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Abstract

A dynamic treatment regime is a sequence of decision rules, each of which recommends treatment 

based on features of patient medical history such as past treatments and outcomes. Existing 

methods for estimating optimal dynamic treatment regimes from data optimize the mean of a 

response variable. However, the mean may not always be the most appropriate summary of 

performance. We derive estimators of decision rules for optimizing probabilities and quantiles 

computed with respect to the response distribution for two-stage, binary treatment settings. This 

enables estimation of dynamic treatment regimes that optimize the cumulative distribution 

function of the response at a prespecified point or a prespecified quantile of the response 

distribution such as the median. The proposed methods perform favorably in simulation 

experiments. We illustrate our approach with data from a sequentially randomized trial where the 

primary outcome is remission of depression symptoms.
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1. Introduction

A dynamic treatment regime operationalizes clinical decision making as a series of decision 

rules that dictate treatment over time. These rules account for accrued patient medical 

history, including past treatments and outcomes. Each rule maps current patient 

characteristics to a recommended treatment, hence personalizing treatment. Typically, a 

dynamic treatment regime is estimated from data with the goal of optimizing the expected 

value of a clinical outcome, and the resulting regime is referred to as the estimated optimal 

regime.
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Direct-search, also known as policy-search or value-search, is one approach to estimating an 

optimal dynamic treatment regime. Direct search estimators require a pre-specified class of 

dynamic treatment regimes and an estimator of the marginal mean outcome under any 

regime in the pre-specified class. The maximizer of the estimated marginal mean outcome 

over the class of regimes is taken as the estimator of the optimal dynamic treatment regime. 

Marginal structural models (MSMs) are one type of direct-search estimators (Robins, 2000; 

van der Laan et al., 2005; van der Laan, 2006; van der Laan and Petersen, 2007; Bembom 

and van der Laan, 2008; Robins et al., 2008; Orellana et al., 2010; Petersen et al., 2014). 

MSMs are best-suited to problems with a small class of potential regimes. MSMs may also 

be advantageous in practice because optimizing over a small class of pre-specified regimes 

provides a simpler, and often more interpretable, regime than other approaches. Another 

class of direct-search estimators casts the marginal mean outcome as a weighted 

missclassification rate and applies either discrete-optimization or classification algorithms to 

optimize a plugin estimator of the marginal mean outcome (Zhao et al., 2012; Zhang et al., 

2012b,a, 2013; Zhao et al., 2015).

Regression-based or indirect estimators comprise a second class of estimators of an optimal 

dynamic treatment regime. Regression-based estimators require a model for some portion of 

the conditional distribution of the outcome given treatments and covariate information. 

Examples of regression-based estimators include Q-learning (Watkins, 1989; Watkins and 

Dayan, 1992; Murphy, 2005a), regularized Q-learning (Moodie and Richardson, 2010; 

Chakraborty et al., 2010; Song et al., 2015; Goldberg et al., 2013), Interactive Q-learning 

(Laber et al., 2014a), g-estimation in structural nested mean models (Robins, 2004), A-

learning (Murphy, 2003), and regret-regression (Henderson et al., 2010). Nonparametric 

regression-based approaches often target the globally optimal regime rather than restricting 

attention to a small, pre-specified class. They can be also be useful in exploratory contexts to 

discover new treatment strategies for further evaluation in later trials.

Direct-search and regression-based estimators have been extended to handle survival 

outcomes (Goldberg and Kosorok, 2012; Huang and Ning, 2012; Huang et al., 2014), high-

dimensional data (McKeague and Qian, 2013), missing data (Shortreed et al., 2014), 

multiple outcomes (Laber et al., 2014b; Linn et al., 2015), and restrictions on treatment 

resource (Luedtke and van der Laan, 2015).

Despite many estimation methods, none are designed to handle functionals of the response 

distribution other than the mean, such as quantiles. The median response is often of interest 

in studies where the outcome follows a skewed distribution, such as the total time a women 

spends in second stage labor (Zhang et al., 2012c). Using the potential outcomes framework 

(Rubin, 1974; Rosenbaum and Rubin, 1983), Zhang et al. (2012c) develop methods for 

estimating quantiles of the potential outcomes from observational data. However, they focus 

on comparing treatments at a single intervention time point rather than estimation of an 

optimal dynamic treatment regime. Structural nested distribution models (SNDMs) 

estimated using g-estimation facilitate estimation of point treatment effects on the 

cumulative distribution function of the outcome (Robins, 2000; Vansteelandt et al., 2014). 

Thus far, SNDMs have not been extended to estimate a regime that maximizes a quantile.
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Q-learning and its variants are often useful when targeting an optimal regime because they 

provide relatively interpretable decision rules that are based on (typically linear) regression 

models. However, the Q-learning algorithm is an approximate dynamic programming 

procedure that requires modeling nonsmooth, nonmonotone transformations of data. This 

leads to nonregular estimators for parameters that index the optimal regime and complicates 

the search for models that fit the data well since many standard regression modeling 

diagnostics are invalid (Robins, 2004; Chakraborty et al., 2010; Laber et al., 2014c; Song et 

al., 2015). In addition, Q-learning with linear models does not target the globally optimal 

rule when the true conditional means are nonlinear. Interactive Q-learning (IQ-learning), 

developed for the two-stage binary treatment setting, requires modeling only smooth, 

monotone transformations of the data, thereby reducing problems of model misspecification 

and nonregular inference (Laber et al., 2014a). We extend the IQ-learning framework to 

optimize function-als of the outcome distribution other than the expected value. In particular, 

we optimize threshold-exceedance probabilities and quantiles of the response distribution. 

Furthermore, because this extension of IQ-learning provides an estimator of a threshold-

exceedance probability or quantile of the response distribution under any postulated dynamic 

treatment regime, it can be used to construct direct-search estimators.

