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Abstract: The widely held belief that BQP strictly contains BPP raises fundamental questions: Upcoming generations
of quantum computers might already be too large to be simulated classically. Is it possible to experimentally test that these
systems perform as they should, if we cannot efficiently compute predictions for their behavior? Vazirani has asked [21]:
If computing predictions for Quantum Mechanics requires exponential resources, is Quantum Mechanics a falsifiable
theory? In cryptographic settings, an untrusted future company wants to sell a quantum computer or perform a delegated
quantum computation. Can the customer be convinced of correctness without the ability to compare results to predictions?
To provide answers to these questions, we define Quantum Prover Interactive Proofs (QPIP). Whereas in standard
Interactive Proofs [13] the prover is computationally unbounded, here our prover is in BQP, representing a quantum
computer. The verifier models our current computational capabilities: it is a BPP machine, with access to few qubits.
Our main theorem can be roughly stated as: ”Any language in BQP has a QPIP, and moreover, a fault tolerant one”
(providing a partial answer to a challenge posted in [1]). We provide two proofs. The simpler one uses a new (possibly
of independent interest) quantum authentication scheme (QAS) based on random Clifford elements. This QPIP however,
is not fault tolerant. Our second protocol uses polynomial codes QAS due to Ben-Or, Crépeau, Gottesman, Hassidim,
and Smith [8], combined with quantum fault tolerance and secure multiparty quantum computation techniques. A slight
modification of our constructions makes the protocol “blind”: the quantum computation and input remain unknown to the
prover.
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1 Introduction
1.1 Motivation

As far as we know today, the quantum mechanical de-
scription of many-particle systems requires exponential re-
sources to simulate. This has the following fundamental
implication: the results of an experiment conducted on a
many-particle physical system described by quantum me-
chanics, cannot be predicted (in general) by classical com-
putational devices, in any reasonable amount of time. This
important realization (or belief), which stands at the heart
of the interest in quantum computation, led Vazirani to
ask [21]: Is quantum mechanics a falsifiable physical the-
ory? Assuming that small quantum systems obey quantum
mechanics to an extremely high accuracy, it is still possi-
ble that the physical description of large systems deviates
significantly from quantum mechanics. Since there is no
efficient way to make the predictions of the experimental
outcomes for most large quantum systems, there is no way
to test or falsify this possibility experimentally, using the
usual scientific paradigm.

This question has practical implications. Experimental-
ists who attempt to realize quantum computers would like
to know how to test that their systems indeed perform the
way they should. But most tests cannot be compared to
any predictions! The tests whose predictions can in fact
be computed, do not actually test the more interesting as-

pects of quantum mechanics, namely those which cannot
be simulated efficiently classically.

The problem arises in cryptographic situations as well.
Consider for example, a company called Q-Wave which is
trying to convince a certain potential customer that the sys-
tem it had managed to build is in fact a quantum computer
of 100 qubits. How can the customer, who cannot make
predictions of the outcomes of the computations made by
the machine, test that the machine is indeed a quantum
computer which does what it is claimed to do? Given
the amounts of grant money and prestige involved, the
possibility of dishonesty of experimentalists and experi-
mentalists’ bias inside the academia should not be ignored
either [19, 24].

Also, it is natural to expect that the first generations of
quantum computers will be extremely expensive, and thus
quantum computations would be delegated to untrusted
companies. Is there any way for the costumer to trust the
outcome provided by an untrusted company? And even if
the company is honest, can the costumer detect innocent
errors in such a computation?

As Vazirani points out [21], a partial answer to these
questions is already given in the form of Shor’s algorithm.
Indeed, quantum mechanics does not seem to be falsifiable
using the usual scientific paradigm, assuming that BQP is
strictly lager than BPP. However, Shor’s algorithm does
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provide a way for falsification, by means of an experiment
which lies outside of the usual scientific paradigm: though
its result cannot be predicted and then compared to the
experimental outcome, it can be verified once the outcome
of the experiment is known (by simply multiplying the
factors and comparing to the input).

This, however, does not fully address the issues raised
above. Let us take for example the case of the company
trying to convince a costumer that the system it is trying
to sell is indeed a quantum computer of 100 qubits. Such
a system is already too big to simulate classically; How-
ever, any factoring algorithm that is run on a system of
100 qubits can be easily performed by today’s classical
technology. How about delegated quantum computations?
Here too it is unclear how the ability to verify the outcome
of Shor’s algorithm can help in the context of a costumer
who wishes to be convinced of correctness of computation
of other problems in BQP and in particular of BQP com-
plete problems (e.g., [4, 16, 25]). As for experimental re-
sults, it is difficult to rigorously state what exactly does the
ability to apply Shor’s algorithm successfully imply. There
is a fundamental difference between being convinced of
the ability to factor, and testing universal quantum evolu-
tion; it may even be the case that factoring is in BPP while
BQP is not.

We thus pose the following main question (this ques-
tion was also asked by Gottesman [1]): Can one be con-
vinced of the correctness of the computation of any poly-
nomial quantum circuit? Does a similar statement to the
one above regarding Shor’s algorithm, apply for univer-
sal quantum computation? A different way to pose this
question is: can one be convinced of the “correctness”
of the quantum mechanical description of any quantum
experiment that can be conducted in a reasonable amount
of time in the laboratory, even though one cannot compute
any predictions for the outcomes of this experiment?

In this paper we address the above fundamental ques-
tion in a rigorous way. We do this by taking a computa-
tional point of view on the interaction between the sup-
posed quantum computer, and the entity which attempts to
verify that it indeed computes what it should.

1.2 Quantum Prover Interactive Proofs (QPIP)

Interactive proof systems, defined by Goldwasser, Mi-
cali and Rackoff [13], play a crucial role in the theory
of computer science. Roughly, a language ℒ is said to
have an interactive proof if there exists a computationally
unbounded prover (denoted 𝒫) and a BPP verifier (𝒱)
such that for any 𝑥 ∈ ℒ, 𝒫 convinces𝒱 of the fact that 𝑥 ∈
ℒ with probability ≥ 2

3 (completeness). Otherwise, when
𝑥 /∈ ℒ any prover fails to convince 𝒱 with probability
higher than 1

3 (soundness).
Shor’s factoring algorithm [20] can be viewed as an

interactive proof of a very different kind: one between
a classical BPP verifier, and a quantum polynomial time
(BQP) prover, in which the prover convinces the veri-
fier of the factors of a given number (this can be easily
converted to the usual IP formalism of membership in a
language). Recall that quantum interactive proofs which
were studied previously in the literature (e.g., [23]) had an
unbounded quantum prover and a BQP verifier.

Clearly, such an interactive proof between a BQP
prover and a BPP verifier exists for any problem inside
NP whose witness can be found in BQP. However, it is
widely believed that BQP is not contained in NP (and in
fact not even in the polynomial hierarchy). The main idea
of the paper is to generalize the above interactive proof
point of view of Shor’s algorithm, and show that with this
generalization, a verifier can be convinced of the result of
any polynomial quantum circuit.

To this end we define a new model of quantum inter-
active proofs which we call quantum prover interactive
proofs (QPIP). The simplest definition would be an in-
teractive proof in which the prover is a BQP machine and
the verifier a BPP classical machine. In some sense, this
model captures the possible interaction between the quan-
tum world (for instance, quantum systems in the lab) and
the classical world. Indeed Gottesman [1] posed his ques-
tion in this model. Unfortunately we do not know how to
prove the results in this model. We therefore strengthen it
slightly and allow the verifier additional access to a con-
stant number of qubits and to a quantum channel. This
verifier can be viewed as modeling our current computa-
tional abilities.

Definition 1.1 Quantum Prover Interactive Proof (QPIP)
is an interactive proof system with the following proper-
ties:

∙ The prover is computationally restricted to BQP.
∙ The verifier is a hybrid quantum-classical machine.

Its classical part is a BPP machine. The quantum
part is a register of 𝑐 qubits (for some constant 𝑐),
on which the prover can perform arbitrary quantum
operations. At any given time, the verifier is not al-
lowed to possess more than 𝑐 qubits. The interaction
between the quantum and classical parts is the usual
one: the classical part controls which operations are
to be performed on the quantum register, and out-
comes of measurements of the quantum register can
be used as input to the classical machine.

∙ There are two communication channels: one quan-
tum and one classical.

The completeness and soundness conditions are identical
to the IP conditions.

Abusing notation, we denote the class of languages for
which such a proof exists also by QPIP.
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1.3 Main Results

Definition 1.2 The promise problem Q-CIRCUIT
consists of a quantum circuit made of a sequence of gates,
𝑈 = 𝑈𝑇 . . .𝑈1, acting on 𝑛 input bits. The task is to
distinguish between two cases:

YES : ∥((∣0⟩ ⟨0∣ ⊗ ℐ𝑛−1)𝑈 ∣0̄⟩ ∥2 ≥ 2
3

NO : ∥((∣0⟩ ⟨0∣ ⊗ ℐ𝑛−1)𝑈 ∣0̄⟩ ∥2 ≤ 1
3

Q-CIRCUIT is a BQP complete problem. This remains
true for any soundness and completeness parameters 0 <
𝑠, 𝑐 < 1, if 𝑐− 𝑠 > 1

𝑃𝑜𝑙𝑦(𝑛) . Our first result is:

Theorem 1.1 The language Q-CIRCUIT has a QPIP.

The proof is quite simple once the right definitions are
set, given the notion of quantum authentication schemes
(QAS). We explain the idea later in the introduction.

Since Q-CIRCUIT is BQP complete, and QPIP is triv-
ially inside BQP, we have as an immediate corollary:

Corollary 1.2 BQP = QPIP.

Thus, a BQP the prover can convince the verifier of any
language he can compute. We remark that our definition
of QPIP is asymmetric - the verifier is “convinced” only if
the quantum circuit outputs 1. This asymmetry seems ir-
relevant in our context of verifying correctness of quantum
computations. Indeed, it is possible to extend the result
to enable the verifier to be convinced of correctness of
the prover’s outcome (in both 0 and 1 cases) using sim-
ple arguments based on the fact that BQP is closed under
complement (see Section 7).

Importantly, the above results apply in a setting in which
the physical systems are subjected to noise:

Theorem 1.3 Theorem 1.1 holds also when the quantum
communication and computation devices are subjected to
the usual local noise model assumed in quantum fault tol-
erance settings.

Thus, our results apply also in physically realistic set-
ting; the prover, the verifier and the communication chan-
nel can all be noisy, as long as the noise satisfies the stan-
dard restrictions of quantum fault tolerance. The proof of
1.3, unlike that of 1.1, requires some technical effort.

