
Interactive Occlusion and

Collision of Real and

Virtual Objects in

Augmented Reality

David E. Breen
Eric Rose
Ross T. Whitaker ECRC-95-02



Technical report ECRC-95-02

Interactive Occlusion and Collision of Real

and Virtual Objects in Augmented Reality

David E. Breen
Eric Rose
Ross T. Whitaker

European Computer-Industry

Research Centre GmbH

(Forschungszentrum)

Arabellastrasse 17

D-81925 Munich

Germany

Tel. +49 89 9 26 99-0

Fax. +49 89 9 26 99-170

Tlx. 52 69 10

I



c
European Computer-Industry Research Centre, 1995

Although every effort has been taken to ensure the accuracy of this report,

neither the authors nor the European Computer-Industry Research Centre

GmbH make any warranty, express or implied, or assume any legal liability for

either the contents or use to which the contents may be put, including any

derived works. Permission to copy this report in whole or in part is freely

given for non-profit educational and research purposes on condition that such

copies include the following:

1. a statement that the contents are the intellectual property of the

European Computer-Industry Research Centre GmbH

2. this notice

3. an acknowledgement of the authors and individual contributors to

this work

Copying, reproducing or republishing this report by any means, whether

electronic or mechanical, for any other purposes requires the express written

permission of the European Computer-Industry Research Centre GmbH. Any

registered trademarks used in this work are the property of their respective

owners.

For more

information

please

contact : David E. Breen

david@ecrc.de

II



Abstract

We present several techniques for interactively performing occlusion and

collision detection between static real objects and dynamic virtual objects in

augmented reality. Computer vision algorithms are used to acquire data that

model aspects of the real world. Either geometric models may be registered to

real objects, or a depth map of the real scene may be extracted with computer

vision algorithms. The computer vision-derived data are mapped into

algorithms that exploit the power of graphics workstations, in order to

interactively produce new effects in augmented reality. By combining live

video from a calibrated camera with real-time renderings of the real-world data

from graphics hardware, dynamic virtual objects occlude and are occluded by

static real objects. As a virtual object is interactively manipulated collisions with

real objects are detected, and the motion of the virtual object is constrained.

Simulated gravity may then be produced by automatically moving the virtual

object in the direction of a gravity vector until it encounters a collision with a

real object.

III



1 Introduction

Augmented reality (AR) is a combination of technologies distinct from virtual

reality (VR), that promises to support a wider range of applications. Interest in

AR has substantially increased in the past few years, with research groups

exploring diagnostic, manufacturing, medical and repair applications. In

augmented reality, the computer provides additional visual information that

enhances or augments a user’s view of the real world. Instead of replacing the

world with a completely virtual environment, as in VR, AR brings the computer

out of the desktop environment and incorporates the computer into the reality

of the user. The user can then interact with the real world in a natural way,

with the computer providing graphical information and assistance.

In order for AR to become fully accepted the real and virtual objects1 within

the user’s environment must be seemlessly merged. For the new reality to be

convincing, real and virtual objects must interact realistically. Objects in AR

may interact with each other in a variety of ways, which may be placed into

two categories, visual and physical. Visual interactions between real and virtual

objects are based on the inter-reflections, absorption, and redirection of light

emitted from and incident on these objects. Effects that we see in reality and

therefore expect in AR include shadows, occlusion, diffuse, specular, and

internal reflections, refraction, and color bleeding.

Physical interactions between objects include kinematic constraints, collision

detection and response, and full physically-based responses to external forces.

Kinematic interactions involve one object’s motion constraining or directly

affecting the position and orientation of another object at some connection

point or joint. For collision detection, calculations are performed to determine

when one object strikes another, thus preventing them from occupying the

same space. The most complex interactions, ones that are physically-based,

involve the exchange of forces and momentum between real and virtual

objects, producing virtual objects with realistic behavior. It is important to

realize that most interactions are currently one-way, i.e., real objects can affect

the virtual objects, but the virtual objects cannot usually affect the real ones.