Threshold-exceedance probabilities are relevant in clinical applications where the primary 

objective is remission or a specific target for symptom reduction. For example, consider a 

population of obese patients enrolled in a study to determine the effects of several treatment 

options for weight loss. The treatments of interest may include combinations of drugs, 

exercise programs, counseling, and meal plans (Berkowitz et al., 2010). Our method can be 

used to maximize the probability that patients achieve a weight below some prespecified, 

patient-specific threshold at the conclusion of the study. Optimization of threshold-

exceedance probabilities can be framed as a special case optimizing the mean of a binary 

outcome, for which several methods exist, including the classification-based Outcome 

Weighted Learning (Zhang et al., 2012b; Zhao et al., 2015). However, our approach is 

particularly useful for setting up the more challenging problem of quantile optimization.

With adjustments to our method of maximizing probabilities, we derive optimal decision 

rules for maximizing quantiles of the response distribution. Both frameworks can be used to 

study the entire distribution of the outcome under an optimal dynamic treatment regime; 

thus, investigators can examine how the optimal regime changes as the target probability or 

quantile is varied. In addition, the quantile framework provides an analog of quantile 

regression in the dynamic treatment regime setting for constructing robust estimators; for 

example, it enables optimization of the median response.

2. Generalized Interactive Q-Learning

We first characterize the optimal regime for a probability and quantile using potential 

outcomes (Rubin, 1974) and two treatment time-points. We assume that the observed data, 

, comprise n independent, identically distributed, time-

ordered trajectories; one per patient. Let (X1, A1, X2, A2, Y) denote a generic observation 

where: X1 ∈ ℝp1 is baseline covariate information collected prior to the first treatment; A1 ∈ 
{−1, 1} is the first treatment; X2 ∈ ℝp2 is interim covariate information collected during the 
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course of the first treatment but prior the second treatment; A2 ∈ {−1, 1} is the second 

treatment; and Y ∈ ℝ is an outcome measured at the conclusion of stage two, coded so that 

larger is better. Define H1 = X1 and  so that Ht is the information 

available to a decision maker at time t. A regime, π = (π1, π2), is a pair of decision rules 

where πt : dom(Ht) ↦ dom(At), such that a patient presenting with Ht = ht at time t is 

recommended treatment πt(ht).

Let  be the potential second-stage history under treatment a1 and Y*(a1, a2) the 

potential outcome under treatment sequence (a1, a2). Define the set of all potential outcomes 

. Throughout we assume: (C1) consistency, 

so that Y = Y*(A1, A2); (C2) sequential ignorability (Robins, 2004), i.e., At ╨ W | Ht for t 

= 1, 2; and (C3) positivity, so that there exists ε > 0 for which ε < pr(At = at|Ht) < 1 – ε with 

probability one for all at, t = 1, 2. Assumptions (C2)-(C3) hold by design when data are 

collected using a sequential multiple assignment randomized trial (SMART, Lavori and 

Dawson, 2000, 2004; Murphy, 2005b). In observational studies, these assumptions are not 

testable. We assume that data are collected using a two-stage, binary treatment SMART. 

This set-up facilitates a focused discussion of the proposed methods and is also useful in 

practice, as data in many sequentially randomized trials have this structure (Projects Using 

SMART, 2012; Laber, 2013). However, the following argument demonstrates that the 

proposed methodology can be extended to observational data and studies with more than two 

treatments.

For any π define  to be the potential 

outcome under π. Define the function R(y; x1, a1, x2, a2) = pr(Y > y|X1 = x1, A1 = a1, X2 = 

x2, A2 = a2) for any y ∈ ℝ. Assuming (C1)-(C3) and y ∈ ℝ, the survival function of Y*(π) 

can be expressed in terms of the underlying generative model as

for any π (Robins, 1986). This result shows that pr{Y*(π) > y} is maximized by the regime 

, where  and 

. This result can 

also be used to characterize the regime that optimizes a quantile. For any regime π, 

pr{Y*(πy) ≤ y} ≤ pr{Y*(π) ≤ y} implies inf{y : pr{Y*(πy) ≤ y} ≥ τ} ≥ inf{y : pr{Y*(π) ≤ 

y} ≥ τ}. In fact the left-hand side is the optimal τth quantile; denote it by . An optimal 

regime with respect to the τth quantile is thus any regime that, when used to assign 

treatments in the population, results in a τth quantile that attains . The following result is 

proved in the supplemental material.
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Theorem 2.1. Let ε > 0 and τ ∈ (0, 1) be arbitrary but fixed. Assume (C1)-(C3) and that the 

map y ↦ R(y; x1, a1, x2, a2) from ℝ into (0, 1) is continuous and strictly increasing in a 

neighborhood of τ for all x1, a1, x2, and a2. Then, .

Theorem 2.1 states that the regime  induces a τth quantile of the potential outcome 

distribution that attains the optimal τth quantile. Without the strictly increasing assumption, 

 may not be optimal. However, it can be shown that there exists a value ỹ ∈ ℝ such that 

the regime πỹ attains a τth quantile that is arbitrarily close to . Details are given in Section 

3.

2.1 Threshold Interactive Q-learning

The estimators presented in this section serve as useful building blocks for developing the 

estimators in the next section which focus on quantile optimization. Here, we derive and 

estimate the optimal set of decision rules for maximizing a threshold-exceedance probability. 

Let prπ(Y > λ), equivalently prπ1, π2(Y > λ), denote the probability that the outcome Y is 

greater than a predefined threshold λ under treatment assignment dictated by the regime π = 

(π1, π2). Threshold Interactive Q-learning (TIQ-learning) maximizes prπ{Y > λ(Ht) | H1} 

for all H1 with respect to π, where λ(Ht) is a threshold that depends on Ht, t = 1, 2. Here, 

we assume λ(Ht) ≡ λ; patient-specific thresholds are discussed in the supplemental 

material.

