. When the user
is rotating or translating the model, the viewer attempts to maintain
that frame rate by measuring the polygon performance for the previ-
ous frames and predicting the desired model size for the upcoming
frame. When there is no interaction, a more refined model is ren-
dered, allowing the user to see more detail. If the refined model takes
a significant time to render, the rendering is performed in stages, so
that the viewer can check for user events during the rendering. If the
user decides to interact with the model while the viewer is drawing
Plate wavelet # geom # color # polys L2 L1

type wavelets wavelets error error
(a) 0-disk 770 830 4701 .0961 .3217
(b) 0-disk 4166 4445 22725 .0375 .0949
(c) 0-disk 14350 14605 56418 .0076 .0136
(d) 0-disk 49530 49530 98304 2.3e-6 1.92e-6
(e) 0-disk 114 811 3006 .2555 .5246
(f) 0-disk 371 567 3033 .1607 .3461
(g) 0-disk 743 324 3015 .1225 .2777
(h) 0-disk 774 49530 2994 .1203 .2777
(i) Lazy 16380 16380 32760 6.7e-8 4.7e-7
(j) Lazy 1254 1350 5561 .0099 .0503
(k) 0-disk 1129 1084 5510 .0075 .0459
(l) 2-disk 735 883 5573 .0092 .0676

Table 1 Statistics for Color Plate 1

a refined model, rendering is aborted, and the system returns to in-
teractivity.

The quality of the model can also be controlled in two other ways:
the user can explicitly set either the number of geometry and color
wavelets to be added to the base mesh, or the number of polygons
to be used in creating the approximation.

If either the frame time or the number of polygons is specified, the
tradeoff between color and geometry is controlled with the slider la-
beled Color to Geom. Moving the slider to the left indicates a pref-
erence for geometry detail, whereas moving it to the right indicates
a preference for color detail. The tradeoff is shown in Color Plates
1(e–g), where (e) corresponds to a strong preference for color, (g)
corresponds to a strong preference for geometry, and (f) corresponds
to a balance between the two. Each of these model consists of the
same number of Gouraud shaded polygons.

The color/geometry slider is only active on machines without
texture-mapping hardware. If the machine has texture-mapping
hardware, color wavelets do not increase the polygon count, so they
are always included. Color Plate 1(h) shows the model that can be
displayed for the same polygon budget used in Plates 1(e–g).

5 Results

In this section we present various statistics for the color plates, and
we describe a number of numerical experiments we have performed.

Statistics for the color plates are summarized in Table 1. Three dif-
ferent types of wavelets were used as indicated by the second col-
umn. All examples were computed using the same type of wavelet
for both color and geometry, although in principle different types
of wavelets could be used. The other columns should be self-
explanatory. The errors reported in the last two columns are normal-
ized so that the crudest model has error 1.

In addition to using the viewer to create the color plates, we con-
ducted a set of numerical experiments to compare the performance
of four types of wavelets: lazy, 0-, 1-, and 2-disk wavelets. The ex-
periments focused on the following factors:

� Convergence as a function of number of wavelet coefficients:
For fixed network bandwidth, the rate at which the transmitted
model approaches the original depends on how quickly the error
decreases as a function of the number of wavelet coefficients.

Figure 6 is a plot of L2 error in geometry vs. number of coeffi-
cients for the various types of wavelets for the head model shown
in Color Plates 1(e–h). The plot of L1 error is qualitatively sim-
ilar. Similar results were obtained for the other two models.

Our conclusion is that lazy wavelets perform slightly worse than



Figure 5 The multiresolution viewer.

k-disk wavelets, but there seems to be no significant difference
between various values of k.

� Convergence as a function of number of polygons: For fixed
polygon display rate and update frequency, the visual appearance
of the model depends on how quickly the error decreases as a
function of the number of polygons in the model.

Figure 7 is a plot of the L2 error vs. number of polygons for the
same head model. Again, the corresponding plot for theL1 error
is qualitatively similar.

Color Plates 1(i–l) illustrate the visual fidelity for the earth model
when different types of wavelets are used to produce a model
with a fixed polygon count. Table 5 indicates that the error for
this number of polygons is actually less for lazy wavelets than
for 2-disk wavelets, due to the large number of polygons that a 2-
disk wavelet may introduce. Color plate 1(i) is the full-resolution
earth model, subdivided to level-6. The next three color plates,
1(j–l), depict the earth reconstructed to approximately 5500 poly-
gons using lazy wavelets, 1(j), 0-disk wavelets, 1(k), and 2-disk
wavelets, 1(l). Although there are visual differences between the
images, it is not clear which is preferable.

Our conclusion is again that lazy wavelets perform slightly worse
than k-disk wavelets numerically, but there apparently is no sig-
nificant difference between various values ofk. Visually, there is
no clear preference.