In the works [6, 11] a related question was raised: in our
cryptographic setting, if we distrust the company perform-
ing the delegated quantum computation, we might want
to keep both the input and the function which is being
computed secret. Can this be done while maintaining the
confidence in the outcome? A simple modification of our
protocols gives

Theorem 1.4 Theorem 1.3 holds also in a blind setting,
namely, the prover does not get any information regard-
ing the function being computed, and its input, beyond an
upper bound on the size of the circuit.

An analogous result for NP-hard problems was shown
already in the late 80’s to be impossible unless the polyno-
mial hierarchy collapses [2].

1.4 Proofs Overview (and a new Quantum Authen-
tication Scheme)

Our main tool is quantum authentication schemes
(QAS) [7]. Roughly, a QAS allows two parties to
communicate in the following way: Alice sends an
encoded quantum state to Bob. The scheme is secure
if in case the state had been altered, Bob’s chances of
declaring valid a wrong state are small. The basic idea
of our QPIP protocols is to have the prover hold, at time
step 𝑡, the authenticated version of the state 𝑈𝑡 ⋅ ⋅ ⋅𝑈1∣0⟩.
We need to describe how the prover and the verifier can
together update this authenticated state, without the prover
knowing the authentication key, and using only a constant
number of qubits at the verifier’s end.

The basic QPIP. Our starting point is a very simple QPIP
protocol which works with any QAS (under the mild con-
dition that it maintains its security when it is applied in
parallel on several registers). Unfortunately this scheme is
not fault tolerant, but it serves well to explain how QAS
and QPIP are related. The idea is simple: use the prover
as an untrusted storage device. To do this, the verifier asks
the prover for the authenticated qubits on which he would
like to apply the next gate. He then decodes those qubits,
applies the gate, encodes them back and sends them to
the prover. The proof of security is quite straight forward
given the security of the QAS.

For concreteness, we apply this scheme using a new
simple and efficient QAS, based on random Clifford group
operations (it is reminiscent of Clifford based quantum 2-
designs [12]). To encode a state of 𝑚 qubits, tensor the
state with 𝑑 qubits in the state ∣0⟩, and apply a random
Clifford operator on the𝑚+𝑑 qubits. To prove the security
proof of this QAS we use similar tools to that of the proof
of [12] of quantum unitary 2−designs, to show that any
attack of the prover is mapped by the random Clifford
operator to random Pauli operators. We then show that
those are detected with high probability. This QAS might
be interesting in its own right due to its simplicity, and
since it is extremely efficient: using 𝑑 extra qubits we
get security 2−𝑑 and moreover this security is independent
of the dimension of the Hilbert space being authenticated
(unlike in other QASs, e.g., the second QAS we use in
this paper).

For fault tolerance, it seems necessary that the prover
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will be able to apply quantum gates on the state by himself.
Due to the lack of structure of the authenticated states in
the general QAS we do not know how to do this without
revealing the authentication key. We thus focus on one
specific QAS which does exhibit enough structure to al-
low for fault tolerance. As a side benefit, this QPIP also
involves just one round of quantum communication, com-
pared to the basic QPIP in which all rounds are quantum.

Polynomial codes based QAS and its QPIP We recall
the QAS due to Ben-Or, Crépeau, Gottesman, Hassidim
and Smith [8]. This QAS is based on signed quantum
polynomial codes, which are quantum polynomial codes
[3] of degree at most 𝑑multiplied by some random sign (1
or −1) at every coordinate (this is called the sign key) and
a random Pauli at every coordinate (the Pauli key).

First, we present a security proof for this QAS; this
corrects an error in the security proof of the original paper
[8]. To do this we first prove that no Pauli attack can fool
more than a small fraction of the sign keys, and thus the
sign key suffices in order to protect the code from any
Pauli attack. Next, we need to show that the scheme is
secure against general attacks. This, surprisingly, does
not follow by linearity from the security against Pauli at-
tacks as is the case in quantum error correcting codes (this
is the missing link in the proof of [8]). Indeed, if one
omits the Pauli key from this QAS one gets an authen-
tication scheme which is secure against Pauli attacks but
not against general attacks. We proceed by showing, (with
some similarity to the Clifford based QAS proof), that the
random Pauli key effectively translates the prover’s attack
to a mixture (not necessarily uniform like in the Clifford
case) of Pauli operators acting on a state encoded by a
random signed polynomial code.

We note that the security parameter 𝑑 is different and is
in fact slightly worse (though in an unimportant way) than
the 𝑑 parameter in the Clifford based QAS (see Sec. 2.4
for more precise statements).

Due to its algebraic structure, the signed polynomial
code QAS allows applying gates without knowing the key.
This was used in [8] for secure multiparty quantum com-
putation; here we use it to allow the prover to perform
gates without knowing the authentication key.

The QPIP protocol goes as follows. The prover selects
an authenticated code, which encodes one qudit into 𝑚
qudits; 𝑚 is a small constant. The verifier authenticated
the inputs to the circuit, as well as the magic states re-
quired to perform Toffoli gates (called Toffoli states), as
described in [8, 18]. With those authenticated states at
hand, the prover can perform universal computation using
only Clifford group operations and measurements (univer-
sality was proved for qubits in [9], and the extension to
higher dimensions was used in [8]). The prover sends
the verifier results of measurements and the verifier sends

information given those results, which enables the prover
to continue the computation. The communication is thus
classical except for the first round.

Fault Tolerance One is tempted to try and apply known
fault tolerance techniques (e.g., [3]) to achieve robustness
to local noise. However, a problem arises when attempting
to apply those techniques directly: since all states sent to
the prover must be authenticated, the verifier needs to send
the prover polynomially many authenticated qubits every
time step, so that the prover can perform error corrections
on all qubits simultaneously, as is required for fault tol-
erance. However, the verifier’s quantum register contains
only a constant number of qubits.

We bypass this problem as follows. At the first stage
of the protocol, the verifier authenticates as many zero
states and Toffoli states as would be required during the
entire protocol, and sends those to the prover. This is
done sequentially, state by state, so that the verifier only
uses a constant quantum register. As soon as the prover
receives a qudit, he protects it using his own concatenated
error correcting code; the result is that the effective error
in any of the authenticated states is also a constant. This
constant accuracy can be maintained for a long time by
the prover, by performing error correction with respect
to his error correcting code. Thus, polynomially many
such authenticated states can be passed to the prover in
sequence.

To proceed, we notice that the purity of the states can
now be amplified using purification [9]. Indeed, the prover
cannot perform purification on his own since the purifi-
cation compares authenticated qubits and the prover does
not know the authentication code. However, the verifier
can help the prover using classical communication (For
the purification of the Toffoli states, we use the methods
of [8]). This way the prover can reduce the effective error
on his encoded authenticated states; in fact, with polyloga-
rithmic work the error can be reduced all the way to inverse
polynomial. Effectively, the input at the prover’s hands
is now error free with very high probability; The prover
and verifier can now perform the polynomial-code based
QPIP on this input, to apply the desired circuit. During the
application of the protocol the prover performs his gates
fault tolerantly with respect to his error correcting codes,
and constantly correct errors; in other words, he follows
the standard quantum fault tolerance scheme on his side,
with respect to his codes.

Blind Quantum Computation To achieve Theorem 1.4,
we modify our construction so that the circuit that the
prover performs is a universal quantum circuit, i.e., a
fixed sequence of gates which gets as input a description
of a quantum circuit, plus an input string to that circuit,
and applies the input quantum circuit to the input string.
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Since the universal quantum circuit is fixed, it reveals
nothing about the input quantum circuit or the input string
to it.

1.5 Interpretations of the Results
The corollaries below clarify how the QPIP protocols

designed here are used to address the motivating questions
from Sec. 1.1.

A natural question is how close the quantum state is to
the correct state, in case the verifier accepted. As usual, to
guarantee closeness to the correct state at the end, we need
to require that the probability to abort is small:

Corollary 1.5 For a QPIP protocol with security 𝛿, if the
verifier’s probability to abort is ≤ 1 − 𝛾 then the trace
distance between the final density matrix and that of the
correct state is at most 2𝛿

𝛾 .

We would also like to interpret the results as a guarantee
that a prover that passed the test (for “hard” quantum
circuits) cannot be in BPP, assuming BQP ∕= BPP.
To make this formal, we need a somewhat stronger
assumption which is still widely believed: we assume
that there is a language 𝐿 ∈ BQP and a polynomial time
samplable distribution𝐷 on which any BPP machine errs
with non negligible probability regarding membership in
𝐿 (e.g. the standard cryptographic assumptions about the
hardness of Factoring or Discrete Log). Given this, the
following corollary can be proven using Corollary 1.5.

Corollary 1.6 Fix such a language 𝐿. If the verifier in-
teracts with a given prover using the QPIP for 𝐿, and the
probability for abort is 1 − 𝛾 for some positive 𝛾, (where
probability is taken also over an input sampled according
to 𝒟), then the QPIP cannot be simulated in BPP.

One might wonder whether it is possible to somehow
get convinced not only of the fact that the computation that
was performed by the prover is indeed the desired one, but
also that the prover must have had access to some quantum
computer, or at least to some quantum memory. We prove:

Claim 1.7 There exists a language ℒ ∈ BQP such that
even if the prover in our QPIP is replaced by one with
unbounded classical computational power, but only a con-
stant number of qubits, the prover will not be able to con-
vince the verifier to accept: 𝒱 in this case aborts the com-
putation with high probability.

In fact, the proof of this claim does not require the ma-
chinery of QPIP, it is based on ideas that appeared al-
ready in the study bounded storage quantum models [22].
We thus see yet another setting in which quantum me-
chanics cannot be simulated by classical systems, regard-
less of how computationally powerful they are; In addition

to bounded storage models, this property emerges also in
other contexts, e.g., the EPR experiment.

We note that all our proofs are based on the assumption
that the system obeys the mathematical model of quantum
mechanics. It is thus assumed in all proofs that Nature be-
haves in a way which can be described in this framework.
Note that this does not implicitly assume that the system
is fully quantum mechanical (something which we might
want to check using these protocols): Classical systems or
decohered quantum systems can also be described in this
mathematical model. However, this assumption does put
restrictions on the possible models for which our security
proofs would hold, and in particular, it requires the system
to be linear and have some tensor product structure. Of
course, one cannot hope to prove security results without
any assumption on the mathematical model that describes
the physical system.

Finally, we remark that in the study of IP, a natural
question is whether a prover can prove any language it
can compute; The answer is known to be positive for
PSPACE, NP and #P provers, but is still open for coNP,
SZK and PH [5]. Our results imply that a BQP prover
can prove the entire class of BQP (albeit to a verifier who
is not entirely BPP).

