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Abstract - MorphoSys is a reconfigurable SIMD architecture. 
In this paper, a BSP-based ray tracing is gracefully mapped 
onto MorphoSys. The mapping highly exploits ray-tracing 
parallelism. A straightforward mechanism is used to handle 
irregularity among parallel rays in BSP. To support this 
mechanism, a special data structure is established, in which no 
intermediate data has to be saved. Moreover, optimizations 
such as object reordering and merging are facilitated. Data 
starvation is avoided by overlapping data transfer with 
intensive computation so that applications with different 
complexity can be managed efficiently. Since MorphoSys is 
small in size and power efficient, we demonstrate that 
MorphoSys is an economic platform for 3D animation 
applications on portable devices. 
 
 

I. Introduction 
 

MorphoSys [1] is a reconfigurable SIMD processor 
targeted at portable devices, such as Cellular phone and 
PDAs. It combines coarse grain reconfigurable hardware 
with one general-purpose processor. Applications with a 
heterogeneous nature and different sub -tasks, such as MPEG, 
DVB-T, and CDMA, can be efficiently implemented on it. In 
this paper a 3D graphics algorithm, Ray tracing, is mapped 
onto MorphoSys to achieve realistic illumination. We show 
that SIMD ray -tracing on MorphoSys is more efficient in 
power consumption and has a lower hardware cost than both 
multiprocessors and the single CPU approaches. 

Ray tracing [2] is a global illumination model. It is well 
known for its highly computation characteristic due to its 
recursive behavioral. Recent fast advancement of VLSI 
technology has helped achieving interactive ray tracing on a 
multiprocessor [3] and a cluster system [9,10] for large 
scenes, and on a single PC with SIMD extensions [4] for 
small scenes. In [3], Parker achieves 15 frames/second for a 
512x512 image by running ray tracing on a 60-node (MIPS 
R12000) SGI origin 2000 system. Each node has a clock 
faster than 250MHz, 64-bit data paths, floating-point units, 
64K L1 cache, 8MB L2 cache, and at least 64MB main 
memory. Muuss [9,10] worked on parallel and distributed ray 
tracing for over a decade. By using a cluster of SGI Power 
Challenge machines [10], a similar performance as Parker’s 
is reached. Their work is different in their task granularity, 
load balancing and synchronization mechanisms. The 
disadvantage of their work is that there are extra costs such as 
high clock frequency, floating-point support, large memory 

bandwidth, efficient communication and scheduling 
mechanisms. Usually, the sub-division structure (such as BSP 
tree-Binary Space Partitioning [7,8]) is replicated in each 
processor during traversal. As will be seen, only one copy is 
saved in our implementation. 

Wald [4] used a single PC (Dual Pentium-III, 800Mhz, 
256 MB) to render images of 512x512, and got 3.6 
frames/second. 4-way Ray coherence is exploited by using 
SIMD instructions. The hardware support  for floating-point, 
as well as the advanced branch prediction and speculation 
mechanisms helps speed up ray tracing. The ray incoherence 
is handled using a scheme similar to multi-pass scheme [14], 
which requires saving intermediate data, thus causing some 
processors to idle. 

The migration from fixed-function pipeline to 
programmable processors also makes ray tracing feasible on 
graphics hardware [5,6]. Purcell [6] proposes a ray-tracing 
mapping scheme on a pipelined graphics system with 
fragment stage programmable. The proposed processor 
requires floating-point support, and intends to exploit large 
parallelism. Multi-pass scheme is used to handle ray 
incoherence. As a result, the utilization of SIMD fragment 
processors is very low (less than 10%). Carr [5] mapped 
ray-object intersection onto a programmable shading 
hardware: Ray Engine. The Ray Engine is organized as a 
matrix, with vertical lines indexed by triangles, and 
horizontal lines by rays represented as pixels. Data is 
represented as 16-bit fixed-point value. Ray cache [5] is used 
to reorder the distribution of rays into collections of coherent 
rays. They got 4 frame/sec for 256x256 images but only for 
static scenes. Although still on its way to achieve interactivity, 
all these schemes represent one trend towards extending the 
generality of previous rasterization-oriented graphics 
processors [10]. 