As prπ(Y > λ) = Eπ(𝟙Y>λ), many approaches exist for estimating an optimal regime that 

maximizes the value function of the binary outcome 𝟙Y>λ; one example is discrete Q-

learning (Chakraborty and Moodie, 2013). We show analytically in Remark 2.4, and 

empirically in Section 4, that discrete Q-learning using the logit link is equivalent to Q-

learning with outcome Y and is therefore insensitive to the threshold λ. Nonparametric 

methods such as OWL (Zhao et al., 2012) double-robust direct search (Zhang et al., 2012b,a, 

2013), and boosting (Kang et al., 2014) are less restrictive than model-based approaches for 

optimizing binary outcomes, but the following exposition facilitates later developments for 

optimizing quantiles.

Our estimators are derived under the following set-up. Because A2 is binary, there exist 

functions m and c such that E(Y | A2, H2) = m(H2) + A2c(H2). We assume that Y = E(Y | 

A2, H2) + ε, where E(ε) = 0, Var(ε) = σ2, and ε is independent of (A2, H2). In the 

supplemental material we describe extensions to: (i) heteroskedastic error structures, where 

Y = E(Y | A2, H2) + σ(H2, A2)ε for unknown function σ; and (ii) non-additive error 

structures such as the multiplicative error model, Y = ε[m(H2) + A2c(H2)], provided ε > 0 

with probability one and pr{m(H2) + A2c(H2) = 0} = 0.

Define FH1(·) to be the distribution of H1; FH2|H1, A1(· | h1, a1) to be the conditional 

distribution of H2 given H1 = h1 and A1 = a1; Fε(·) to be the distribution of ε; and 

. Let 

, then
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(1)

is the expected value of Jπ1, π2(H1, H2, y).

Let , where sgn(x) = 𝟙x≥0 – 𝟙x<0. Then, 

 and 

 for all  implies

(2)

where the right-hand side of (2) is . Let G(·, · | h1, a1) denote the joint 

conditional distribution of m(H2) and c(H2) given H1 = h1 and A1 = a1, then 

, where

(3)

The λ-optimal regime  satisfies  for all π. 

That is, the distribution of Y induced by regime  has at least as much mass above λ as 

the distribution of Y induced by any other regime. It follows from the lower bound on 

prπ1, π2(Y ≤ y) displayed in (2) that  for all h2, independent 

of λ and . Henceforth, we denote  by . The relationship

(4)

shows that the λ-optimal first-stage rule is . 

Inequality (4) holds because I{λ, Fε(·), G(·, · | H1, a1)} is minimized over a1 for all H1. It 

will be useful later on to write  where

(5)
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Below, we describe the general form of the TIQ-learning algorithm that can be used to 

estimate the λ-optimal regime. The exact algorithm depends on the choice of estimators for 

m(H2), c(H2), Fε(·) and G(·, · | h1, a1). For example, one might posit parametric models, 

m(H2; β2,0) and c(H2; β2,1), for m(H2) and c(H2) and estimate the parameters in the model 

Y = m(H2; β2,0) + c(H2; β2,1) + ε using least squares. Alternatively, these terms could be 

estimated nonparametrically. We discuss possible estimators for Fε(·) and G(·, ·| h1, a1) in 

Sections 3.1 and 3.2. In practice, the choice of estimators should be informed by the 

observed data. Finally, we emphasize that if the binary threshold outcome is the terminal 

focus, rather than quantile optimization, a different approach (e.g., nonparametric or direct 

search) may be warranted. The following algorithm provides a foundation for the quantile 

optimization algorithm in the next section. Define d̂(h1, λ) = I{λ, F̂ε(·), Ĝ(·, · | h1, −1)} – 

I{λ, Fε̂(·), Ĝ(·, · | h1, 1)}.

TIQ-learning algorithm

TIQ.1 Estimate m(H2) and c(H2), and denote the resulting estimates by m(̂H2) and 

ĉ(H2). Given h2, estimate  using the plug-in estimator .

TIQ.2 Estimate Fε(·), the cumulative distribution function of ε, using the residuals êY 

= Y – m(̂H2) – A2ĉ(H2) from TIQ.1. Let Fε̂(·) denote this estimator.

TIQ.3 Estimate G(·, · | h1; a1), the joint conditional distribution of m(H2) and c(H2) 

given H1 = h1 and A1 = a1. Let Ĝ(·, · | h1, a1) denote this estimator.

TIQ.4 Given h1, estimate  using the plug-in estimator .

The TIQ-learning algorithm involves modeling m(H2), c(H2), the distribution function Fε(·), 

and the bivariate conditional density G(·, · | h1, a1). This is more modeling than some mean-

targeting algorithms. For example, Q-learning requires modeling m(H2), c(H2), and the 

conditional mean of m(H2) + |c(H2)| given H1, A1, while IQ-learning requires modeling 

m(H2), c(H2), the conditional mean of m(H2), and the conditional density of c(H2) (Laber et 

al., 2014a). We discuss models for the components of the TIQ-learning algorithm in Sections 

3.1 and 3.2.

Remark 2.2. Standard trade-offs between parametric and nonparametric estimation apply to 

all terms in the TIQ-learning algorithm. In practice, the choice of estimators will likely 

depend on sample size and the scientific goals of the study. If the goal is to estimate a regime 

for immediate decision support in the clinic, then the marginal mean outcome of the 

estimated regime is of highest priority. Given sufficient data, it may be desirable to use 

nonparametric estimators in this context. However, if the goal is to inform future research 

and generate hypotheses for further investigation, then factors like parsimony, 

interpretability, and the ability to identify and test for factors associated with heterogeneous 

treatment response may be most important. In this context, parametric models may be 

preferred for components of the TIQ-learning algorithm, namely, the treatment interaction 

term c(H2), while more flexible models may be specified for the nuisance function m(H2). A 

parsimonious, parametric model for c(H2) trades a restriction on the class of possible 

regimes for potential gains in interpretability. Note that approaches such as OWL (Zhao et 

al., 2012) and the methods described in Luedtke and van der Laan (2015) do not require 
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models for m(H2), while double robust approaches model this term only to increase 

efficiency and remain consistent for the optimal regime even when the model is 

misspecified.