1.6 Related Work and Open Questions

The two questions regarding the cryptographic angle
were asked by Childs in [11], and by Arrighi and Salvail
in [6], who proposed schemes to deal with such scenarios.
However [11] do not deal with a cheating prover, and [6]
deals only with a restricted set of functions which they
refer to as random verifiable.

Broadbent, Fitzsimons, and Kashefi [10] have proven
related results independently. Using measurement based
quantum computation, they construct a protocol for uni-
versal blind quantum computation, and moreover, the ver-
ifier’s register consists of a single qubit. These results
imply similar implications to ours, though they are not
presented using the language of QPIP and do not discuss
the more foundational motivations and implications.

Yi-Kai Liu suggested an alternative way to implement
the basic QPIP protocol, based on Kitaev’s circuit to
Hamiltonian construction [15], where the prover prepares
the history state of the circuit and sends the qubits of
this state to the verifier one by one. The verifier decides
randomly on one local term in the Hamiltonian, keeps
only the qubits in this term (Two qubits suffice using
[14]) and measures the energy of that term on those
qubits. This is repeated 𝑝𝑜𝑙𝑦(𝑛) times to amplify security.
Unfortunately, it is not clear how to make this scheme
fault tolerant.

An important and intriguing open question is whether it
is possible to make the verifier completely classical. This
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would have interesting fundamental implications regard-
ing the ability of a completely classical system to learn
and test a quantum system.

Another interesting (perhaps related?) open question
is to study the model we have presented here of QPIP,
with more than one prover. Possibly, multiprover QPIP
might be strong enough even when restricted to classical
communication. In [10] this was shown assuming that
the two provers are entangled (but other than that cannot
communicate).

This work also raises some questions in the philosophy
of science. In particular, it suggests the possibility
of formalizing and studying the interaction between
physicists and Nature, using computational complexity
notions. Following discussions with us at preliminary
stages of this work, Jonathan Yaari is currently studying
“interactive proofs with Nature” from the philosophy of
science aspect [26].

Paper Organization We start with notations and back-
ground regarding the notions that appear in this paper, in
Sec. 2. Here we also present the polynomial codes based
QAS . Sec. 3 provides the basic protocol together with
the Clifford QAS. Sec. 4 we describe the QPIP based
on signed polynomial codes, and prove its fault tolerance;
Sec. 5 generalizes the result to the blind setting. Sec. 6
proves the corollaries regarding how the results can be
interpreted; Sec. 7 defines the symmetric version of QPIP
and proves its equivalence to Definition 1.1. We provide a
complete proof of security of the polynomial-codes-based
QAS in the appendix.

2 Background
2.1 Pauli and Clifford Group

Let ℙ𝑛 denote the 𝑛-qubits Pauli group. 𝑃 = 𝑃1 ⊗
𝑃2⊗. . .⊗𝑃𝑛 were 𝑃𝑖 ∈ {ℐ, 𝑋, 𝑌, 𝑍}.

Definition 2.1 Generalized Pauli operator over 𝐹𝑞:
𝑋 ∣𝑎⟩ = ∣(𝑎+ 1) mod 𝑞⟩ , 𝑍 ∣𝑎⟩ = 𝜔𝑎𝑞 ∣𝑎⟩ , 𝑌 = 𝑋𝑍,

where 𝜔𝑞 = 𝑒2𝜋𝑖/𝑞 is the primitive q-root of the unity.

We note that 𝑍𝑋 = 𝜔𝑞𝑋𝑍 . We use the same notation,
ℙ𝑛, for the standard and generalized Pauli groups, as it
will be clear by context which one is being used.

Definition 2.2 For vectors 𝑥, 𝑧 in 𝐹𝑚𝑞 , we denote by 𝑃𝑥,𝑧
the Pauli operator 𝑍 𝑧1𝑋𝑥1⊗. . .⊗𝑍𝑧𝑚𝑋𝑥𝑚 .

We denote the set of all unitary matrices over a vector
space 𝐴 as �(𝐴). The Pauli group 𝒫𝑛 is a basis to the
matrices acting on n-qubits. In particular, we can write
any matrix 𝑈 ∈ �(𝐴⊗𝐵) for 𝐴 the space of 𝑛 qubits, as∑
𝑃∈𝒫𝑛

𝑃 ⊗ 𝑈𝑃 with 𝑈𝑃 some matrix on 𝐵.

Let ℭ𝑛 denote the 𝑛-qubit Clifford group. Recall that it
is a finite subgroup of �(2𝑛) generated by the Hadamard

matrix-H, by 𝐾 =

(
1 0
0 𝑖

)
, and by controlled-NOT.

The Clifford group is characterized by the property that
it maps the Pauli group ℙ𝑛 to itself, up to a phase 𝛼 ∈
{±1,±𝑖}. That is: ∀𝐶 ∈ ℭ𝑛, 𝑃 ∈ ℙ𝑛 : 𝛼𝐶𝑃𝐶† ∈ ℙ𝑛

Fact 2.1 A random element from the Clifford group on 𝑛
qubits can be sampled efficiently by choosing a string 𝑘
of 𝑝𝑜𝑙𝑦(𝑛) length uniformly at random. The map from 𝑘
to the group element represented as a product of Clifford
group generators can be computed in classical polynomial
time.

2.2 Polynomial Quantum Error Correction Codes
Definition 2.3 Polynomial error correction code [3].
Given 𝑚, 𝑑, 𝑞 and {𝛼𝑖}𝑚1 where 𝛼𝑖 are distinct non zero
values from 𝐹𝑞 , the encoding of 𝑎 ∈ 𝐹𝑞 is ∣𝑆𝑎⟩

∣𝑆𝑎⟩ def
=

1√
𝑞𝑑

∑
𝑓 :𝑑𝑒𝑔(𝑓)≤𝑑,
𝑓(0)=𝑎

∣𝑓(𝛼1), . . ., 𝑓(𝛼𝑚)⟩ (1)

We use here 𝑚 = 2𝑑 + 1, in which case the code sub-
space is its own dual. It is easy to see that this code can
detect up to 𝑑 errors [3].

We recall from [3] how to apply several useful gates on
states encoded by those codes, in a transversal manner.
The simplest gate is the generalized𝑋 :

�̃� ∣𝑆𝑎⟩ = 𝑋⊗𝑚 ∣𝑆𝑎⟩ =
∣∣𝑆(𝑎+1)

〉
(2)

Similarly for logical controlled-SUM (denoted SUM)
which is the generalization of CNOT, it is easy to check
that:

S̃UM ∣𝑆𝑎⟩ ∣𝑆𝑏⟩ = SUM⊗𝑚 ∣𝑆𝑎⟩ ∣𝑆𝑏⟩ = ∣𝑆𝑎⟩ ∣𝑆𝑎+𝑏⟩ (3)

The logical Fourier transform requires a little more
work. Recall the definition of the generalized Fourier
transform in 𝐹𝑞:

𝑊𝑟 ∣𝑎⟩ def
=

1√
𝑞

∑
𝑏

𝜔𝑟𝑎𝑏𝑞 ∣𝑏⟩ (4)

The logical Fourier operator 𝐹 can be applied using the
interpolation coefficients 𝑐𝑖 for degree𝑚−1 polynomials:

𝑊 ∣𝑆𝑎⟩ def
= 𝑞−𝑚/2

∑
𝑏

𝜔𝑎𝑏𝑞 ∣𝑆𝑏⟩ =

𝑊𝑐1 ⊗𝑊𝑐2⊗. . .⊗𝑊𝑐𝑚 ∣𝑆𝑎⟩ .
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The 𝑍 operator can be seen as a product of Fourier and
𝑋 operators, and thus can also be applied. More directly,
it can be seen that

𝑍 ∣𝑆𝑎⟩ = ∣(−1)𝑎𝑆𝑎⟩ = 𝑍𝑐1𝑘1⊗. . .⊗𝑍𝑐𝑚𝑘𝑚 ∣𝑆𝑎⟩ (5)

To complete this to a universal set of gates, we need to
add measurements, and Toffoli states. This is explained
further in Section 4.1, in the relevant context.

2.3 Signed Polynomial Codes
Definition 2.4 ([8]) The signed polynomial code with re-
spect to a string 𝑘 ∈ {±1}𝑚 (denoted 𝒞𝑘) is defined by:

∣∣𝑆𝑘𝑎〉 def
= 1

𝑞𝑑/2

∑
𝑓 :𝑑𝑒𝑔(𝑓)≤𝑑
𝑓(0)=𝑎

∣𝑘1𝑓(𝛼1), . . ., 𝑘𝑚𝑓(𝛼𝑚)⟩ (6)

Once again, we use 𝑚 = 2𝑑 + 1. The code can detect 𝑑
errors. Also, 𝒞𝑘 is self dual [8], namely, the code subspace
is equal to the dual code subspace.

2.4 Quantum Authentication
Definition 2.5 (adapted from Barnum et. al. [7]). A
quantum authentication scheme (QAS) is a pair of poly-
nomial time quantum algorithms 𝒜 and ℬ together with a
set of classical keys 𝒦 such that:

∙ 𝒜 takes as input an m-qubit message system M and
a key 𝑘 ∈ 𝒦 and outputs a transmitted system 𝑇 of
𝑚+ 𝑑 qubits.

∙ ℬ takes as input the (possibly altered) transmitted
system 𝑇 ′ and a classical key 𝑘 ∈ 𝒦 and outputs two
systems: a 𝑚-qubit message state 𝑀 , and a single
qubit 𝑉 which indicate whether the state is consid-
ered valid or erroneous. The basis states of 𝑉 are
called ∣𝑉 𝐴𝐿⟩ , ∣𝐴𝐵𝑅⟩. For a fixed 𝑘 we denote the
corresponding super-operators by 𝐴𝑘 and 𝐵𝑘.

Given a pure state ∣𝜓⟩, consider the following test on the
joint system 𝑀,𝑉 : output a 1 if the first 𝑚 qubits are in
state ∣𝜓⟩ or if the last qubit is in state ∣𝐴𝐵𝑅⟩, otherwise,
output 0. The corresponding projections are:

𝑃
∣𝜓⟩
1 = ∣𝜓⟩ ⟨𝜓∣ ⊗ 𝐼𝑉 +

(𝐼𝑀 − ∣𝜓⟩ ⟨𝜓∣)⊗ ∣𝐴𝐵𝑅⟩ ⟨𝐴𝐵𝑅∣
𝑃

∣𝜓⟩
0 = (𝐼𝑀 − ∣𝜓⟩ ⟨𝜓∣)⊗ ∣𝑉 𝐴𝐿⟩ ⟨𝑉 𝐴𝐿∣

The scheme is secure if for all possible input states ∣𝜓⟩
and for all possible interventions by the adversary, the ex-
pected fidelity of ℬ’s output to the space defined by 𝑃 ∣𝜓⟩

1

is high:

Definition 2.6 A QAS is secure with error 𝜖 if for every
state ∣𝜓⟩ it holds:

∙ Completeness: For all keys 𝑘 ∈ 𝒦 : 𝐵𝑘(𝐴𝑘(∣𝜓⟩ ⟨𝜓∣)) =
∣𝜓⟩ ⟨𝜓∣ ⊗ ∣𝑉 𝐴𝐿⟩ ⟨𝑉 𝐴𝐿∣

∙ Soundness: For any super-operator Λ (rep-
resenting a possible intervention by the ad-
versary), if 𝜌𝐵 is defined by defined by 𝜌𝐵 =
1
∣𝒦∣

∑
𝑘 𝐵𝑘

(
Λ(𝐴𝑘(∣𝜓⟩ ⟨𝜓∣))

)
, then: Tr(𝑃 ∣𝜓⟩

1 𝜌𝐵) ≥
1− 𝜖.