� Numerical stability: In the conversions to and from multiresolu-
tion form some numerical error is inevitable. While the numer-
ical stability properties of orthogonal wavelet constructions are
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Figure 6 L2 error vs. number of wavelet coefficients.
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Figure 7 L2 error vs. number of polygons.

relatively well understood, stability of biorthogonal schemes like
ours is less clear.

Lacking theory to guide us, we ran the following experiment on
the earth model. For each of the four types of wavelets we per-
formed wavelet analysis followed by wavelet synthesis on a level
J = 6 version of the model. For lazy wavelets, the relative error
in the vertex positions was on the order of the machine precision.
For 0-, 1-, and 2-disk wavelets, the relative errors were on the or-
der of 0.00005, 0.001, and 0.002. When we reran the experiment
using a level 3 version of the earth, the relative error for 2-disk
wavelets was reduced to 1 in 106.

Our conclusion is that wavelets with smaller supports are likely to
be more stable numerically than those with larger ones, and that
stability becomes increasingly important as the number of levels
increases.

� Speed: Wavelets with larger support clearly take longer to add.
There are potentially more new faces to introduce, and there are
always a greater number of vertices whose hat function coeffi-
cients need to be updated. We ran a series of timing experiments
and found that on average each type of wavelet could be added
(the gather stage) at the following rate: lazy, 2700 coefficients per
second; 0-disk, 2300; 1-disk, 1200; 2-disk, 600. The time for the
evaluate stage was unchanged relative to wavelet size, which was
expected.

Overall, we conclude that 0-disk wavelets combine good visual fi-
delity for a given number of coefficients and for a given number



of polygons, with good numerical stability and computation time.
These findings, however, are preliminary, and require further con-
firmation.

5.1 Data encoding

As mentioned in the introduction, there is a small penalty for rep-
resenting a mesh in multiresolution form. Since the wavelet coef-
ficients are sorted in magnitude order for progressive transmission,
we need to transmit with each coefficient the vertex identifier for the
center of the wavelet. This information could be made implicit if the
complete model was transmitted before any processing or display
took place.

We use a simple encoding which represents the coefficient for a
color or geometry wavelet with three floating point numbers, to-
gether with a word of information for the vertex identifier. This rep-
resents a 33% penalty for the benefit of progressive transmission. A
suggestion for reducing this penalty is described below.

6 Discussion and future work

We have extended previous work on multiresolution analysis of
meshes in two ways. First, we have shown how to perform multires-
olution analysis of colored meshes by separately analyzing shape
and color. Second, we have developed efficient algorithms and data
structures that allow us to incrementally construct lower resolution
approximations to colored meshes at interactive rates.

We have integrated these algorithms in a prototype mesh viewer
that supports progressive transmission, dynamic display at a con-
stant frame rate independent of machine performance and load, and
the ability to interactively trade off the amount of detail in geome-
try and color. The separation of geometry and color also allows us
to make efficient use of texture-mapping hardware.

In future work we intend to investigate:

� Multiresolution editing: In analogy to Finkelstein and Salesin’s
work on multiresolution curves [2] we plan to extend our mul-
tiresolution viewer to allow editing of meshes at different levels
of detail.

� Other wavelets: We currently use piecewise linear wavelets to
represent geometry and color. When modeling smooth objects or
objects without sharp color transitions, use of smooth wavelets
may result in better compression.

� Automatic tradeoff between color and geometry: If there is no
texture-mapping hardware, adding wavelets for either color or
geometry will increase the number of polygons that have to be
rendered. When there is an upper bound on the number of poly-
gons, for example during dynamic viewing, one has to choose be-
tween color detail and geometry detail. Currently the tradeoff is
left to the user. Heuristics for automatically choosing a tradeoff
that results in a visually close approximation would be useful.

� Comparison to progressive meshes: In simultaneous work
Hoppe [3] has introduced the notion ofprogressive meshes to ad-
dress the difficulties of storage, transmission, and display of com-
plex meshes. The basic idea is to record the changes a mesh opti-
mizer [4] makes as it simplifies a mesh. Since the original mesh
can be recovered by running the record of changes in reverse,
the progressive mesh representation is the simplest mesh together
with the record of changes in reverse order. The relative advan-
tages and disadvantages of such an approach need further study.

� Better encoding: The wavelet coefficients for a particular model
typically span a large dynamic range, making floating point an
obvious choice for encoding their values. Better use of bandwidth
and storage could be made, however, by taking advantage of the
wavelets being sorted in magnitude order. Fixed point numbers
could be transmitted for each coefficient, with the scale infor-
mation being transmitted only as it changes. This improvement
could potentially eliminate the overhead incurred for progressive
transmission.
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