Remark 2.3. Let  denote the first-stage decision rule of an optimal regime for the mean 

of Y. Then, assuming the set-up of Section 2.1, it can be shown that

whereas . If Fε(·) is approximately 

linear where the conditional distribution of λ – m(H2) – |c(H2)| given H1 = h1 and A1 = a1 is 

concentrated,  and  will likely agree. Thus, the difference between the mean 

optimal and TIQ-learning optimal regimes can be compared empirically by computing arg 

mina1 ∫(−u – |v|)dĜ(u, v | h1i, a1), arg mina1 ∫ F̂ε(λ – u – |v|)dĜ(u, v | h1i, a1), for each first-

stage patient history h1i, i = 1, …, n, and examining where these rules differ.

Remark 2.4. One approach to estimating an optimal decision rule for threshold-exceedance 

probabilities is discrete Q-learning (Chakraborty and Moodie, 2013). Suppose Y = 

m*(H2)+A2c*(H2) + ε, where ε has cumulative distribution function Fε(·). For the binary 

outcome 𝟙Y>λ, define the second-stage Q-function, Q2(H2, A2) = pr(𝟙Y>λ = 1 | H2, A2), and 

the first stage Q-function, Q1(H1, A1) = [maxa2 Q2(H2, a2) | H1, A1]. If these functions 

were known, the optimal treatment assignments for the set of observed histories (H1 = h1, 

H2 = h2) would be {arg maxa1 Q1(h1, a1), arg maxa2 Q2(h2, a2)}. In practice, the Q-

functions are unknown and the Q-learning algorithm proceeds by specifying models for 

them. Denote estimates of the Q-functions obtained from such models by Q̂2(H2, A2) and 

Q̂1(H1, A1). Then, the estimated optimal treatment assignments for (H1 = h1, H2 = h2) are 

{arg maxa1 Q̂1(h1, a1), arg maxa2 Q̂2(h2, a2)}. For binary outcomes, logistic regression is 

often a natural model choice for Q2. Subsequently, at the first stage one would specify a 

model for [maxa2 Q̂2(H2, a2) | H1, A1], where the pseudo outcome maxa2 Q̂2(H2, a2) is 

bounded in [0, 1]. Rather than modeling this conditional expectation with linear regression, 

which may result in Q̂1 estimates outside the interval [0, 1], an alternative is to model 

[maxa2 logit{Q̂2(H2, a2)} | H1, A1] using linear regression, since maxa2 logit{Q̂2(H2, a2)} 

takes values on the real line (Chakraborty and Moodie, 2013; Moodie et al., 2014). However, 

for our special case of discrete Q-learning with outcome 𝟙Y>λ, the logit link function is 

misspecified for pr(𝟙Y>λ = 1 | H2, A2). The correct link function for the second stage Q-

function is . When the logit link is used rather than L(u), discrete Q-

learning as described above and Q-learning for the continuous outcome Y perform similarly 

across all values of λ for the generative model for Y given above. We demonstrate this using 

simulation experiments in Section 4.
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3. Quantile Interactive Q-Learning

Under some generative models, assigning treatment according to a mean-optimal regime 

leads to higher average outcomes at the expense of higher variability, negatively affecting 

patients with outcomes in the lower quantiles of the induced distribution of Y. We 

demonstrate this using simulated examples in Section 4. Define the τth quantile of the 

distribution of Y induced by regime π as qπ(τ) = inf{y : prπ1,π2(Y ≤ y) ≥ τ}. The goal of 

Quantile Interactive Q-learning (QIQ-learning) is to estimate a pair of decision rules, 

, that maximize qπ(τ) over π for a fixed, prespecified τ. QIQ-learning 

is similar to TIQ-learning, but the optimal first-stage rule is complicated by the inversion of 

the distribution function to obtain quantiles of Y under a given regime. When the variance of 

Y is independent of A2, the QIQ-learning second-stage optimal decision is 

, independent of τ and ; details are provided in Section 

4 of the supplemental material. Denote  by .

Next we characterize , which will motivate an algorithm for calculating it. Let d(h1, y) 

be as in (5), and define Γ(h1, y) ≜ sgn{d(h1, y)}. Then  is the 

optimal first-stage decision rule of TIQ-learning at λ = y. We have introduced the new 

notation to emphasize the dependence on y. Next, define the optimal τth quantile

(6)

which we study further in the remainder of this section.

Lemma 7.7 of the supplemental material proves that , 

so that  is defined for all τ ∈ (0, 1). For each y ∈ ℝ,

where I(·, ·, ·) is defined in (3). The last equality follows because Γ(H1, y) minimizes E (I [y, 

Fε(·), G{·, ·|H1, a1}]) with respect to a1. Hence, 

, and taking the infimum on both 

sides gives the upper bound

(7)

Thus, a first-stage decision rule π1 is optimal if it induces a τth quantile equal to the upper 

bound  when treatments are subsequently assigned according to , i.e., if .
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We now discuss conditions that guarantee existence of a π1 such that  and 

derive its form. The quantile obtained under regime  is

(8)

Thus, because it is a quantile and the bound in (7) applies, , and 

 for all y. Our main results depend on the following lemma, which is 

proved in the supplemental material.

Lemma 3.1.

(9)

(10)

(11)

(12)

It follows from (B) that  if and only if f(y) is left continuous at , and part (D) 

is a sufficient condition guaranteeing left-continuity of f(y) at . In this case, the optimal 

first-stage rule is , i.e., . The condition stated in (D) is 

commonly satisfied, e.g., when the density of ε has positive support on the entire real line. If 

f(y) is not left continuous at , and thus , in light of (10) we can always approach 

the optimal policy via a sequence of regimes of the form { }, where δn 

decreases to 0. If the underlying distributions of the histories and Y were known, the 

following algorithm produces an optimal regime.

Population-level algorithm to find 

1. Compute  from (6) and  from (8).
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2. a.
If ,  is optimal as it attains the quantile 

.

b.
If ,  is optimal. Note that this 

rule can be written in closed form as 

, where we define 

 and 

.