In this paper, a novel scheme that maps ray tracing with 
BSP onto MorphoSys is discussed. Large parallelism is 
exploited such that 64 rays are traced together. To handle the 
problem that the traversal paths of these rays are not always 
the same, a simple and straightforward scheme is 
implemented. Two optimizations, object test reordering and 
merging, are utilized. The overhead caused by them is very 
small after being amortized in highly paralleled ray tracing. 
Compared with the other schemes, MorphoSys achieves 13.3 
frames/second for 256x256 scenes under 300MHz with a 
smaller chip size, with a simple architecture (SIMD, 
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fixed-point, shared and small memory), with power efficient 
performance (low frequency), and highly parallel execution 
(64-way SIMD). This justifies MorphoSys as an economic 
platform for 3D game applications targeted at portable 
devices.  

The paper begins with an architecture overview of 
MorphoSys. Section 3 describes ray tracing pipeline process, 
followed by the SIMD BSP traversal in Section 4. Some 
design issues, such as data structure, emulated local stack, 
and memory utilization are detailed in Sections 5, 6, 7. 
Section 8 describes the global centralized control. We give 
the implementation and results in Section 9, followed by the 
conclusion in Section 10. 
 
 

II. MorphoSys Architecture 
 

MorphoSys [1] is a reconfigurable SIMD architecture 
targeted for portable devices. It has been designed and 
intended for a better trade-off between generality and 
efficiency in today’s general-purpose processors and ASICs, 
respectively. It combines an array of 64 Reconfigurable Cells 
(RCs) and a central RISC processor (TinyRISC) so that 
applications with a mix of sequential tasks and coarse-grain 
parallelism, requiring computation intensive work and high 
throughput can be efficiently implemented on it. MorphoSys 
is more power efficient than general-purpose processors 
because it was designed with small size and low frequency 
yet to achieve higher performance through highly paralleled 
execution and minimum overhead in data and instruction 
transfers and reconfiguration time. The detailed design and 
implementation information of the MorphoSys chip are 
described in [16]. The general architecture is illustrated in 
Fig. 1. 

The kernel of MorphoSys is an array of 8 by 8 RCs. The 
RC array  is responsible for the parallel part of an application,  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RC is a 16-bit fixed-point processor, mainly consisting of an 
ALU, a 16-bit multiplier, a shifter, a register file with 16 and 
is organized as SIMD style. 64 different sets of data are 
processed in parallel when one instruction is executed. Each 
registers, and a 1KB internal RAM for storing intermediate 
values and local data.  

MorphoSys has very powerful interconnection between 
RCs to support communication between parallel sub-tasks. 
Each RC can communicate directly with its upper, below, left 
and right neighbors peer to peer. One horizontal and one 
vertical short lane extend one RC’s connection to the other 6 
RCs in row wise and column wise in the same quadrant (4 by 
4 RCs).  And one horizontal and one vertical global express 
lane connect one RC to all the other 14 RCs along its row and 
column in the 8 by 8 RC array. 

The reconfiguration is done through loading and 
executing different instruction streams, called “contexts”, in 
64 RCs. A stream of contexts accomplishes one task and is 
stored in Context Memory. Context Memory consists of two 
banks, which can be flexibly used to support pre-fetch: while 
the context stream in one bank flows through RCs, the other 
bank can be loaded with a new context stream through DMA. 
Thus the task execution and loading are pipelined and 
context switch overhead is reduced. 