This would require computer-controlled visual and physical manipulators,

which are currently beyond the scope of our available technology. Figure 1.1

provides a high-level diagram of our augmented reality environment, with solid

lines representing the flow of interactions and data, and the dashed line

representing the potential manipulation of the real environment.

The User Interaction and Visualization (UI&V) group at ECRC has begun to

explore and develop the algorithms needed to produce real-time interactions

between real and virtual objects within a larger project to develop a

general-purpose augmented vision2 (AV) capability. Our initial work in this

1The term virtual objects refers to geometric models and their associated rendered forms.
2We use the term augmented vision in order to highlight our interest in combining computer

1



Virtual World Real World

Input Devices: 6D Tracker,
Video Cameras/Frame Grabber

+

User

Output Devices

Video

Video CameraComputer Graphics

Figure 1.1: Augmented reality configuration.

area has focused on a single visual interaction, occlusion, and a single physical

interaction, collision detection. Occlusion occurs when an object closer to the

viewer obscures the view of objects further away along the line-of-sight.

Collision detection and response prevent a virtual object from passing through

a real one. Our system can also automatically move a virtual object until a

collision is detected, allowing it to simulate virtual “gravity”.

Computer vision algorithms for acquiring information about the real world

form the foundation of our occlusion and collision detection research. We are

currently exploring several strategies for bringing the real world and the virtual

world into a single computational framework. Once the computer can correctly

model some aspect of the real world, virtual objects can interact realistically

with it. Our strategies differ in their assumptions about the real world, and

produce different kinds of representations of it. If geometric models of real

objects exist, they may be registered to their corresponding objects in the real

environment. Otherwise, if no specific geometric knowledge about the real

environment is available, a depth map of the scene can be produced.

Our algorithms for occlusion and collision detection between real and virtual

objects have been strongly influenced by the type of data that may be derived

from computer vision (CV) techniques. The goal of our work is to develop

computer graphics algorithms that utilize the information that is available from

computer vision in order to produce new capabilities for augmented reality.

The challenge here is to use CV-derived data in a way that exploits the power

of graphics workstations. Camera and tracker calibration methods provide us

with the ability to sense and measure the real world. Once object models are

vision and computer graphics techniques for augmented reality.

2



registered to objects in the real environment, the models may be passed

directly to the graphics system to produce occlusions. A depth map of the real

scene has several applications. It may either be used directly by the graphics

system to produce occlusions, or used for collision detection between virtual

objects and the real environment.

2 Previous Work

Several research groups are currently exploring augmented reality for a variety

of applications. Feiner et al. [12] have developed a knowledge-based AR

system for maintenance and repair instruction. Lorensen et al. [19] have

focused more on AR for medical applications. At Boeing [27], AR is being

developed to assist in manufacturing processes. A group at the University of

North Carolina has also explored medical applications [6], and conducted

research in tracking technologies [5] and collision detection [4] for AR. Deering

[11] has studied the problems associated with achieving high resolution

head-tracked stereo display for AR. Milgram et al. [21] have explored AR for

enhancing telerobotic interactions.

Grimson et al. [14] present a method for automatically registering clinical data

from MRI or CT scans with a patient’s head on an operating table. Nakamae et

al. [23] propose a technique for accurately overlaying computer-generated

images on digital images of real outdoor scenes. Fournier [13] has posed the

problems associated with common illumination when combining synthetic

images with images of real scenes. Wloka and Anderson [33] are developing a

new real-time “depth-from-stereo” algorithm to be used for producing

occlusions in AR.

3 The Grasp Augmented Vision System

The efforts of ECRC’s UI&V group to explore augmented vision to date have

revolved around the development of the Grasp system [1, 2]. Grasp is an

object-oriented system written in C++ which provides an environment for

exploring the basic technologies of augmented vision and for developing

applications that demonstrate the capabilities of these technologies. The major

software components consist of classes that implement geometric models,

rendering algorithms, calibration methods, file I/O, user interfaces, and input

devices.