In practice, the generative model is not known, but the population-level algorithm suggests 

an estimator of . The following QIQ-learning algorithm can be used to estimate an 

optimal first-stage decision rule. The exact algorithm depends on the choice of estimators for 

Fε(·) and G(·, · | h1, a1); several options are presented in Sections 3.1 and 3.2, but the choice 

should be data-driven; see, e.g., Remark 2.2.

QIQ-learning algorithm

QIQ.1 Follow TIQ.1 – TIQ.3 of the TIQ-learning algorithm in Section 2.1.

QIQ.2 With I(·, ·, ·) as in (3) and first-stage patient histories h1i, estimate  using

QIQ.3 Estimate  using

QIQ.4

a.
If , then  is an estimated optimal first-stage 

decision rule because it attains the estimated optimal quantile, , when 

treatments are subsequently assigned according to  at the second stage.

b.
If , then the first-stage rule , δ > 0, results 

in the estimated quantile , which satisfies . 

By choosing δ arbitrarily small, this estimated quantile will be arbitrarily 

close to the estimated optimal quantile .

To complete the TIQ- and QIQ-learning algorithms, we provide specific estimators Fε(·) and 

G(·, · | h1, a1) in the next two sections. We suggest estimators that are likely to be useful in 

practice, but our list is not exhaustive. An advantage of TIQ- and QIQ-learning is that they 

involve modeling only smooth transformations of the data; these are standard, well-studied 

modeling problems in the statistics literature.
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3.1 Working models for Fε(·)

Both TIQ- and QIQ-learning require estimation of the distribution function of the second-

stage error, ε. We suggest two estimators that are useful in practice. The choice between 

them can be guided by inspection of the residuals from the second-stage regression.

Normal Scale Model—The normal scale estimator for Fε(·) is , where 

Φ(·) denotes the standard normal distribution function and σ̂ε is the standard deviation of the 

second-stage residuals, , i = 1, …, n. If it is thought that σε 
depends on (H2, A2), flexibility can be gained by assuming a heteroskedastic variance model 

(Carroll and Ruppert, 1988), i.e., by assuming Fε(z) = Φ{z/σε(H2, A2)} for some unknown 

function σε(h2, a2). Given an estimator σε̂(h2, a2) of σε(h2, a2), an estimator of Fε(·) is 

. We discuss variance modeling techniques in the next section.

Nonparametric Model—For more flexibility, a non- or semi-parametric estimator for 

Fε(·) can be used. In the homogeneous variance case, a nonparametric estimator of Fε(·) is 

the empirical distribution of the residuals, . In the 

heterogeneous variance case, one can assume a non- or semi-parametric scale model 

Fε|H2,A2(z|H2 = h2, A2 = a2) = F0{z/σε(h2, a2)}, where F0(·) is an unspecified distribution 

function. Given an estimator σ̂ε(h2, a2) of σε(h2, a2), an estimator of Fε|H2,A2(z|H2 = h2, A2 

= a2) is , where 

. Standard residual diagnostic techniques, e.g., a normal quantile-

quantile plot, can be used to determine whether a normal assumption seems plausible for the 

observed data.

3.2 Working models for G(·, ·|h1, a1)

In addition to a model for Fε(·), TIQ- and QIQ-learning require models for the bivariate 

conditional density of m(H2) and c(H2) given H1 and A1. A useful strategy is to first model 

the conditional mean and variance functions of m(H2) and c(H2) and then estimate the joint 

distribution of their standardized residuals. Define these standardized residuals as

where µm(H1, A1) ≜ E{m(H2) | H1, A1} and 

. The mean and variance functions of 

c(H2) are defined similarly: µc(H1, A1) ≜ E{c(H2)|H1, A1}, and 

. In simulations, we use parametric mean 

and variance models for µm, , µc, and , and we estimate the joint distribution of em and 

ec using a Gaussian copula. Alternatively, the joint residual distribution could be modelled 

parametrically, e.g., with a multivariate normal model; or nonparametrically, e.g., using a 

bivariate kernel density estimator (Silverman, 1986, Ch. 4). The Gaussian copula is used in 
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the simulations in Section 4, and results are provided using a bivariate kernel estimator in the 

supplemental material. Common exploratory analysis techniques can be used to interactively 

guide the choice of estimator for G(·, · | h1, a1). In simulated experiments described in the 

supplemental material, a bivariate kernel density estimator was competitive with a correctly 

specified Gaussian copula model with sample sizes as small as n = 100. Using parametric 

mean and variance modeling, the following steps would be substituted in Step TIQ.3 of the 

TIQ-learning algorithm.

Mean and Variance Modeling

3.1 Compute  and the resulting 

estimator µm(H1, A1; θ̂m) of the mean function µm(H1, A1).

3.2 Use the estimated mean function from Step 3.1 to obtain

and subsequently the estimator  of . One choice for 

σm(h1, a2; γm) is a log-linear model, which may include non-linear basis terms.

3.3 Repeat Steps 3.1 and 3.2 to obtain estimators µc(H1, A1; θ̂c) and σc(H1, A1; γ̂
c).

3.4 Compute standardized residuals  and , i = 1, …, n, as

Then,  and , i = 1, …, n, can be used to estimate the joint distribution of the standardized 

residuals. Samples drawn from this distribution can be transformed back to samples from 

Ĝ(·, · | h1, a1) to estimate the integral I{y, Fε̂(·), Ĝ(·, · | h1, a1)} with a Monte Carlo average.

3.3 Theoretical results

The following assumptions are used to establish consistency of the threshold exceedance 

probability and quantile that result from applying the estimated TIQ- and QIQ-learning 

optimal regimes, respectively. For each h1, a1, and h2:

A1. the method used to estimate m(·) and c(·) results in estimators m(̂h2) and ĉ(h2) that 

converge in probability to m(h2) and c(h2), respectively;

A2. Fε(·) is continuous, Fε̂(·) is a cumulative distribution function, and Fε̂(y) converges in 

probability to Fε(y) uniformly in y;

A3. ∫|dĜ(u, v | h1, a1) – dG(u, v | h1, a1)| converges to zero in probability;

A4.  converges to zero in probability.
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In the simulation experiments in Section 4 and data example in Section 5, we use linear 

working models for m(·) and c(·) that are estimated using least squares. Thus, A1 is satisfied 

under usual regularity conditions. When ε is continuous, assumption A2 can be satisfied by 

specifying F̂ε(·) as the empirical distribution function. If for each fixed h1 and a1, dG(·, · | h1, 

a1) is a density and dĜ(·, · | h1, a1) a pointwise consistent estimator, then A3 is satisfied 

(Glick, 1974). Theorems 3.2 and 3.3 are proved in the supplemental material.