A specialized data cache memory, Frame Buffer (FB), lies 
between the external memory and the RC array. It broadcasts 
global and static data to 64 RCs in one clock cycle. The FB is 
organized as two sets, each with double banks. Two sets can 
supply up to two data in one clock cycle. While the contexts 
are executed over one bank, the DMA controller transfers 
new data to the other bank. 

A centralized RISC processor, called TinyRISC, is 
responsible for controlling RC array execution and DMA 
transfers. It also takes sequential portion of one application 
into its execution process.  

The first version of MorphoSys, called M1, was designed 
and fabricated in 1999 using a 0.35um CMOS technology 
[16].  
 

 
III. Ray Tracing Pipeline 

 
Ray tracing [2] works by simulating how photons travel 

in real world. One eye ray  is shot from the viewpoint (eye) 
backward through image plane into the scene. The objects 
that might intersect with the ray are tested. The closest 
intersection point is selected to spawn several types of rays. 
Shadow rays are generated by shooting rays from the point to 
all the light sources. When the point is in shadow relative to 
all of them, only the ambient portion of the color is counted. 
The reflection ray is also generated if the surface of the 
object is reflective (and refraction ray  as well if the object is 
transparent). This reflection ray traverses some other objects, 
and more shadow and reflection rays may be spawned. Thus 
the ray tracing works in a recursive way. This recursive 
process terminates when the ray does not intersect with any 
object, and only background color is returned. This process is 
illustrated in Fig. 2. 

Fig 1. MorphoSys SIMD architecture 
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Ray tracing is basically a pipelined process. The 
algorithm is separated into four steps. First, rays are 
generated. Then each ray t raverses BSP tree to search for the 
object with the closest intersection point. This is an iterative 
process in term of programming model, where BSP tree 
nodes are checked in depth-first-order [11]. Once a leaf is 
reached, the objects in this leaf are scanned. If no intersection 
in this leaf or the intersection point is not in the boundary of 
this leaf, BSP tree is traversed again. Finally, when the 
closest point is found, the shading is applied, which 
recursively generates more rays. This pipeline process is 
illustrated in Fig. 3. 

 
IV. SIMD BSP Traversal 

 
The ray object intersection occupies more than 95% of 

ray tracing time. Some techniques have been developed to 
accelerate it. BSP  [7,8] is one of them. It tries to prevent 
those objects lying far away from being tested. BSP 
recursively partitions a 3D cube into 2 sub-cubes, defined as 
left and right children. BSP works like a Binary -Search Tree 
[15]. When one ray intersects with one cube, it tests whether 
it intersects with only left, right, or both children. Then the 
ray continues to test these sub-cubes recursively. The 
traversal algorithm stops when the intersection is found or 
when the tree is fully traversed. 

The efficiency may be sacrificed in SIMD ray tracing. 
Each BSP-tree ray traversal involves many  conditional 
branches, such as if-then-else structure. Program 
autonomous  [12] is thus introduced to facilitate them in a 
SIMD. We implemented pseudo branch  and applied guarded 
execution to support conditional branch execution [13]. 

During parallel BSP traversal different rays may traverse 
along the same BSP tree path (“ray coherence [15]”) or 
along different BSP  tree paths (“ ray incoherence”). The 
coherence case is easily handled in a SIMD architecture. 

However, the incoherence case demands a high memory 
bandwidth because different object data and also different 
object contexts are required concurrently. It can be further 
observed that two types of ray incoherence exist: 

? First type, the ray incoherence occurs in an internal tree 
node, and not all rays intersect with the same child of the 
current node. In this case, BSP traversals of all rays are  

 
 
 
 
 
 
 
 
 
 
 

 
stopped and all objects under this node are tested.   

? Second type, the ray incoherence occurs in a leaf, 
where not all rays find the intersection points in that leaf. In 
this case the RCs that find the intersections are programmed 
to enter the sleep mode (no more computation), while the 
others continue the BSP traversal. Power is saved in such a 
way. 