The hardware configuration is illustrated in Figure 3.1. A graphical image is

generated by the workstation hardware and displayed on the workstation’s

high resolution monitor along with auxiliary control information. A scan

converter takes the relevant portion of the graphical image and converts it to

standard video resolution and format. The scan converter also mixes this

3



Scene

Video Monitor

High-Resolution
Workstation

Monitor

Keyboard

Mouse

Scan Converter
and 

Video Mixer

Workstation
Video

Frame Grabber

PAL

Video Camera

6D Pointing Device

6D Tracker
Hardware

6D Tracker
Transmitter

PAL

Receiver

Object

RS-232

Figure 3.1: Grasp system hardware configuration.

generated video signal with the video signal input from the camera. A six

degrees-of-freedom (6D) tracker, which is capable of sensing three translational

and three rotational degrees of freedom, provides the workstation with

continually updated values for the position and orientation of the video camera,

a tracked object and the pointing device. The information about the camera

and the tracked objects’ position and orientation is used to keep the overlaid

graphics in correct alignment with the visual image. A frame grabber is used

during the initial calibration procedure as part of the process of determining the

location and orientation of the camera, tracked objects, and real environment.

4 Modeling the Real World

In order for real and virtual objects to properly interact, they must be placed

into the same computational framework. The geometric and physically-based

modeling of virtual objects is a major research area that spans computer-aided

design, computer animation, and virtual reality. Models of real objects must be

created and brought into the virtual (computational) world before real and

virtual objects may interact. The process of sensing the real world and

automatically creating models of objects within it is traditionally a problem

addressed by the computer vision community. Therefore the algorithms

4



developed for computer vision play an extremely important role in augmented

reality.

4.1 Calibrating the Input Devices

The first stage of modeling the real world involves calibrating the devices that

are used to sense and measure it. Our system has two devices for obtaining

information about the real world, a video camera and a 6D pointer. The

camera is calibrated using a semi-automatic method based on the work of

Weng et al. [30]. Here, an image of a known calibration grid is grabbed. The

user interactively picks grid points in the image whose locations are known. By

correlating the pixel locations (ri; ci) and the 3D coordinates of the points

(xi; yi; zi) with the equation

ri � r0

fu
=

r11xi + r12yi + r13zi + t1

r31xi + r32yi + r33zi + t3
ci � c0

fv
=

r21xi + r22yi + r23zi + t2

r31xi + r32yi + r33zi + t3
(1)

the extrinsic parameters of camera orientation R and translation T , and the

intrinsic parameters of image plane origin (r0; c0) and aspect-ratio-adjusted

focal lengths (fu; fv) are calculated. By using at least six data points, Equation

1 forms a system of non-linear equations that is iteratively solved with a

constrained optimization technique [2].

The pointing device may be calibrated by placing its tip on a known location

Tp, and reading the position Ti and orientation Ri of its tracking receiver at

least three times. These values are plugged into

Tp = TbRi + Ti (2)

and solved with a least-squares method to produce Tb, the effective length of

the pointer [2]. Once Tb is known and the tracker system is calibrated, the 6D

location of the pointer tracking receiver may be read and the world coordinate

position of the pointer tip calculated.

4.2 Acquiring Models of Real-World Objects

Techniques for acquiring models of the real world typically fall into one of two

classes as described in the computer vision literature. The first class consists of

model-based techniques which assume some model of the world and try to

align (register) that model to data from the real world, thereby inferring the

pose of that object in world coordinates. If the object model can be

represented in a form that is consistent with the other 3D models in the

graphics system, then the object model can be used to simulate the effects of

the real object it represents. The registration of models to match features in

5



Figure 4.1: A wireframe model is overlaid on a real object after registration.

images is an on-going research problem in computer vision. However,

applications of augmented reality do not necessarily require fully automated

techniques. For the examples in the paper we have provided a registration tool

that allows users to align objects by clicking on a number of points (ri; ci) in an

image whose location (xi; yi; zi) on the object are known (landmarks). Given

this minimal user input the computer is then able to calculate the

transformation (R; T ) between the object’s local coordinate system and the

camera’s coordinate system using Equation 1. At this point the camera’s

intrinsic parameters ((r0; c0), (fu; fv)) have been determined and are fixed; thus

simplifying the system of equations needed to be solved. A constrained

optimization technique is used that maintains the orthonormality of rotation

matrix R. Figure 4.1 presents the results of such a registration. The

corresponding model is overlaid in wireframe on an image of the real object.