Theorem 3.2. (Consistency of TIQ-learning) Assume A1–A3 and fix λ ∈ ℝ. Then, 

 converges in probability to , where .

Theorem 3.3. (Consistency of QIQ-learning) Assume A1–A4. Then,  converges in 

probability to  for any fixed τ, where .

4. Simulation Experiments

We compare the performance of our estimators to binary Q-learning (Chakraborty and 

Moodie, 2013), Q-learning, and mean-optimal IQ-learning (Laber et al., 2014a) for a range 

of data generative models. Gains are achieved in terms of the proportion of the distribution 

of Y that exceeds the constant threshold λ and the τth quantile for several values of λ and τ. 

The data are generated using the model

where 1p is a p × 1 vector of 1s, Iq is the q × q identify matrix, and C ∈ [0,1] is a constant. 

The matrix Σ is a correlation matrix with off-diagonal ρ = 0.5. The 2 × 2 matrix BA1 equals

The remaining parameters are γ0 = (1, 0.5, 0)T, γ1 = (−1, −0.5, 0)T, β2,0 = (0.25, −1, 0.5)T, 

and β2,1 = (1, −0.5, −0.25)T, which were chosen to ensure that the mean-optimal treatment 

produced a more variable response for some patients.

4.1 TIQ-learning Simulation Results

Results are based on J = 1,000 generated data sets. For each, we estimate the TIQ-, IQ-, 

binary Q-learning, and Q-learning policies using a training set of size n = 250 and compare 

the results using a test set of size N = 10, 000. The normal scale model is used to estimate 

Fε(·), which is correctly specified for the generative model above. The Gaussian copula 

model discussed in Section 2.4 is also correctly specified and is used as the estimator for 
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G(·, · | h1, a1). Results using a bivariate kernel estimator for G(·, · | h1, a1) are presented in 

the supplemental material.

To study the performance of the TIQ-learning algorithm, we compare values of the 

cumulative distribution function of the final response when treatment is assigned according 

to the estimated TIQ-learning, IQ-learning, binary Q-learning, and Q-learning regimes. 

Define prπ
̂
j(Y > λ) to be the true probability that Y exceeds λ given treatments are assigned 

according to π̂
j = (π1̂j, π̂2j), the regime estimated from the jth generated data set. For 

threshold values λ = −2, 2, 4, we estimate prπ(Y > λ) using , where 

prπ̂
̂j(Y > λ) is an estimate of prπ̂j(Y > λ) obtained by calculating the proportion of test 

patients consistent with regime π̂
j whose observed Y values are greater than λ. Thus, our 

estimate is an average over training data sets and test set observations. In terms of the 

proportion of distribution mass above λ, results for λ = −2 and 4 in Figure 1 show a clear 

advantage of TIQ-learning for higher values of C, the degree of heteroskedasticity in the 

second-stage covariates X2. As anticipated by Remark 2.3 in Section 2.1, all methods 

perform similarly when λ = 2.

Figure 2 illustrates how the optimal first-stage treatment for a test set of 1,000 individuals 

changes as λ varies. Results are shown for C = 0.5. The true optimal treatments displayed in 

the left plot show a distinct shift from treating most of the population with A1 = 1 to A1 = −1 

as λ increases from -4 to 4. The TIQ-learning estimated optimal treatments displayed in the 

middle plot are averaged over 100 Monte Carlo iterations and closely resemble the true 

policies on the left. Although the estimated Q-learning regime does not depend on λ, it is 

plotted for each λ value to aid visual comparison. The first-stage treatments recommended 

by Q-learning differ the most from the true optimal treatments when λ = 4, corroborating 

the results for C = 0.5 in Figure 1. The rightmost panel of Figure 2 are the results from 

binary Q-learning with the binary outcome defined as 𝟙Y>λ. While there appears to be a 

slight deviation in the results from mean-optimal Q-learning for λ values 3 and 4, overall the 

resulting policies are similar to mean-optimal Q-learning and do not recover the true optimal 

treatments on average.

4.2 QIQ-learning Simulations

To study the performance of the QIQ-learning algorithm, we compare quantiles of Y when 

the population is treated according to the regimes estimated by QIQ-learning, IQ-learning, 

and Q-learning. A smaller test set of size N = 5,000 was used in this section to reduce 

computation time. Define qπ̂j (τ) to be the true τth quantile of the distribution of Y given 

treatments are assigned according to π̂
j = (π̂1j, π̂2j), the regime estimated from the jth 

generated data set. For τ = 0.1, 0.5, 0.75, we estimate qπ(τ) using , where 

q̂π̂
j(τ) is an estimate of qπ̂

j(τ) obtained by calculating the τth quantile of the subgroup of test 

patients consistent with regime π̂j. The generative model and all other parameter settings 

used here are the same as those in the previous section. For our generative model, the 

condition of Lemma 3.1 is satisfied, so the true optimal regime is attained asymptotically. 

The results in Figure 3 indicate that the lowest quantile, τ = 0.1, suffers under the Q-learning 

regime as heterogeneity in the second-stage histories increases, measured by the scaling 
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constant C. In contrast, quantiles of the QIQ-learning estimated regimes for τ = 0.1 remain 

constant across the entire range of C. When τ = 0.5, all methods perform similarly; for some 

C, IQ- and Q-learning outperform QIQ-learning. This is not surprising because all models 

used to generate the data were symmetric. Thus, maximizing the mean of Y gives similar 

results to maximizing the median.