Sometimes, some rays may terminate traversal earlier and 
may start ray -object intersection while others are still 
traversing. In this case, different context streams are required 
for different rays. In [6], the extended multi-pass [14] scheme 
is used to address this problem. In their scheme, if any ray 
takes a different path from the others, all the possible paths 
are traversed in turn. The disadvantage of this scheme is that 
the intermediate node information has to be saved for future 
use.  

In our design, SIMD BSP traversal is implemented in a 
simple and straightforward way. Whenever there is a ray 
taking a different path than the others (“ray incoherence”), 
the traversal is stopped and all the objects descended from 
the  current node are tested. Thus, all the RCs process the 
same data and over the same contexts at the same time. This 
process is illustrated in Fig. 4.  

The advantages of this scheme is that no intermediate 
node information needs to be saved, thus simplifying control 
and reducing memory accesses since fewer address pointers 
are followed.  

In this scheme, each ray may test more objects than 
necessary. Thus some overhead is introduced. However, 
simulations show that the amortized overhead is very small 
when 64 rays are processed in parallel, although each ray 
itself may take more time to finish than those with 4, 8, 16, or  
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Fig. 2. Illustration of ray tracing 
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Fig. 4. Novel BSP incoherence handling.(a) All the 64 rays have 
ray-coherence. Objects in one leaf are tested. (b) Not all the 64 
rays have ray-coherence. All the leaf objects under the node are 
tested.  
 

(a) (b) 

Ray 
Generatio

n 

BSP 
Traversal 

Ray-Obj 
Intersect 

Shading, 
more Rays 

Not found 

Fig. 3. Ray tracing pipeline. 
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32 parallel rays.To further remove this overhead, we applied 
object test reordering and object merging . We will discuss 
these optimizations in more details in the next section. 
 

 
V. Data Structure and Optimizations 

 
We have developed a special data structure to support 

BSP mapping. This structure reduces data and contexts 
reload, as we describe in this section. 

Our data structure is created so that for each node the 
objects under it are known immediately. The data structure is 
illustrated in Fig. 5. In this figure, the item bit-length (e.g., 16 
bits) is specified in parenthesis after each item. C hild Address  
stands for the address of each child node in FB.  The objects 
descending from this node are grouped by object type. 
Sphere, cylinder, rectangle and other objects stand for 
vectors where each bit indicates whether or not the object of 
this type specified by its positions belongs to this node. Fig. 5 
gives one example for sphere case. We order all spheres as 
sphere 0, sphere 1, sphere 2, and so on. If any of these 
spheres belongs to the node, the bit indexed by its order is set 
to ‘1’ in the sphere vector. In this example, sphere 1, 3, 4 
belong to the current node. TinyRISC tests these vectors to 
know which geometrical data to operate on when 
incoherence happens. All the identified objects under this 
node are tested. In all the cases, the objects are tested only 
once. This is called “object merging”, or mailbox” in [6]. If 
one object is tested, it is labeled as tested. The calculated 
value is retained in the FB. If one object to be tested has been 
labeled, this testing is cancelled, and the value is fetched 
from FB. 

This data structure automatically does “object test 
reordering”, which tests the same objects without context 
reload. For example, we check all the spheres before we 
continue with other object types. Moreover this data structure 
allows the object addresses in the FB to be easily calculated, 
as is shown in the algorithm in Fig. 6. It also facilities 
pre-fetching since objects are known in advance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
VI. Local Stack for Parallel Shading 

 
After all rays find the closest intersection points and 

intersected object, the ray-tracing algorithm  calculates the 
color (using Phong-Shading model [2,3]). The shadow and 
reflection rays are generated and again traverse the BSP tree, 
as described in Section 3.  

However, during this process, the intersection points and 
intersected objects can be different for different rays. This 
data cannot be saved to and later fetched from the FB. The 
reason is that they would have to be fetched one by one for 
different RCs due to limited bandwidth, which means all but 
one RC are idle and cycles are wasted. 