The circles identify the landmarks that are picked by the user during the

registration procedure.

The 6D pointing device may also be utilized to register geometric models to

real objects. The pointer is used to acquire the world coordinates Pw
i of at least

four landmarks known in the object’s local coordinate system P l
i . Plugging Pw

i

and P l
i into

Pw
i = P l

iR+ T (3)

and solving the resulting system of non-linear equations with a constrained

optimization method produces the rotation matrix R and translation vector T .

This local-to-world transformation provides the mapping, needed for object

registration, from the object’s local coordinate system to the world coordinate

6



Figure 4.2: Rendered image and its corresponding depth map.

system.

A second class of techniques for acquiring models of the real world are those

that reconstruct the depth of the real environment from the point of view of the

camera (depth-based). While these techniques might use models of the real

world, often they make more general assumptions, such as piecewise

continuity or smoothness of surfaces in the scene. The absence of hard

assumptions about the environment promises to produce algorithms that can

be applied to a more general class of applications without having to construct

geometric models of all the relevant real-world objects. Various techniques are

described in the literature including shape from stereo [16], motion [31],

shading [15], and texture [8]. These “shape from X” algorithms all produce the

same kind of output, a depth image from the point of view of a camera. A

depth map stores for each pixel in the real-world image the distance from the

XY (image) plane of the camera to the real-world surface projected into that

pixel. This is effectively a “2- 1
2
D” representation that stores a single value at

each pixel of the image. Given the range of algorithms that produce depth

maps, the interaction of objects with arbitrary depth maps is an important topic

in virtual and real object interaction.

Since our group’s research on producing depth maps from stereo image pairs is

still in progress, “artificially-generated” depth maps were used to thoroughly

test our depth-based algorithms. An “artificially-generated” depth map from a

rendered image is shown in Figure 4.2. It is produced by first rendering a

geometric model, and then reading the depth values computed by the graphics

hardware from the Z-buffer. Finally, the hardware specific Z values are

transformed into camera coordinates.

7



Figure 5.1: A real table occludes two virtual chairs in augmented reality, using

the model-based technique.

5 Occlusion of Real and Virtual Objects

5.1 Virtual Occluding Real

In the Grasp system, live video and real-time computer graphics are merged

and the results are displayed on a video monitor. Virtual objects that are to be

included in the video signal are rendered on a black background. The video

output of the graphics workstation is combined with the output of a video

camera using luminance keying. In the final video output, the live signal is

displayed in the black regions of the computer-generated signal. In this

scenario, virtual objects always occlude the real ones in the final output, as

seen in Figure 6.2. Displaying a non-black virtual object immediately hides the

real object displayed in the same pixels in the live video signal. Virtual objects

occlude real ones by default. Given our two approaches to modeling the real

world, a variety of methods may now be employed to produce the interactive

occlusion of virtual objects by real ones.

5.2 Real Occluding Virtual: Model-Based Method

Utilizing a model-based approach, we register geometric models of real objects

to their real-world counterparts. Assuming that the model accurately represents

the real object, this registration produces the modeling transformation that

8



Figure 5.2: A virtual sofa coming through a real doorway, using the depth-based

technique.

places the geometric model in the correct position in camera coordinates to

produce an image identical to the live video image of the real object. In other

words, when the geometric model is rendered, it will appear at the same

location and orientation in the computer-generated image as the real object in

the live video. Once the model of the real object is correctly positioned in our

virtual world, the model can be used to produce occlusions by drawing it in

black. Visible parts of the object will render in black, showing the live video

through on the output monitor, due to our system’s luminance keying. This

effectively overlays the video image of the real object on top of its

corresponding rendered model. As another a virtual object moves behind a

model of a real object, the graphics hardware calculates the occlusion, but

draws the forward visible model in black. This therefore produces the illusion

that the real object is occluding the virtual one. Figure 5.1 presents two virtual

chairs3 placed around a real table. The surface and legs of the table correctly

occlude the chairs using the model-based approach. A geometric model of the

table has been registered to the real table as seen in Figure 4.1.