2.5 QAS based on Signed Quantum Polynomial
Codes

Protocol 2.1 Signed Polynomial Codes Authentication
protocol (due to [8]): Alice wishes to send the state ∣𝜓⟩
of dimension 𝑞. She chooses a security parameter 𝑑, and
a code length 𝑚 = 2𝑑 + 1. Encoding: Alice randomly
selects a pair of keys: a sign key 𝑘 ∈ {±1}𝑚 and a Pauli
key (𝑥, 𝑧) with 𝑥, 𝑧 ∈ 𝐹𝑞

𝑚. She encodes ∣𝜓⟩ using the
signed quantum polynomial code 𝒞𝑘 of polynomial degree
𝑑 (see Definition 2.4). She then applies the Pauli 𝑃 (𝑥,𝑧)

(i.e., for 𝑗 ∈ {1, ..,𝑚} she applies 𝑍𝑧𝑗𝑋𝑥𝑗 on the 𝑗’th
qubit). Decoding Bob applies the inverse of 𝑃(𝑥,𝑧), and
performs the error detection procedure of the code 𝒞𝑘.
He aborts if any error is found and declares the message
valid otherwise.

The completeness of this protocol is trivial, while
soundness requires work:

Theorem 2.2 The polynomial authentication scheme is
secure against general attacks with security 2−𝑑

We provide a complete proof in the appendix. We notice
that in this scheme a 𝑞-dimensional system is encoded into
a system of dimension 𝑞𝑚 = 𝑞2𝑑+1. It is easy to see that
the scheme is secure when applied in parallel:

Theorem 2.3 The polynomial based QAS applied in par-
allel (with the same sign key for all registers), and with
degree 𝑑 polynomial, has the same security as the individ-
ual QAS, that is: 2−𝑑.

3 Basic QPIP
3.1 The QPIP Protocol
Protocol 3.1 Basic QPIP for Q-CIRCUIT: Fix a security
parameter 𝜖. Given is a quantum circuit consisting of two-
qubit gates, 𝑈 = 𝑈𝑇 . . .𝑈1, with error probability reduced
to ≤ 𝛿. The verifier authenticates the input qubits of the
circuit one by one using any QAS with security parameter
𝑑 set such that the QAS is 𝜖 secure. That is, every qubit is
authenticated using a constant number of auxiliary qubits,
which are all sent to 𝒫 . For each 𝑖 = 1 to 𝑚, the verifier
asks the prover for the authenticated qubits on which he
would like to apply the gate𝑈𝑖, decodes them, aborts if any
error is found, applies the gate, authenticates the resulting
qubits using a new pair of authentication keys, and sends
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the encoded qubits back to 𝒫 . Finally, the verifier asks 𝒫
to send the output authenticated qubit, decodes and aborts
if any error is found; otherwise, measures the decoded
qubit and accepts or rejects accordingly. In any case that
𝒱 does not get the correct number of qubits he aborts.

We now prove Theorem 1.1 by proving:

Theorem 3.1 For any 𝜖, 𝛿 > 0 Protocol 3.1 is a QPIP
protocol with completeness 1− 𝛿 and soundness 𝛿 + 𝜖 for
Q-CIRCUIT.

Proof: If the prover is honest, the verifier will declare
valid with certainty. Since the error in the circuit is ≤ 𝛿,
(1− 𝛿) completeness follows. For soundness, we observe
that for the verifier to accept if 𝑥 is not in the language,
means that he has not aborted, and also, answers YES. Let
us denote by 𝑃𝑏𝑎𝑑 the projection on this subspace (Valid
on the first qubit, Accept on the second). To bound the
probability of this event, we observe that the correct state
at any given step is a state which is authenticated by the
QAS applied in parallel.

3.2 Clifford based QAS

We now present the new Clifford based QAS, which
is essentially adding zero states and applying a Clifford-
twirl, namely, conjugation by a random Clifford operator.

3.2.1 The Clifford Based QAS: the Protocol
Protocol 3.2 Clifford based QAS: Given is a state ∣𝜓⟩ on
𝑚 qubits and 𝑑 ∈ � a security parameter. We denote 𝑛 =
𝑚+ 𝑑. The set of keys 𝒦 consists of succinct descriptions
of Clifford operations on 𝑛 qubits (following Fact 2.1). We
denote by 𝐶 = 𝐶𝑘 the operator specified by a key 𝑘 ∈
𝒦. Encoding - 𝐴𝑘: Alice applies 𝐶𝑘 on the state ∣𝜓⟩ ⊗
∣0⟩⊗𝑑. Decoding - 𝐵𝑘: Bob applies 𝐶†

𝑘 to the received
state. Bob measures the auxiliary registers and declares
the state valid if they are all 0, otherwise Bob aborts.

3.2.2 Security
Theorem 3.2 The Clifford scheme applied to 𝑛 = 𝑚 + 𝑑
qubits is a QAS with security 2−𝑑, where 𝑑 is the number
of qubits added to a message on𝑚 qubits.

The proof relies on the fact that a Clifford twirl takes
any operator to a mixture of Paulies (which is uniform on
the non-identity ones), as stated in the following lemma.

Lemma 3.3 (Adapted from [12] Corollary 4.) For an ar-
bitrary trace-preserving completely positive map Λ(𝜌) =∑
𝑘 Λ𝑘𝜌Λ

†
𝑘, applying a Clifford-twirl to Λ is equivalent to

applying a Haar-twirl to Λ, that is for any density matrix

𝜌 on 𝑛 qubits: ∫
𝑑𝑈

∑
𝑘

𝑈 †Λ𝑘𝑈𝜌𝑈 †Λ†
𝑘𝑈

=
∑
𝐶∈ℭ𝑛

∑
𝑘

𝐶†Λ𝑘𝐶𝜌𝐶†Λ†
𝑘𝐶 (7)

= 𝑠𝜌+
(1− 𝑠)
4𝑛 − 1

∑
𝑄∈ℙ𝑛,𝑄∕=ℐ

𝑄𝜌𝑄†

where 𝑠 =
∑
𝑘 ∣Tr(Λ𝑘)∣2.

We now prove the security of the Clifford QAS given
Lemma 3.3

Proof of Theorem 3.2: From Lemma 3.3 we know
what Bob’s state after Eve’s intervention is and we would
like to bound its projection on 𝑃 ∣𝜓⟩

1 :

Tr
(
𝑃

∣𝜓⟩
1

(
𝑠𝜌+

1− 𝑠
4𝑛 − 1

∑
𝑄∈ℙ𝑛∖{ℐ}

𝑄𝜌𝑄†))

= 𝑠Tr(𝑃 ∣𝜓⟩
1 𝜌) +

1− 𝑠
4𝑛 − 1

∑
𝑄∈ℙ𝑛

𝑄∕=ℐ

Tr(𝑃 ∣𝜓⟩
1 𝑄𝜌𝑄†) (8)

By definition of 𝑃 ∣𝜓⟩
1 we see that Tr(𝑃 ∣𝜓⟩

1 𝜌) = 1. On

the other hand: Tr(𝑃 ∣𝜓⟩
1 𝑄𝜌𝑄†) = 1 when 𝑄 does not

flip any of the auxiliary qubit, and vanishes otherwise.
The Pauli operators that do not flip auxiliary qubits can be
written as 𝑄′ ⊗𝑄′′ where 𝑄′ ∈ ℙ𝑚 and 𝑄′′ ∈ {ℐ, 𝑍}⊗𝑑.
It follows that the total number of such operators is exactly
4𝑚2𝑑. Omitting the identity ℐ𝑛 we are left with 4𝑚2𝑑 − 1
operators which are undetected by our scheme. We return
to Eq. 8:

. . . ≥ 𝑠+ (1− 𝑠) (1− 4𝑚2𝑑 − 1

4𝑛 − 1
)

≥ 𝑠+ (1− 𝑠) (1− 4𝑚2𝑑

4𝑚+𝑑
)

= 1− 1− 𝑠
2𝑑

(9)

The security follows from the fact that 𝑠 ≥ 0, and hence
the projection is bounded by 1− 1

2𝑑
.

3.2.3 Applying the Clifford based QAS in Parallel
Here we make rigorous the definition and correctness of

applying the a QAS on entangled registers in parallel. We
consider a QAS (for instance the Clifford QAS) which au-
thenticates𝑚 qubits. Given 𝑟 blocks of𝑚 qubits each, we
can apply the QAS separately on each one of the 𝑟 blocks.
ℬ declares the state valid if all of the 𝑟 registers are valid
according to the original QAS. We call this applying the
QAS in parallel. The completeness of the concatenated
protocol is trivial, for any QAS. For soundness we prove
the following theorem for the Clifford QAS.
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Theorem 3.4 Applying the Clifford QAS in parallel has
the security of the individual Clifford with security param-
eter 𝑑, QAS, that is 2−𝑑. This holds regardless of the
number of blocks (𝑟) that are authenticated.