Next we study QIQ-learning when the first stage errors are skewed. The generative model 

and parameter settings used here are the same as those used previously except that

where C ∈ [0, 1] is a constant that reflects the degree of skewness in the first-stage errors, ξ. 

Smaller values of C correspond to heavier skew.

Results are averaged over J = 100 generated data sets; for each, we estimate the QIQ-, IQ-, 

and Q-learning policies and compare the results using a test set of size N = 10, 000. The 

training sample size for each iteration is n = 500. The normal scale model is used to estimate 

Fε(·), which is correctly specified. A bivariate kernel density estimator is used to estimate 

G(·, · | h1, a1). As before, we compare quantiles of the final response when treatment is 

assigned according to the estimated QIQ-learning, IQ-learning, and Q-learning regimes, and 

the results are given in Figure 4. QIQ-learning demonstrates an advantage over the mean-

optimal methods for all three quantiles and almost uniformly across the degree of skewness 

of the first-stage errors.

5. Star*D Analysis

The Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial (Fava et al., 

2003; Rush et al., 2004) is a four-stage Sequential Multiple Assignment Randomized Trial 

(Lavori and Dawson, 2004; Murphy, 2005a) studying personalized treatment strategies for 

patients with major depressive disorder. Depression is measured by the Quick Inventory of 

Depressive Symptomatology (QIDS) score, a one-number summary score that takes integer 

values 0 to 27. Lower scores indicate fewer depression symptoms. Remission is defined as 

QIDS ≤ 5. Previous attempts to estimate optimal dynamic treatment regimes from this data 

have used the criteria, “maximize end-of-stage-two QIDS,” (see, for example, Schulte et al., 

2012; Laber et al., 2014a) a surrogate for the primary aim of helping patients achieve 

remission. We illustrate TIQ-learning by estimating an optimal regime that maximizes the 

probability of remission for each patient, directly corresponding to the primary clinical goal.

The first stage, which we will henceforth refer to as baseline, was non-randomized with each 

patient receiving Citalopram, a drug in the class of Selective Serotonin Reuptake Inhibitors 

(SSRIs). We use a subset of the STAR*D data from the first two randomized stages, and 

refer to the original trial levels 2 and 3 as “stage one” and “stage two.” Before each 

randomization, patients specified a preference to “switch” or “augment” their current 

treatment strategy and were then randomized to one of multiple options within their 
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preferred category. In addition, patients who achieved remission in any stage exited the 

study. To keep our illustration of TIQ-learning concise, we restrict our analysis to the subset 

of patients who who preferred the “switch” strategy at both stages. We note that this 

subgroup is not identifiable at baseline because patient preferences depend on the assigned 

treatment and subsequent response at each stage. Our motivation for this restriction is to 

mimic a two-stage SMART where treatments are randomized at both stages, thus 

simplifying our illustration. At stage one, our binary treatment variable is “SSRI,” which 

includes only Sertraline, versus “non-SSRI,” which includes both Bupropion and 

Venlafaxine. At stage two we compare Mirtazapine and Nortriptyline which are both non-

SSRIs. In the patient subgroup considered in our analysis, treatments were randomized at 

both stages.

All measured QIDS scores are recoded as 27– QIDS so that higher scores correspond to 

fewer depression symptoms. After recoding, remission corresponds to QIDS > 21. Thus, 

TIQ-learning with λ = 21 maximizes the probability of remission for all patients. In general, 

QIDS was recorded during clinic visits at weeks 2, 4, 6, 9, and 12 in each stage, although 

some patients with inadequate response moved on to the next stage before completing all 

visits. We summarize longitudinal QIDS trajectories from the baseline stage and stage one 

by averaging over the total number of QIDS observations in the given stage. Variables used 

in our analysis are listed in Table 1. We describe all models used in the analysis below.

At the second stage, we assume the linear working model , 

where H2,0 = H2,1 = (1, qids1, slope1, A1)T, E(ε) = 0, var(ε) = σ2, and ε is independent of 

H2 and A2. We fit this model using least squares. A normal qq-plot of the residuals from the 

previous regression step indicates slight deviation from normality, so we use the non-

parametric estimator of Fε(·) given in Section 2.4. Next, we estimate the conditional mean 

and variance functions of  and  following steps 

described in Section 2.4. For the mean functions, we take  with X1 = 

(qids0, slope0)1 and use working models of the form 

. Exploratory analyses reveal little evidence of 

heteroskedasticity at the first-stage. Thus, we opt to estimate a constant residual variance for 

both terms following the mean modeling steps. After the mean and variance modeling steps, 

we use a Gaussian copula to estimate the joint conditional distribution of the standardized 

residuals of {m(H2), c(H2)} given H1 and A1, resulting in our estimate of G(·, · | h1, a1) 

which we denote by Ĝ(·, · | h1, a1).

The estimated first-stage optimal rule is 

. At stage two, 

 is the estimated optimal 

treatment. Based on Remark 1 in Section 2.1, we compare the estimated first-stage treatment 

recommendations to those recommended by the mean-optimal rule, arg mina1 ∫(−u – |

v|)dĜ(u, v | h1, a1), for each observed h1 in the data. Only one patient out of 132 is 

recommended differently. In addition, the difference in raw values of ∫Fε̂(21 – u – |v|)dĜ(u, 

v | h1, a1) for a1 = 1, −1 as well as ∫(−u – |v|)dĜ(u, v | h1, a1) for a1 = 1, −1 are the smallest 
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for this particular patient. Thus, the treatment discrepancy is most likely due to a near-zero 

treatment effect for this patient.

We compare TIQ-learning to the Q-learning analysis of Schulte et al. (2012) and binary Q-

learning (Chakraborty and Moodie, 2013). Comparing the results to Q-learning, which 

maximizes the expected value of Y, supports the claim that TIQ-learning and mean 

optimization are equivalent for this subset of the STAR*D data. The first step of Q-learning 

is to model the conditional expectation of Y given H2 and A2 which is the same as the first 

step of TIQ-learning. Thus, we use the same model and estimated decision rule at stage two 

given in Step 1 of the TIQ-learning algorithm. Next, we model the conditional expectation 

of , where Ỹ is the predicted future optimal outcome at stage one. 