3The models used here are CAD models of real chairs taken from a telemarketing CD.

9



5.3 Real Occluding Virtual: Depth-Based Method

A second approach utilizes a depth map of the world to produce occlusions.

The depth map may be tessellated and then decimated [25, 29] to produce a

polygonal surface. The polygonal model represents the combined surfaces of

the real-world objects seen from the video camera. This becomes in effect a

geometric “model” of the current scene, and can be used with the method

described above for occlusion. A more clever usage of the depth map

information involves writing the camera-derived depth values directly into the

Z-buffer of the graphics hardware, in an approach similar to Wloka and

Anderson’s [33]. If at the beginning of each rendering cycle the hardware

Z-buffer is initialized with the real-world depth values, occlusion of the virtual

objects is performed automatically. When the virtual object is rendered, pixels

that are further away from the camera than the Z values in the depth map are

not drawn. By setting the background color to black, the real objects present in

the original video are displayed in these unmodified pixels. Figure 5.2 presents

a virtual sofa occluding and being occluded by a real doorway, using the

depth-based approach. In this figure, we have first registered a geometric

model of the room to the doorway, and then extracted the depth map from the

graphics hardware’s Z-buffer.

The depth-based approach has the advantage that the scene can be arbitrarily

complex, while the processing time remains a constant time function of image

resolution. Additionally, no geometric model of the environment is needed

during the interaction. Even if models of the environment are available, it may

be more advantageous to convert them to a depth map, once the number of

objects becomes too high. However, the depth map is dependent on the

camera’s position and orientation, as well as the geometry of the environment.

Once the camera or the real environment changes, the depth map becomes

invalid. The model-based approach has the advantage that the occlusion

information is stored as 3D geometry, making it valid from any viewpoint. One

could also use object tracking to maintain the correspondence of the model to

its real geometry in order to continue correct occlusion as the real object

moves. It should also be emphasized that since we are directly utilizing the

capabilities of our graphics hardware, the occlusions in Figures 5.1 and 5.2 are

correctly calculated while the virtual objects are interactively manipulated.

6 Collision Detection Between Real and Virtual Objects

Once models of the real world are acquired, they may be utilized to produce

other effects in augmented reality besides occlusion. If we know where the

real world is, collisions may be detected between virtual objects and real

objects. As a virtual object is interactively manipulated, its 3D position is

checked against the 3D position of the objects in the real world. If a collision is

detected, the virtual object is constrained and the user’s manipulation is

10



ignored. Here again, we have identified two approaches for collision detection:

model-based and depth-based. Once geometric models are registered to

real-world objects, conventional object space methods for collision detection

may be employed. This is a widely studied area of research [4, 7, 9, 10, 22, 28],

which we have not yet begun to explore, and is beyond the scope of this

paper. We have instead focused our efforts on utilizing camera-derived depth

maps for collision detection.

6.1 Depth-Based Collision Detection

The first step in the depth-based collision detection process involves registering

a virtual camera to the real camera. As previously stated, a variety of

techniques may then be utilized to produce a view-dependent depth map of

the real world from the video camera. Once completed, the depth of the real

objects in our augmented reality environment from the camera’s viewpoint is

known. Applying a method similar to Shinya and Forgues’ [26], a virtual object

may be checked against the depth map for collisions as it is interactively

manipulated. We currently check just the bounding box vertices of our virtual

objects against the depth map in order to achieve interactive performance.

Convex hulls, hierarchical bounding boxes, or polygonal vertices with 3D

sorting may also be used to produce more accurate, but slower results.