Proof: From Lemma 3.3, we know that any attack by Eve
on an authenticated register is equivalent to an effect of
mixing operator ℳ𝑠:

ℳ𝑠(𝜌) = 𝑠𝜌+
(1− 𝑠)
4𝑛 − 1

∑
𝑄∈ℙ𝑛

𝑄∕=ℐ

𝑄𝜌𝑄† (10)

on the unencoded message space. We denote ℳ𝑠(𝜌) = 𝜌,
we first deal with the case were 𝑟 = 2

We are interested of the effect of a twirl from 𝒞𝑛⊗𝒞𝑛 on
a state 𝜌1⊗𝜌2. It is fairly straight forward to notice (using
the same ideas as [12]) that the twirl on any Λ results in
the transformation:

𝜌1 ⊗ 𝜌2 ⇒𝑠(𝜌1 ⊗ 𝜌2) + ℎ(𝜌1 ⊗ 𝜌2)
+ 𝑟(𝜌1 ⊗ 𝜌2) + 𝑡(𝜌1 ⊗ 𝜌2)

(11)

for some scalars 𝑠, 𝑞, 𝑟, 𝑡 which depend on Λ.
Bob does not abort, if both individual Clifford QAS are

valid that is: 𝑃 𝜌1⊗𝜌20 = 𝑃 𝜌10 ⊗ 𝑃 𝜌20 . From the security of
the individual QAS we know that Tr((𝑃 𝜌𝑖0 )𝐵(𝜌𝑖)) < 2−𝑑

where 𝐵 is Bob’s cheat detecting procedure. Using this
observations on Eq. 11:

Tr
(
𝑃 𝜌1⊗𝜌20 𝐵 (𝑠 (𝜌1 ⊗ 𝜌2) + ℎ (𝜌1 ⊗ 𝜌2)

+𝑟 (𝜌1 ⊗ 𝜌2) + 𝑡 (𝜌1 ⊗ 𝜌2))
)

=𝑠 ⋅ 0 + 𝑞2−𝑑 + 𝑟2−𝑑 + 𝑡(2−𝑑)2
≤(1− 𝑠)2−𝑑

(12)

Where the inequality holds since 𝑠+ 𝑞 + 𝑟 + 𝑡 = 1.
The claim for 𝑟 > 2 follows the exact same lines and
therefore is omitted.

3.2.4 Analysis and Parameters
Using the Clifford QAS, the classical communication is

linear in the number of gates. For 𝜖 = 1
2 , we get 𝑑 = 1,

and so the verifier uses a register of 4 qubits. In fact 3
is enough, since each of the authenticated qubits can be
decoded (or encoded and sent) on its own before a new
authenticated qubit is handled.

4 Polynomial Codes Authentication Based
QPIP

The above described QPIP is not fault tolerant. We
therefore defer now to a different type of QPIP in which
the prover can perform the quantum gates (with the help

of classical communication with the verifier) despite the
fact that he does not know the authentication key. To this
end we use the QAS based on quantum signed polynomial
codes, described in Section 2.5, and show how the prover
can apply Clifford operations and measurements on the
states. Those operations, augmented with the prover hav-
ing access to authenticated Toffoli states, form a universal
set of gates [8].

4.1 Secure Application of Quantum Gates
We have seen in Sec. 2.3 how to perform operations

on states encoded by a polynomial code. In this section
we present a way (described in [8]) for the prover to ap-
ply these operations on a signed shifted Polynomial error
correcting code, without knowing the sign nor the Pauli
keys. Hence, this can be done without compromising the
security of the authentication scheme.

The main idea is that the prover applies the transitive
operations assuming no keys, since he doesn’t know the
correct authentication key. This will have the wrong effect
on the state, but the point is that the verifier can correct for
this by updating his key. Once this update is performed,
the prover’s action has the desired effect on the state.

We will first show the simple and elegant fact that if the
verifier wants a (generalized) Pauli applied to the state, he
does not need to ask the prover to do anything. The only
thing the verifier must do is change his Pauli keys. Then
we show how to perform other operations such as SUM,
Fourier and Measurement.

∙ Pauli𝑋 : The logical �̃� operator consists of an appli-
cation of 𝑋𝑘1⊗, . . . ⊗𝑋𝑘𝑚 where k is the sign key.
We claim that the change (𝑥, 𝑧) → (𝑥− k, 𝑧) will in
fact change the interpretation the verifier assigns to
the state in the desired way.

𝑃𝑥,𝑧

∣∣∣𝑆𝑘
𝑎

〉
= 𝑃𝑥−𝑘,𝑧𝑃

†
𝑥−𝑘,𝑧𝑃𝑥,𝑧

∣∣∣𝑆𝑘
𝑎

〉

= 𝑃𝑥−𝑘,𝑧𝑋
−(𝑥−𝑘)𝑍−𝑧𝑍𝑧𝑋𝑥

∣∣∣𝑆𝑘
𝑎

〉

= 𝑃𝑥−𝑘,𝑧(𝑋
𝑘1⊗, . . .⊗𝑋𝑘𝑚 )

∣∣∣𝑆𝑘
𝑎

〉

= 𝑃𝑥−𝑘,𝑧�̃�
∣∣∣𝑆𝑘

𝑎

〉
(13)

∙ Pauli 𝑍: Similarly to the 𝑋 operator, all that is
needed is a change of the Pauli key. We recall that
𝑍 = 𝑍𝑐1𝑘1⊗. . .⊗𝑍𝑐𝑚𝑘𝑚 . We define the vector
t to be 𝑡𝑖 = 𝑐𝑖𝑘𝑖. From the same argument as
above, it holds that the change of keys must be
(𝑥, 𝑧) → (𝑥, 𝑧 − t).

∙ Controlled-Sum: In order to remotely apply the
SUM operation the prover perform transversely
Controlled-Sum (SUM) from register 𝐴 to register
𝐵 on the authenticated states; as if the code was not
shifted by the Pauli masking. However, a change in
the Pauli keys is needed for the operation to have the
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desired effect. It is easy to check that:

SUM(𝑍𝑧𝐴𝑋𝑥𝐴 ⊗ 𝑍𝑧𝐵𝑋𝑥𝐵)
=(𝑍𝑧𝐴−𝑧𝐵𝑋𝑥𝐴 ⊗ 𝑍𝑧𝐵𝑋𝑥𝐵+𝑥𝐴)SUM

(14)

Which implies that the same hold for the logical op-
eration S̃UM and the Pauli shift 𝑃(𝑥,𝑧):

S̃UM
(
𝑃(𝑥𝐴,𝑧𝐴) ⊗ 𝑃(𝑥𝐵 ,𝑧𝐵)

)
=
(
𝑃(𝑥𝐴,𝑧𝐴−𝑧𝐵) ⊗ 𝑃(𝑥𝐵+𝑥𝐴,𝑧𝐵)

)
S̃UM

(15)

Hence, the verifier must change the pair of
keys (𝑥𝐴, 𝑧𝐴), (𝑥𝐵 , 𝑧𝐵) to (𝑥𝐴, 𝑧𝐴 − 𝑧𝐵) and
(𝑥𝐵 + 𝑥𝐴, 𝑧𝐵), for the SUM to have the desired
affect on the state.

∙ Fourier: The prover performs Fourier transversely
on the authenticated state. We recall that the Fourier
operation swaps the roles of the 𝑋 and 𝑍 Pauli oper-
ator. 𝑊𝑋𝑥𝑊 † = 𝑍𝑥 and𝑊𝑍𝑧𝑊 † = 𝑋−𝑧. This is
true for each register separately and hence:

W̃ ⋅ 𝑍𝑧1𝑋𝑥1 ⊗ . . .⊗ 𝑍𝑧𝑚𝑋𝑥𝑚
=𝑋−𝑧1𝑍𝑥1 ⊗ . . .⊗𝑋−𝑧𝑚𝑍𝑥𝑚 ⋅ W̃
≃𝑍𝑥1𝑋−𝑧1 ⊗ . . .⊗ 𝑍𝑥𝑚𝑋−𝑧𝑚 ⋅ W̃

(16)

Where the last equality is up to a global phase.
Therefore the verifier must change the key (𝑥, 𝑧) to
(−𝑧, 𝑥).

∙ Measurement in the standard basis: The prover
measures the encoded state in the standard basis, and
sends the result to the verifier. Using the 𝑥 part of
Pauli key, and the knowledge of 𝑘, the verifier in-
terpolates the polynomial according to values in the
received set of points. If the polynomial is indeed a
polynomial of low degree (which is always the case
if the prover is honest) the verifier sends the encoded
value to the prover. Otherwise, the prover is caught
cheating and the verifier aborts.

∙ Toffoli: The (generalized) Toffoli gate is applied
using Clifford group operations on the Toffoli state
1
𝑞

∑
𝑎,𝑏 ∣𝑎, 𝑏, 𝑎𝑏⟩ ([8, 18]). Changes to the keys are

made with respect to the actual operations that were
performed.

4.2 Polynomial Based QPIP .
Protocol 4.1 Polynomial based Interactive Proof for
Q-CIRCUIT Fix a security parameter 𝜖. Given is a
quantum circuit on 𝑛 qubits consisting gates from the
above universal set, 𝑈 = 𝑈𝑇 . . .𝑈1. We assume the circuit
has error probability ≤ 𝛿. The verifier sets 𝑑 = ⌈log 1

𝜖 ⌉
and uses 3 registers of 𝑚 = 2𝑑 + 1 qudits each, where
each qudit is of dimensionality 𝑞 > 𝑚. The verifier uses
concatenated polynomial QAS with security parameter 𝑑

to authenticate 𝑛 input qudits and the necessary number
of Toffoli states. This is done sequentially using 3𝑚 qudits
at a time. Then, the prover and verifier perform the gates
of the circuit as described above. Finally, if the final
measurement does not yield an authenticated answer, the
verifier aborts, otherwise, he accepts or rejects according
to the measurement outcome.

Theorem 4.1 Protocol 4.1 is a QPIP protocol with com-
pleteness 1− 𝛿 and soundness 𝛿 + 𝜖 for Q-CIRCUIT.

This theorem implies a second proof for Theorem 1.1.
The size of the verifier’s register is naively 3𝑚, but using
the same idea as in the Clifford case,𝑚+ 2 suffice. With
𝜖 = 1/2, this gives a register of 5 qutrits.
Proof: The completeness is trivial, similarly to the basic
QPIP case. To prove the soundness of the protocol we first
prove the following lemma, originally stated in [8]:

Lemma 4.2 At any stage of the protocol the verifier’s set
of keys, 𝑘 and {(𝑥, 𝑧)𝑖}𝑛1 are distributed uniformly and
independently.

Proof: Before any gate is applied the claim holds. All
that needs to be done it to check that all changes keep this
desired property.

The sign key 𝑘 does not change during the protocol so in
this case the claim is trivial. At every step at most two pairs
of Pauli keys change. Let us review the possible changes
(see Section 4.1) and verify that the claim holds:

∙ Changes from the Pauli operators and Fourier trans-
form induces shift, swap or negation changes to the
keys; all of them preserve the uniform independent
distribution trivially.

∙ The SUM operation involves two set of keys
(𝑥𝐴, 𝑧𝐴), (𝑥𝐵 , 𝑧𝐵) which change to (𝑥𝐴, 𝑧𝐴 − 𝑧𝐵)
and (𝑥𝐵 + 𝑥𝐴, 𝑧𝐵). The sum 𝑥𝐵 + 𝑥𝐴, is mod 𝑞
hence it is distributed uniformly, in addition it is not
hard to see that is independent of 𝑥𝐴. The same
holds for 𝑧𝐴 − 𝑧𝐵 and 𝑧𝐵 .