We specify the working model , where 

 and X1 = (qids0, slope0)T. We fit the model using least squares. 

Then, the Q-learning estimated optimal first-stage rule is 

. Q-learning recommends treatment 

differently at the first stage for only one of the 132 patients in the data. In addition, the 

estimated value of the TIQ- and Q-learning regimes are nearly the same and are displayed in 

Table 2. Binary Q-learning recommends treatment differently than TIQ-learning for 18 

patients at the first stage, and the estimated value of the binary Q-learning regime is slightly 

lower than TIQ- and Q-learning. Also included in Table 2 are value estimates for four non-

dynamic regimes that treat everyone according to the decision rules π1(h1) = a1 and π2(h2) 

= a2 for a1 ∈ {−1, 1} and a2 ∈ {−1, 1}. We estimate these values using the Augmented 

Inverse Probability Weighted Estimator given in Zhang et al. (2013).

In summary, it appears that TIQ-learning and Q-learning perform similarly for this subset of 

the STAR*D data. This may be due to the lack of heteroskedasticity at the first stage. Thus, 

maximizing the end-of-stage-two QIDS using mean-optimal techniques seems appropriate 

and, in practice, equivalent to maximizing remission probabilities for each patient with TIQ-

learning.

6. Discussion

We have proposed modeling frameworks for estimating optimal dynamic treatment regimes 

in settings where a non-mean distributional summary is the intended outcome to optimize. 

Threshold Interactive Q-learning (TIQ-learning) estimates a regime that maximizes the mass 

of the response distribution that exceeds a constant or patient-dependent threshold. Although 

TIQ-learning is just a special case of optimizing regimes based on binary responses, it is a 

helpful precursor for the development of Quantile Interactive Q-learning (QIQ-learning), 

which maximizes a prespecified quantile of the response distribution. If the focus is simply 

on optimizing a dynamic treatment regime for a binary threshold outcome, rather than 

quantile optimization, recent nonparametric techniques tailored to the binary outcome 

setting may be preferred to avoid problems due to model misspecification (Zhao et al., 2012, 

2015). For example, it is possible to prespecify a class of regimes and directly optimize 

within that class by utilizing the value function,
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To our knowledge, this is the first attempt to estimate an optimal treatment regime that 

targets a quantile. Despite generalizations presented in the supplementary material, some 

researchers might be wary of the assumptions needed for consistency of the estimated 

optimal regime or the requisite modeling of the main effect function. An interesting future 

direction would be to develop a flexible framework for QIQ-learning that depends only on 

models for the treatment contrast function and not on the main effect term. In addition, it has 

been shown that Q-learning, A-learning, and g-estimation lead to identical estimators in 

certain cases but that Q-learning is less efficient (Chakraborty et al., 2010; Schulte et al., 

2012). It is possible a g-estimation approach exists for maximizing quantiles based on 

structural nested distribution models (Robins, 2000; Vansteelandt et al., 2014).

Our proposed methods are designed for the two-stage setting, this is an important 

development given that many completed and ongoing SMART studies have this structure 

(Projects Using SMART, 2012; Laber, 2013). Here we considered binary treatments at both 

stages. In principle, the proposed methods can be extended to settings with more than two 

treatments at each stage by modeling additional treatment contrasts. Formalization of this 

idea merits further research.

7. Supplementary Materials

Online supplementary materials include discussions of modeling adjustments for 

heteroskedastic second-stage errors and patient-specific thresholds, a proof of Lemma 3.1 

and toy example illustrating where this lemma does not apply, additional simulation results, 

and proofs of the theorems in Section 3.3.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Left to Right: λ = −2, 2, 4. Solid black, true optimal threshold probabilities; dotted black, 

probabilites under randomization; dashed with circles/squares/crossed squares/triangles, 

probabilities under TIQ-, Q-, binary Q-, and Interactive Q-learning, respectively.
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Figure 2. 
From left: True optimal first-stage treatments for 1,000 test set patients when λ = −4, −3, …, 

4, coded light gray when  and dark gray otherwise; TIQ-learning estimated 

optimal first-stage treatments; Q-learning estimated optimal first-stage treatments, plotted 

constant in λ to aid visual comparison; and binary Q-learning estimated optimal first-stage 

treatments for each λ.
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Figure 3. 
Left to Right: τ = 0.1, 0.5, 0.75. Solid black, true optimal quantiles; dotten black, quantiles 

under randomization; dashed with circles/squares/triangles, quantiles under QIQ-, Q-, and 

IQ-learning, respectively.
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Figure 4. 
Left to Right: τ = 0.1,0.5,0.75. Solid black, true optimal threshold probabilities; dotted 

black, probabilites under randomization; dashed with circles/squares/triangles, probabilities 

under TIQ-, Q-, and Interactive Q-learning, respectively. Training set size of n = 500.
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Table 1

Variables used in the STAR*D analysis.

Variable Description

qids0 mean QIDS during the baseline stage.

slope0 pre-randomization QIDS improvement; the difference between the final and initial baseline-stage QIDS scores, divided by time 
spent in the baseline stage.

qids1 mean stage-one QIDS.

slope1 first-stage QIDS improvement; the difference between the final and initial first-stage QIDS scores, divided by time spent in the first 
randomized stage.

A1 First-stage treatment; 1=“SSRI” and -1=“non-SSRI.”

A2 Second-stage treatment; 1=“NTP” for Nortriptyline and -1=“MIRT” for Mirtazapine.

Y 27 minus final QIDS score, measured at the end of stage two.
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Table 2

Estimated value of dynamic and non-dynamic regimes using the Adaptive Inverse Probability Weighted 

Estimator.

Estimated Value

TIQ-learning 0.24

Q-learning 0.23

Binary Q-learning 0.19

(1, 1) 0.13

(-1, 1) 0.24

(1, -1) 0.07

(-1, -1) 0.12
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