For each analyzed point on the virtual object, collision detection is performed

by first transforming the point into camera coordinates. This provides the

mapped pixel location of the point, and the corresponding real-world depth

may then be read from the depth map. If the point’s Z-value is greater than the

Z-value stored in the depth map for that particular pixel, a collision has

occurred. During interactive manipulation, an object’s previous transformation

is stored at each rendering update. If a collision is detected at one of the

object’s bounding box vertices, the previous transformation is restored,

preventing the virtual object from passing through the real object in augmented

reality. Figure 6.1 is a sequence of images which demonstrates an object being

interactively manipulated. As the object “strikes” the wall, i.e., its depth is

greater than the wall’s, it is stopped. The bounding box in the final image

shows where the user wanted to place the object.

6.2 Simulating Gravity in Augmented Reality

Given that collisions can be detected between real and virtual objects, a

simulated “gravity” capability may be implemented. This involves moving

virtual objects in the direction of a gravity vector until a collision is detected.

Currently, we define gravity in the positive Y direction in screen space, i.e.,

straight down on the screen. This vector is transformed first into camera

coordinates, then into the local coordinate system of the virtual object to be

11



Figure 6.1: A virtual lamp hits a real wall in augmented reality.

12



Figure 6.2: Three virtual objects falling on a real table.

13



“dropped”. The incremental transformation that translates the virtual object

down one pixel is calculated, and this transformation is successively applied

until a collision is detected. Once one collision is detected, a simple torque

calculation is performed around that collision point to produce a rotation.

Again, a transformation is calculated that does not move any of the

unconstrained bounding box vertices more than one pixel. The virtual object is

rotated until another collision is detected. A final rotation is performed around

the axis formed by the two constrained vertices until a third collision is

detected. This capability allows us to place virtual items on a real table in

augmented reality, as seen in Figure 6.2. Similar techniques can be used to

move virtual objects to walls or other arbitrary surfaces. An arbitrary “gravity”

vector may be defined that allows the user to specify in which direction virtual

objects should fall. This promises to be an important tool in the Grasp system,

allowing users to automatically place virtual objects in contact with real ones.

7 Discussion

Our goal has been to develop a general set of techniques that addresses the

problem of occlusion and collision detection in augmented reality. The UI&V

group is exploring a number of AR applications, including mechanical

diagnostics [24], interior design [3], and computer-assisted surgery. Each of

these application areas consists of its own set of requirements, a priori data,

and geometric models. A variety of algorithms are needed to provide occlusion

and collision detection in each of them. For each application the trade-off

between the model-based and depth-based approaches must be considered. In

a mechanical diagnostics application model-based approaches may be more

suitable because CAD models of the examined objects may already be

available. In an interior design application, generating depth maps may be the

most straightforward way to acquire a model of the environment. In this case

depth-based techniques are more appropriate. It is also possible to mix the

approaches by using depth-based techniques for parts of the environment that

remain static, and use model-based techniques, along with tracking, for

modeling the dynamic objects in the real world.

The model-based approach can work well for scenes that appear complex;

sometimes a simple model can sufficiently represent a complex-looking scene.

Unfortunately, modeling small details is currently not possible because of the

error (�1cm) introduced by camera calibration and object registration. Dealing

with complex scenes or unknown objects is another shortcoming of the

model-based approach. Deformable and parameterized models are a possible

solution in this case. These are models that, with some interactive input, can

be fit to objects in images. Utilizing parameterized models would allow one

general model of a table to be fit to real tables of varying height or length

during the registration process [18, 20]. Unknown objects in the scene can be

modeled with deformable models, possibly using multiple camera views

14



[17, 32].

The techniques described here markedly improve the “reality” of augmented

reality. Users often have difficulty grasping the scale and spatial location of

virtual objects when they appear in the real scene. Occlusion and collision

detection give the user cues about the virtual object in relation to its real

environment. Simulated gravity and other similar techniques promise a better

interaction model by transmitting forces and constraints from the real world to

objects in the virtual world.