∙ When the prover measures in the standard basis an
authenticated qubit the outcome of the measurement
is distributed uniformly at random in 𝐹 𝑚𝑞 . Specifi-
cally, the outcome does not depend on the sign key
or the information that is authenticated. Therefore,
even when the prover has the interpretation of his
measurement outcome, he does not gain any infor-
mation about the sign key 𝑘 or the Pauli keys of other
registers.

This implies that at any stage of the computation the
set of authentication keys that the verifier holds is uniform
and independent of the communication it had so far with
the prover. Therefore, if the prover is honest, the state that
the prover holds at any given moment should be the correct
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state of the quantumcircuit, authenticated by the QASwith
respect to the current set of keys. The rest of the argument
of the proof follows that of the proof of Theorem 1.1.

4.3 Fault Tolerant QPIP

We now prove Theorem 1.3, which implies our main
result, namely a fault tolerant QPIP for BQP.
Proof: Our proof combines several known fault-tolerant
quantum computation techniques. However, fault toler-
ance does not follow straight-forwardly, since care must
be given to the fact that the verifier is the only one who
can authenticate qubits, while he cannot authenticate many
qubits in parallel.

The proof can be divided into three stages.
In the first stage, the prover receives authenticated qu-

dits from the verifier, one by one. Each qudit is authen-
ticated on 𝑚 qudits. The prover ignores the authentica-
tion structure and begins encoding each qudit out of the
𝑚 qudits separately using a concatenated error correction
code, with total length which is polylogarithmic (in 𝑛- the
number of input qudits and also in𝑚 - which is a constant),
as is required for the fault tolerance scheme in [3]. From
the work of [3, 17] (and others) we know that this encoding
can be done in a fault tolerant way, such that if the error
probability was less than some threshold 𝜂, then the en-
coded qudit is faulty (namely, has an effective error) with
probability at most 𝜂 ′, where 𝜂′ is a constant that depends
on 𝜂 and other parameters of the encoding scheme, but not
on 𝑛. We denote this concatenated encoding procedure by
𝑆.

Since each authenticated qudit sent to the prover is en-
coded using a constant number (𝑚) of qudits, it follows
that with a constant probability, 𝜂 ′′ all these qudits are
effectively correctly authenticated. In other words, the en-
coding of

∣∣𝑆𝑘𝑎〉, (𝑆⊗. . .⊗𝑆) ∣∣𝑆𝑘𝑎〉, has no effective faults
with probability 𝜂 ′′.

Once a qudit has been encoded by the prover, he can
keep applying error corrections on that qudit, and thus, can
keep its effective error below some constant for a polyno-
mially long time. Polynomially many authenticated qudits
are sent this way to the prover.

In the second stage a purification procedure is
performed on the authenticated messages, which are
now protected from noise by the prover’s concatenated
error correction code. Since the purification is of the
authenticated qudits, it is done according to instructions
from the verifier. As explained in Section 4.1 the verifier
can also interpret measurements outcomes for the prover,
which are needed for the purification procedure. We
need to purify both input qubits which are without
loss of generality ∣0⟩, and Toffoli states. Any standard
purification procedure (for example, that of [8]) would
work for the ∣0⟩ states. In order to purify the Toffoli states

we use the purification described in [8]. The purification
procedure uses polylogarithmically many qubits in order
to provide a total error of at most Δ

𝑝𝑜𝑙𝑦(𝑛𝑇 ) , where 𝑇 is the
number of gates in the circuit 𝑈 that will be computed by
the prover. This means (using the union bound) that with
probability at most Δ all purified states are effectively
correct.

Finally, having with high probability effectively correct
input states, the polynomial QPIP (Protocol 4.1) is exe-
cuted. To do this the prover uses fault tolerant techniques
on his side, (with respect to his QECC) to apply any gate
he needs to apply. Moreover, the prover keeps correcting
his state with respect to his QECC, as in the standard fault
tolerant schemes. At the end, a logical measurement of the
output bit of the computation is executed by the prover.
The result is sent to the verifier who subsequently inter-
prets it according to his secret key.

The soundness of the this fault tolerant QPIP is the
same as that of the standard QPIP. In fact, in this scheme,
the verifier ignores the prover’s overhead of encoding the
input in an error correcting code, and performing encoded
operations. The verifier can be thought as performing Pro-
tocol 4.1 for a purification circuit followed by the circuit he
is interested in computing. Therefore, the security proof of
Theorem 4.1 proves in fact that applying the purification
and computation circuits, has the same soundness param-
eter as the standard QPIP.

Regarding completeness, the fact that the prover’s com-
putation is noisy changes the error probability only very
slightly. There is a probability Δ that one of the input
authenticated states is effectively incorrect; Once they are
all correct, the fault tolerance proof implies that they re-
main correct the entire computation with all but an inverse
polynomial probability. Therefore, if the standard QPIP
protocol has completeness 1 − 𝛿 − 𝜖 the completeness of
this scheme is bounded by 1− 𝛿 − 𝜖− 2Δ.

5 Blind QPIP
Definition 5.1 [6, 10, 11] Secure blind quantum compu-
tation is a process where a server computes a function for
a client and the following properties hold:

∙ Blindness: The prover gets no information beyond an
upper bound on the size of the circuit. Formally, in a
blind computation scheme for a set of function 𝔉𝑛 the
prover’s reduced density matrix is identical for every
𝑓 ∈ 𝔉𝑛.

∙ Security: Completeness and soundness hold the same
way as in QAS (Definition 2.5).

We would now like to prove Theorem 1.4, namely, that
the protocols described so far can be made blind. We use
the simple observation that the input is completely hidden
from the prover. This holds since in both QASs presented
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the density matrix that describes the prover’s state does
not depend on the input to the circuit. Specifically, due to
the randomized selection of an authentication, the prover’s
state is the completely mixed state. We also use the notion
of a universal circuit. Roughly, a universal circuit acts on
input bits and control bits. The control bits can be thought
of, as a description of a circuit that should be applied to
the input bits. Constructions of such universal circuits are
left as an easy exercise to the reader.

Having mentioned the above observations, a blind com-
putation protocol is not hard to devise. The verifier will,
regardless of the input, compute, with the prover’s help,
the result of the universal circuit acting on input and con-
trol bits.

For completeness we first formally define a universal
circuit:

Definition 5.2 The universal circuit 𝔘𝑛,𝑘 acts in the fol-
lowing way:

𝔘𝑛,𝑘 ∣𝜙⟩ ⊗ ∣𝑐(𝑈)⟩ −→ 𝑈 ∣𝜙⟩ ∣𝑐(𝑈)⟩ (17)

Where 𝑐(𝑈) is the canonical (classical) description of the
circuit 𝑈 .

Proof of Theorem 1.4: We prove that both the Clif-
ford based QPIP and the Polynomial QPIP can be used
to create a blind computation protocol. We claim that the
state of the prover through the protocols is described by
the completely mixed state. This is true in the Polynomial
scheme since the Pauli randomization does exactly that.
Averaging over all possible Pauli keys, it is easy to check
that the state of the prover is described by ℐ/2𝑚. Further-
more, the prover gains no information regarding the Pauli
key during the protocol, therefore, the description of the
state does not change during the protocol as claimed.

Since the above holds for any initial state, it follows that
the prover has no information about the initial, intermedi-
ate or final state of the system.

To see that the same argument holds for the Clifford
QAS, it suffices to notice that applying a random Clifford
operator “includes” the application of a random Pauli:

1

∣ℭ𝑛∣
∑
𝑐∈ℭ𝑛

𝐶𝜌𝐶† =
1

∣ℭ𝑛∣
∑
𝑐∈ℭ𝑛

(𝐶𝑄)𝜌(𝐶𝑄)† (18)

Equality holds for any 𝑄 ∈ ℭ𝑛 since it is nothing but a
change of order of summation.

. . . =
∑
𝑄∈ℙ𝑛

1

∣ℙ𝑛∣
1

∣ℭ𝑛∣
∑
𝑐∈ℭ𝑛

𝐶(𝑄𝜌𝑄†)𝐶†

=
1

∣ℭ𝑛∣
∑
𝑐∈ℭ𝑛

1

∣ℙ𝑛∣
∑
𝑄∈ℙ𝑛

𝐶(𝑄𝜌𝑄†)𝐶†

=
1

∣ℭ𝑛∣
∑
𝑐∈ℭ𝑛

𝐶
( 1

∣ℙ𝑛∣
∑
𝑄∈ℙ𝑛

(
𝑄𝜌𝑄†) )𝐶†

=
1

∣ℭ𝑛∣
∑
𝑐∈ℭ𝑛

𝐶 (ℐ/2𝑚)𝐶†

= ℐ/2𝑚

(19)

6 Interpretation of Results
We will now prove the various corollaries, having to do

with how the results can be interpreted. We start with the
proof of Corollary 1.5 which provides a guarantee on the
closeness of the final output state to the correct state, given
that the verifier did not abort.

Proof of Corollary 1.5: Let us first deal with the Clif-
ford based QPIP. We assume that the soundness of the
scheme is 𝛿 and that the prover applies a strategy on which
the verifier does not abort with probability 𝛾. The final
state of the protocol before the verifier’s cheat detection
can be written as (see Eq. 7):

𝑠𝜌𝑐 +
(1− 𝑠)
4𝑛 − 1

∑
𝑄∈ℙ𝑛∖{ℐ}

(
𝑄𝜌𝑐𝑄

†) (20)

Where 𝜌𝑐 is the correct final state of the protocol. After
the verifier applies the cheat detection procedureℬ (which
checks that the control registers are indeed in the ∣0⟩ state):

𝑠𝜌𝑐 ⊗ ∣𝑉 𝐴𝐿⟩ ⟨𝑉 𝐴𝐿∣+
𝛼𝑟𝑒𝑗𝜌𝑟𝑒𝑗 ⊗ ∣𝐴𝐵𝑅⟩ ⟨𝐴𝐵𝑅∣+
𝛼𝑏𝑎𝑑𝜌𝑏𝑎𝑑 ⊗ ∣𝑉 𝐴𝐿⟩ ⟨𝑉 𝐴𝐿∣

(21)

Assume the verifier declares the computation valid, then
his state is:

𝑠𝜌𝑐 + 𝛼𝑏𝑎𝑑𝜌𝑏𝑎𝑑
1− 𝛼𝑟𝑒𝑗 ⊗ ∣𝑉 𝐴𝐿⟩ ⟨𝑉 𝐴𝐿∣ (22)

then the trace distance to the correct state 𝜌𝑐 is bounded
by:

1− 𝑠

1− 𝛼𝑟𝑒𝑗 +
𝛼𝑏𝑎𝑑

1− 𝛼𝑟𝑒𝑗 =
2𝛼𝑏𝑎𝑑

1− 𝛼𝑟𝑒𝑗 ≤ 2𝛿

𝛾
(23)

Were the inequality follows from the security of the QPIP
protocol: 𝛼𝑏𝑎𝑑 ≤ 𝛿, and the fact that the non-aborting
probability 𝛾 is equal to 𝛼𝑏𝑎𝑑 + 𝑠.