Since our occlusion and collision techniques rely on specific hardware

capabilities, the performance and functionality of the available graphics

hardware must also be considered. We obtained good interactive speeds (> 15

frames/sec) using the model-based occlusion and depth-based collision

detection. Using the depth map directly for occlusion by loading the Z-buffer

values is slow (1-2 frames/sec) due to the limitations of our workstation’s

graphics software (Sun ZX graphics hardware and XGL software). We expect

this problem to be solved as manufacturers realize the importance of writing

into the Z-buffer interactively.

8 Conclusion

We have presented several techniques for interactively performing occlusion

and collision detection between static real objects and dynamic virtual objects

in augmented reality. Computer vision algorithms are used to acquire data that

model aspects of the real world. Either geometric models may be registered to

real objects, or a depth map of the real scene may be extracted with computer

vision algorithms. The computer vision-derived data are mapped into

algorithms that exploit the power of graphics workstations, in order to

interactively produce new effects in augmented reality. By combining live

video from a calibrated camera with real-time renderings of the real-world data

from graphics hardware, dynamic virtual objects occlude and are occluded by

static real objects. As a virtual object is interactively manipulated collisions with

real objects are detected, and the motion of the virtual object is constrained.

Simulated gravity may then be produced by automatically moving the virtual

objects in the direction of a gravity vector until it encounters a collision with a

real object.

9 Acknowledgements

We would like to thank Chris Crampton for assisting with the creation of the

geometric models, and Mihran Tuceryan and Dieter Koller for providing

computer vision references. This work is financially supported by Bull SA, ICL

Plc, and Siemens AG.

15



Bibliography

[1] K. Ahlers, D. Breen, C. Crampton, E. Rose, M. Tuceryan, R. Whitaker, and

D. Greer. An augmented vision system for industrial applications. In SPIE

Photonics for Industrial Applications Conference Proceedings, October

1994.

[2] K. Ahlers, C. Crampton, D. Greer, E. Rose, and M. Tuceryan. Augmented

vision: A technical introduction to the grasp 1.2 system. Technical Report

ECRC-94-14, ECRC, Munich, Germany, 1994.

[3] K. Ahlers, A. Kramer, D. Breen, P.-Y. Chevalier, C. Crampton, E. Rose,

M. Tuceryan, R. Whitaker, and D. Greer. Distributed augmented reality for

collaborative design applications. Technical Report ECRC-95-03, ECRC,

Munich, Germany, 1995.

[4] D. Aliaga. Virtual and real object collisions in a merged environment. In

G. Singh, S. Feiner, and D. Thalmann, editors, Virtual Reality Software &

Technology (Proc. VRST '94), pages 287–298, Singapore, 1994. World

Scientific Publishing Co.

[5] R. Azuma and G. Bishop. Improving static and dynamic registration in an

optical see-through display. In Computer Graphics (Proc. SIGGRAPH),

pages 194–204, July 1994.

[6] M. Bajura, H. Fuchs, and R. Ohbuchi. Merging virtual objects with the real

world: Seeing ultrasound imagery within the patient. Computer Graphics

(Proc. SIGGRAPH), 26(2):203–210, July 1992.

[7] D. Baraff. Curved surfaces and coherence for non-penetrating rigid body

simulation. Computer Graphics (Proc. SIGGRAPH), 24(4):19–28, August

1990.

[8] D. Blostein and N. Ahuja. Shape from texture: Integrating texture-element

extraction and surface estimation. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 11(12):1233–1251, 1989.

[9] J. Boyse. Interference detection among solids and surfaces.

Communications of the ACM, 22(1):3–9, January 1979.

[10] J. Canny. Collision detection for moving polyhedra. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 8(2):200–209, 1986.

[11] M. Deering. High resolution virtual reality. Computer Graphics (Proc.

SIGGRAPH), 26(2):195–202, July 1992.

16



[12] S. Feiner, B. Macintyre, and D. Seligmann. Knowledge-based augmented

reality. Communications of the ACM, 36(7):53–62, July 1993.

[13] A. Fournier. Illumination problems in computer augmented reality. In

Journ�ee INRIA, Analyse/Synth�ese D'Images, pages 1–21, January 1994.