The proof that the Polynomial based QPIP has the same
property follows the exact same lines.
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Next we prove Corollary 1.6, which states that if the
QPIP system passes sufficiently difficult tests, is cannot
be simulated efficiently by a BPP machine.

Proof of Corollary 1.6 :: (sketch) We assume there is
a language 𝐿 which is 𝜖 hard to compute with respect to
some samplable distribution𝒟 = 𝒟𝑙 (where 𝑙 is the size of
the input). Namely for any classical algorithm 𝐴 it holds
that

Pr
𝑥∼𝒟

(𝐴(𝑥) = ℐ𝐿(𝑥)) ≤ 1− 𝜖 (24)

where ℐ𝐿 is the indicator function of 𝐿. (we need only the
inequality to hold for all ∣𝑥∣ > 𝑙0 for some 𝑙0 ∈ ℕ). Alter-
natively, if we consider the distributions induced by 𝒟 on
pairs of inputs and answers: {0, 1}𝑙×{0, 1} (we denote for
example 𝐴 ∼ (𝑥,𝐴 (𝑥))) we can say that

〈
𝐴, ℐ̃𝐿

〉
𝑇𝑉 𝐷

≥
2𝜖, where 𝑇𝑉 𝐷 denotes the total variation distance.

Let us fix some interaction between the verifier an a
prover (not neccesarly honest) in which the verifier with
probability at least 1 − 𝛾 the verifier does not abort. Let
us consider the quantum algorithm 𝑄𝐿 which computes
ℐ𝐿 with probability > 1 − 𝛿. By the same argument as
before we have

〈ℐ̃𝐿, 𝑄𝐿〉𝑇𝑉 𝐷 < 2𝛿. Now finally, if we
assume that 𝐴 can simulate the interaction between the
prover and the verifier which computes𝑄𝐿, then we know
from Corollary 1.5 that

〈
𝐴,𝑄𝐿

〉
𝑇𝑉 𝐷

< 2𝛿
𝛾 , since 𝐴 can

always answer according to the probability distribution
resulting from the interaction, that is the density matrix,
which is in turn close to 𝑄𝐿.

Some simple algebra shows that 𝐴 is 2 𝛿(1+𝛾)𝛾 close to

ℐ𝐿 therefore we deduce that if 𝜖 > 𝛿 1+𝛾
𝛾 then no such

algorithm 𝐴 can exist.
Finally, we sketch the proof of Claim 1.7:

Proof of Claim 1.7: We first notice that our security
proofs regarding a cheating prover do not assume any
computational restriction on the prover. We would like
to show that a prover with only a constant number of
qubits (but computationally unbounded) can’t convince
the verifier of even a true statement.

Let us consider the following challenge. The verifier
selects a random string 𝑟 ∈ {0, 1}𝑛, and prepares the state
∣𝑟⟩. At each location the verifier applies a Hadamard with
probability 1

2 and in either case he authenticates the result-
ing qubit, using the polynomial codes QAS and sends it to
the prover. After sending all the qubits to the prover the
verifier asks the prover to measure all qubits in the correct
basis. The prover passes the challenge if all measure-
ment outcomes are correctly authenticated and are com-
patible with the states that were initially sent by the veri-
fier. To transform this challenge into a language in BQP
one can think of the language 𝑓(𝑥1, ...𝑥𝑛, 𝑖1, ..., 𝑖𝑙𝑜𝑔(𝑛)) =
𝑥𝑖1,...,𝑖𝑙𝑜𝑔(𝑛)

, namely the language in which the input is

a string of bits followed by 𝑙𝑜𝑔(𝑛) bits that provide an
index 𝑖 out of 𝑛; the output is 𝑥𝑖. The fact that a bounded
memory prover can pass the challenge with only a negli-
gible probability better than a guess follows from bounded
storage results.

7 Symmetric Definition of QPIP
The definitions and results presented so far are asym-

metric. They refer to a setting where the provers wishes
to convince the verifier solely of YES instances (of prob-
lems in BQP). This asymmetry does not seem relevant
to our motivations. We provide a symmetric definition of
quantum prover interactive proofs, and show that the two
definitions are equivalent. Essentially, this follows from
the trivial observation that the class BQP is closed under
complement, that is, ℒ ∈ BQP ⇐⇒ ℒ𝑐 ∈ BQP. We first
provide a symmetric definition for QPIP, and then prove
the equivalence.

Definition 7.1 A language ℒ is in the class symmetric
quantum prover interactive proof (QPIP𝑠𝑦𝑚) if there
exists an interactive protocol with the following
properties:

∙ The prover and verifier computational power,
and communication, is exactly the same as in the
definition of QPIP (Definition 1.1).

∙ The verifier has three possible outcomes: YES, NO,
and ABORT:

– YES: The verifier is convinced that 𝑥 ∈ ℒ.
– NO: The verifier is convinced that 𝑥 /∈ ℒ.
– ABORT: The verifier caught the prover cheat-

ing.
∙ Completeness: There exists a prover 𝒫 such that

∀𝑥 ∈ {0, 1}∗ the verifier is correct with high
probability:

Pr ([𝒱 ,𝒫 ] (𝑥, 𝑟) = �ℒ) ≥ 2

3

where �ℒ is the indicator function of ℒ.
∙ Soundness: For any prover 𝒫 ′ and for any
𝑥 ∈ {0, 1}∗, the verifier is mistaken with bounded
probability, that is:

Pr ([𝒱 ,𝒫 ] (𝑥, 𝑟) = 1− �ℒ) ≤ 1

3

Theorem 7.1 For any language ℒ: If ℒ,ℒ𝑐 are both in
QPIP then ℒ,ℒ𝑐 ∈ QPIP𝑠𝑦𝑚

Proof: Let 𝒱ℒ,𝒫ℒ denote the QPIP verifier and prover
for the language ℒ. By the assumption, there exists such
a pair for both ℒ and ℒ𝑐. We define the pair 𝒫 and 𝒱 to
be QPIP𝑠𝑦𝑚 verifier and prover in the following way: On
the first round the prover 𝒫 sends to 𝒱 “yes” if 𝑥 ∈ ℒ
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and “no” otherwise. Now, both 𝒫 and 𝒱 behave according
to 𝒱ℒ,𝒫ℒ if “yes” was sent or according to 𝒱ℒ𝑐 ,𝒫ℒ𝑐 oth-
erwise. Soundness and completeness follows immediately
from the definition.

Since BQP is closed under complement, we get:

Corollary 7.2 BQP = QPIP𝑠𝑦𝑚
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A Security Proof of Polynomial QAS
A.1 Security Against Pauli Attacks

Lemma A.1 The polynomial QAS is secure against (gen-
eralized) Pauli attacks, that is, in the case where the adver-
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sary applies a Pauli operator. In this case the projection
of Bob’s state on the space spanned by 𝑃1 ∣𝜓⟩ is at least
1− 2−𝑑.

Proof: Let us consider the effect of a Pauli 𝑄 operator
on the signed polynomial code 𝒞𝑘. We first show that with
probability 1− 2−𝑑 over the sign key 𝑘, the effect of 𝑄 is
detected by the error detection procedure.

Let 𝑄𝑥 ∕= ℐ be a Pauli operator 𝑄𝑥 = 𝑋𝑥𝑖⊗. . .⊗𝑋𝑥𝑚
where 𝑥 ∈ 𝐹𝑚𝑞 . The effect of 𝑄𝑥 on the code is an
addition of 𝑥𝑖 to the 𝑖′𝑡ℎ qubit. This addition passes the
error detection step only if coincides with the values of a
signed polynomial of degree at most 𝑑. We consider two
cases depending on the weight of 𝑥:

∙ If ∣𝑥∣ ≤ 𝑑: let us denote by 𝑔 the polynomial that
satisfies ∀𝑖𝑘𝑖𝑔(𝛼𝑖) = 𝑥𝑖, since 𝑄𝑥 ∕= ℐ we know
that 𝑔 ∕= 0. then 𝑔 has at least𝑚− 𝑑 zeros. Since 𝑔 is
nonzero it must have degree at of least: 𝑚−𝑑 = 𝑑+1.
Such an attack will be detected with certainty by the
error detection procedure.

∙ Otherwise, assume without loss of generality that
𝑥𝑖 ∕= 0 for 𝑖 ≤ ∣𝑥∣. There is exactly one polynomial
𝑓 of degree at most 𝑑 such that ∀𝑖≥𝑑+1 𝑘𝑖𝑓(𝛼𝑖) = 𝑥𝑖.
For the attack of Eve to be undetected 𝑥 must agree
with 𝑓 on the remaining coordinates as well:

Pr
𝑘
(∀𝑖≤𝑑 𝑥𝑖 = 𝑘𝑖𝑓(𝛼𝑖))

=

𝑑∏
𝑖=1

Pr
𝑘
(𝑘𝑖 = 𝑥

−1
𝑖 𝑓(𝛼𝑖)) (25)

Equality holds since: 𝑘𝑖 are independent, 𝑘𝑖 = 𝑘−1
𝑖

and 𝑥𝑖 ∕= 0 for 𝑖 ≤ 𝑑. Since 𝑘𝑖 = 𝑐with probability at
most half we conclude that the probability that Eve’s
attack is undetected is at most 2−𝑑.

Now that we have proved the claim for operators of the
form𝑄𝑥, we handle the general case. Pauli 𝑍 are mapped
in the dual code to 𝑋 operators. Since the signed poly-
nomial code is self dual, 𝑄𝑧 attacks will be caught with
probability 1 − 2−𝑑 as well. To conclude the proof we
notice that detection𝑄𝑥 attacks do not depend on the exis-
tence𝑄𝑧 attacks, therefore, a non identity operator𝑄𝑥,𝑧 =
𝑃𝑧𝑃𝑥 will be detected with the correct probability since
either 𝑥 or 𝑧 must be non trivial.

What remains is to notice that the Pauli randomization
𝑃𝑥,𝑧 simply shifts any attack 𝑄 on the authenticated
message to a different Pauli. That is the effect on the
signed polynomial code is 𝑃 †

𝑥,𝑧𝑄𝑃𝑥,𝑧 . We conclude
that any Pauli operator acting on the polynomial QAS is
detected with a probability of at least 1− 2−𝑑 as claimed.

A.2 Security Against General Attacks
We start with a simple lemma about pauli operators.