[14] W. Grimson, T. Lozano-Perez, W. Wells, G. Ettinger, S. White, and

R. Kikinis. An automatic registration method for frameless stereotaxy,

image guided surgery, and enhanced reality. In IEEE Conference on

Computer Vision and Pattern Recognition Proceedings, pages 430–436, Los

Alamitos, CA, June 1994. IEEE Computer Society Press.

[15] B. Horn and M. Brooks. Shape from Shading. MIT Press, Cambridge, MA,

1989.

[16] T. Kanade and M. Okutomi. A stereo matching algorithm with an adaptive

window: Theory and experiment. In IEEE International Conference on

Robotics and Automation Proceedings, pages 1088–1095, Los Alamitos, CA,

April 1991. IEEE Computer Society Press.

[17] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models.

International Journal of Computer Vision, 1:321–331, 1988.

[18] D. Koller, K. Daniilidis, and H.-H. Nagel. Model-based object tracking in

monocular image sequences of road traffic scenes. International Journal

of Computer Vision, 10(3):257–281, 1993.

[19] W. Lorensen, H. Cline, C. Nafis, R. Kikinis, D. Altobelli, and L. Gleason.

Enhancing reality in the operating room. In Visualization '93 Conference

Proceedings, pages 410–415, Los Alamitos, CA, October 1993. IEEE

Computer Society Press.

[20] D. Lowe. Fitting parameterized three-dimensional models to images. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 13:441–450,

1991.

[21] P. Milgram, S. Shumin, D. Drascic, and J. Grodski. Applications of

augmented reality for human-robot communication. In International

Conference on Intelligent Robots and Systems Proceedings, pages

1467–1472, Yokohama, Japan, July 1993.

[22] M. Moore and J. Wilhelms. Collision detection and response for computer

animation. Computer Graphics (Proc. SIGGRAPH), 22(4):289–298, August

1988.

[23] E. Nakamae, K. Harada, and T. Ishizaki. A montage method: The

overlaying of the computer generated images onto a background

photograph. Computer Graphics (Proc. SIGGRAPH), 20(4):207–214,

August 1986.

17



[24] E. Rose, D. Breen, K. Ahlers, C. Crampton, M. Tuceryan, R. Whitaker, and

D. Greer. Annotating real-world objects using augmented vision. Technical

Report ECRC-94-41, ECRC, Munich, Germany, 1994.

[25] W. Schroeder, J. Zarge, and W. Lorensen. Decimation of triangle meshes.

Computer Graphics (Proc. SIGGRAPH), 26(2):65–70, July 1992.

[26] M. Shinya and M.-C. Forgue. Interference detection through rasterization.

Journal of Visualization and Computer Animation, 2:132–134, 1991.

[27] D. Sims. New realities in aircraft design and manufacture. IEEE Computer

Graphics and Applications, 14(2):91, March 1994.

[28] J. Snyder, A. Woodbury, K. Fleischer, B. Currin, and A. Barr. Interval

methods for multi-point collisions between time-dependent curved

surfaces. In Computer Graphics (Proc. SIGGRAPH), pages 321–334,

August 1993.

[29] G. Turk. Re-tiling polygonal surfaces. Computer Graphics (Proc.

SIGGRAPH), 26(2):55–64, July 1992.

[30] J. Weng, P. Cohen, and M. Herniou. Camera calibration with distortion

models and accuracy evaluation. IEEE Trans. on Pattern Analysis and

Machine Intelligence, PAMI-14(10):965–980, 1992.

[31] J. Weng, T. S. Huang, and N. Ahuja. Motion and structure from two

perspective views: Algorithms, error analysis, and error estimation. IEEE

Trans. on Pattern Analysis and Machine Intelligence, 11(5):451–476, May

1989.

[32] R. Whitaker. Algorithms for implicit deformable models. Technical Report

ECRC-94-42, ECRC, Munich, Germany, 1994.

[33] M. Wloka and B. Anderson. Resolving occlusion in augmented reality. In

ACM Symposium on Interactive 3D Graphics Proceedings, April 1995.

18