Lemma A.2 Let 𝑃 ∕= 𝑃 ′ be generalized Pauli operators.
Then:

∑
𝑄∈ℙ𝑚

𝑄†𝑃𝑄𝜌𝑄†𝑃 ′†𝑄 = 0

Proof of Lemma A.2: Let 𝑃 ∕= 𝑃 ′ be generalized
Pauli operator 𝑃 = 𝑋𝑎𝑍𝑏 and 𝑃 ′ = 𝑋𝑎

′
𝑍𝑏

′
. We use

the fact that 𝑍𝑑𝑋𝑐 = 𝜔𝑑𝑐𝑞 𝑋
𝑐𝑍𝑑 and some algebra:

∑
𝑄∈ℙ1

𝑄†𝑃𝑄𝜌𝑄†𝑃 ′†𝑄

=

𝑞−1∑
𝑑,𝑐=0

𝜔𝑑(𝑎−𝑎
′)+𝑐(𝑏−𝑏′)

𝑞 𝑋𝑎𝑍𝑏𝜌𝑍−𝑏′𝑋−𝑎′

= 𝑋𝑎𝑍𝑏𝜌𝑍−𝑏′𝑋−𝑎′
𝑞−1∑
𝑐=0

𝜔𝑐(𝑏−𝑏
′)

𝑞

𝑞−1∑
𝑑=0

𝜔𝑑(𝑎−𝑎
′)

𝑞

(26)

To conclude the proof we recall that 𝑎 ∕= 𝑎 ′ or 𝑏 ∕= 𝑏′,
hence one of the above sums vanishes. The claim for
system in higher dimension follows immediately.

In addition we need one more simple lemma:

Lemma A.3 For any generalized Pauli operator 𝑃 :

1

∣ℙ𝑚∣
∑
𝑄∈ℙ𝑚

𝑄†𝑃𝑄𝜌𝑄†𝑃 †𝑄 = 𝑃𝜌𝑃 † (27)

Proof of LemmaA.3: From the observation about
generalized Pauli operators in Sec. 2 we know that for any
two generalized Pauli operators 𝑃,𝑄 𝑃𝑄 = 𝛼𝑄𝑃 where
𝛼 is some phase dependent on 𝑃 and 𝑄.

1

∣ℙ𝑚∣
∑
𝑄∈ℙ𝑚

𝑄†𝑃𝑄𝜌𝑄†𝑃 †𝑄

=
1

∣ℙ𝑚∣
∑
𝑄∈ℙ𝑚

𝑄†(𝛼𝑄𝑃 )𝜌(𝛼∗𝑃 †𝑄†)𝑄

=
1

∣ℙ𝑚∣
∑
𝑄∈ℙ𝑚

𝛼𝑃𝜌𝛼∗𝑃 †

= 𝑃𝜌𝑃 †

(28)

Proof of Theorem 2.2: In order to prove this theorem
we essentially analyze the effect of the (generalized) Pauli-
twirl on signed polynomial code word. We will show that
for any attack the effect is as a mixture of Pauli operators
which is in turn detected with hight probability as shown in
Lemma A.1. For clarity, we omit the normalization factor
∣ℙ𝑚∣. In addition we denote �̃� = 𝑄 ⊗ ℐ𝐸 . We start by
decomposing any attack 𝑉 ∈ �(𝑀 ⊗ 𝐸) made by Eve to
𝑉 =

∑
𝑃∈ℙ𝑚

𝑃 ⊗ 𝑈𝑃 . Bob’s state prior to applying the
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error detection procedure is:

𝜌𝐵𝑜𝑏 = Tr𝐸
( ∑
𝑄∈ℙ𝑚

�̃�†𝑉
(
�̃�𝜌⊗ 𝜌𝐸�̃�†

)
𝑉 †�̃�

)

= Tr𝐸
( ∑
𝑃,𝑃 ′∈ℙ𝑚

∑
𝑄∈ℙ𝑚

�̃�†𝑃 ⊗ 𝑈𝑃
(
�̃�𝜌⊗ 𝜌𝐸�̃�†

)
𝑃 ′ ⊗ 𝑈 †

𝑃 ′�̃�
)

(29)

Writing �̃� explicitly and regrouping elements operating on
𝑀 and on 𝐸 we have:

. . . =Tr𝐸
( ∑

𝑃,𝑃 ′∈ℙ𝑚

∑
𝑄∈ℙ𝑚

(
𝑄†𝑃𝑄𝜌𝑄†𝑃 ′𝑄

)
⊗

𝑈𝑃 𝜌𝐸𝑈
†
𝑃 ′

)

=
∑

𝑃,𝑃 ′,𝑄∈ℙ𝑚

Tr
(
𝑈𝑃 𝜌𝐸𝑈

†
𝑃 ′

)
⋅
(
𝑄†𝑃𝑄𝜌𝑄†𝑃 ′𝑄

) (30)

We use Lemma A.2 and are left only with 𝑃 = 𝑃 ′

. . . =
∑

𝑃,𝑄∈ℙ𝑚

Tr
(
𝑈𝑃 𝜌𝐸𝑈

†
𝑃

)
⋅
(
𝑄†𝑃𝑄𝜌𝑄†𝑃𝑄

)
(31)

Now we use Lemma A.3 :

. . . =
∑
𝑃∈ℙ𝑚

Tr
(
𝑈 †
𝑃𝑈𝑃𝜌𝐸

)
⋅ ∣ℙ𝑚∣𝑃𝜌𝑃 † (32)

We set 𝛼𝑃 = Tr
(
𝑈 †
𝑃𝑈𝑃𝜌𝐸

)
and we rewrite Bob’s state

after normalization:

𝛼ℐ ⋅ 𝜌+
∑

𝑃∈ℙ𝑚∖{ℐ}
𝛼𝑃 ⋅ 𝑃𝜌𝑃 † (33)

Recall that we are interested in the projection of 𝜌𝐵𝑜𝑏 on
the subspace spanned by the operator 𝑃 ∣𝜓⟩

1 .

Tr
(
𝑃

∣𝜓⟩
1

(
𝛼ℐ ⋅ 𝜌+

∑
𝑃∈ℙ𝑚∖{ℐ}

𝛼𝑃 ⋅ 𝑃𝜌𝑃 †))

= 𝛼ℐ +
∑

𝑃∈ℙ𝑚∖{ℐ}
𝛼𝑃Tr

(
𝑃

∣𝜓⟩
1 𝑃𝜌𝑃 †

) (34)

We use the bound from Lemma A.1:

. . . ≥ 𝛼ℐ +
∑

𝑃∈ℙ𝑚∖{ℐ}
𝛼𝑃

(
1− 2−𝑑

)

= (1− 1− 𝛼ℐ
2𝑑

)

(35)

Which concludes the proof. Similarly to the random Clif-
ford authentication scheme, the further Eve’s intervention
is closer to the identity, that is – Eve does almost nothing,
then the projection on the good subspace is closer to 1.

A.3 Polynomial QAS Applied in Parallel

When authenticating multiple registers, it may seem at
first glance that Eve has the advantage of being able to
tamper with the state by applying some transformation on
the entire space. In the Clifford authentication protocol
applied in p, the intervention of Eve is broken down to
individual attacks on each register by the fact random Clif-
ford operators are applied to each register independently.

The main idea for the concatenated polynomial authen-
tication is to use an independent Pauli key (𝑥, 𝑧) for each
register, while maintaining the sign key 𝑘 equal between
registers. This idea will suffice to brake up the attack of
Eve to a sequence of attacks on each register separately.

Protocol A.1 Concatenated polynomial Authentication
protocol:
Alice wishes to send a state ∣𝜓⟩ ∈ (𝒞𝑞)⊗𝑟 that is 𝑟
𝑞-dimensional systems. For a security parameter 𝑑, set
𝑚 = 2𝑑 + 1. Alice randomly selects a single sign key
𝑘 ∈ {±1}𝑚, furthermore, Alice selects 𝑟 independent
Pauli keys (𝑥𝑗 , 𝑧𝑗).

To encode ∣𝜓⟩ Alice encodes each 𝑞-dimensional system
using the signed polynomial code specified by 𝑘. Addition-
ally, Alice shifts the 𝑗’th encoded message by 𝑃(𝑥𝑗 ,𝑦𝑗).

Bob decodes each message separately, if all messages
are correctly authenticated Bob declares as valid the con-
catenated message, otherwise Bob aborts.

We now prove Theorem 2.3.

Proof of Theorem 2.3: We notice that all the reason-
ing in Theorem 2.2 till Eq. 35 holds in this case as well.
So we have that the projection on the good subspace 𝑃 ∣𝜓⟩

1

is equal to:

𝛼ℐ +
∑

𝑃∈ℙ𝑟⋅𝑚∖{ℐ}
𝛼𝑃Tr

(
𝑃

∣𝜓⟩
1 𝑃𝜌𝑃 †

)
(36)

We start by writing Tr(𝑃 ∣𝜓⟩
1 𝑃𝜌𝑃 †) = 1−Tr(𝑃 ∣𝜓⟩

0 𝑃𝜌𝑃 †).
We recall that 𝑃 here is a Pauli operator from the group
ℙ𝑚⋅𝑟 so we write: 𝑃 = 𝑃(1)⊗. . .⊗𝑃(𝑟).

Lemma A.4 The probability for Bob to be fooled by the
application of 𝑃 ∕= ℐ is at most 2−𝑑.

Proof: For 𝑃𝜌𝑃 † to be in 𝑃 ∣𝜙⟩
0 it must be the case that for

all 𝑗 such that 𝑃(𝑗) ∕= ℐ Eve escapes detection (Bob does
not abort although the register is “corrupted”). We note
that Bob declares as valid the remaining registers (where
𝑃(𝑗) = ℐ) with certainty. We assume without loss of
generality that 𝑃(1) ∕= ℐ, we write the probability that Bob
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is fooled:

Pr (Bob is fooled by 𝑃 )

=Pr (∀𝑗:𝑃(𝑗) ∕=ℐBob is fooled by 𝑃(𝑗))

≤Pr (Bob is fooled by 𝑃(1))

≤2−𝑑

(37)

Where the last inequality holds by Lemma A.1.
Plugging this result into Eq. 35 we have:

. . . =𝛼ℐ +
∑

𝑃∈ℙ𝑟⋅𝑚∖{ℐ}
𝛼𝑃

(
1− Tr(𝑃 ∣𝜓⟩

0 𝑃𝜌𝑃 †)
)

≥𝛼ℐ +
∑

𝑃∈ℙ𝑟⋅𝑚∖{ℐ}
𝛼𝑃

(
1− 2−𝑑

)

=

(
1− 1− 𝛼ℐ

2𝑑

)
(38)

Which concludes the proof.
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