Local RC RAM is used to emulate a stack to address this 
problem. Besides stack, each RC has one vector to store the 
current intersection point and intersected object. During 
ray-object intersection process, when one object is found to 
be closer to the eye than the one already in the vector, the 
corresponding data replaces the data in the vector. Otherwise, 
the vector is kept unchanged. When new recursion starts, the 
vector is pushed into the stack. When recursion returns, the 
data is popped from the stack into the vector. In this way, the 
object data and intersection point required for shading are 
always available for different rays. The overhead due to these 
data saving and restoring is very small compared with the 
whole shading process. This proces s is illustrated in Fig. 7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

VII. Memory Utilization 
 
 

Division plane (16 bits) 
Plane-max (32 bits) 
Child(0) address (16 bits) 
Child(1) address (16 bits) 
Sphere (16 bits)  
Cylinder (16 bits) 
Rectangle (16 bits)  
Other objects 

1 0 1 1 0 0  … 0 

r12:= BSP sphere data; 
r13:= First sphere address; 
r14:= Sphere size; 
r0:= 0; 
while r0 = number of sphere in the image do { 

     if r12 < 0 then compute_sphere(r13);  
r13 := r14 + r13; 
r12 << 1; 

  r0 = r0 +1; 
} 

Fig. 6. Calculation of FB address from data structure in each 
node. 
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Data:L0 

intersection: Object 
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Fig. 7. Local stack and vector to keep track of the current 
closest intersection point and the intersect object. 
 Fig. 5. Data structure for our BSP algorithm. 
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SIMD processing of 64 RCs demands high memory 
bandwidth. For example, up to 64 different data may be 
concurrently required in MorphoSys. Fortunately, this is not 
a problem in our design. Our implementation guarantees that 
all RCs always require the same global data for BSP traversal 
and intersection, such as BSP tree structure, static object data, 
etc. Thus, only one copy of this data is needed. The 
implementation of object merging is also simplified. Since all 
rays are always required to test the same set of objects, 
whether they are coherent or not, one copy of the object test 
history is kept for all RCs. 

One parameter that affects all ray tracing mapping 
schemes is the memory size. For a very large scene, the size 
of BSP tree structure or object data can be so large that not all 
of them can fit in the main memory or cache. The result is 
that processors have to wait for the data to be fetched from 
the external memory. Also, the context stream may be very 
large so that not all of them are available for execution. 
However, this can be easily solved by our double-bank 
organizations of the FB and Context Memory, as was 
described in Section 2. 

 
 

VIII. Centralized TinyRISC Control 
 

Using our ray tracing mapping scheme, all the rays 
traverse along the same BSP tree path and find the 
intersection with the same set of objects. Thus one central 
controller is enough to broadcast data and contexts to all 64 
RCs. TinyRISC in MorphoSys plays this role. The same 
context is loaded and broadcast to all 64 RCs. Traversal starts 
from the BSP tree root downward toward the leaves. At each 
internal node, the status of all rays is sent to TinyRISC. 
TinyRISC loads the corresponding tree node and also 
contexts and broadcast them to all 64 RCs. This interaction 
continues until leaves are reached, where the object data are 
broadcast. In case that the status information indicates 
incoherence, TinyRISC loads all the objects data descended 
from the current node and broadcast them for calculation.  

 
 

VIIII. Simulation and Experimental Results 
 

MorphoSys is designed to be running at 300MHz. It has 
512x16 internal RC RAM, 4x16Kx16 FB, 8x1Kx32 Context 
Memory, and 16 internal registers in each RC. The chip size 
is expected to be less than 30mm 2 using 0.13um CMOS 
technology. Thus MorphoSys is more power efficient than 
general-purpose processors. 

Our targeted applications are those running on portable 
devices with small images and small number of objects. In 
our experiment s, applications are 256x256 in size. The BSP 
tree is constructed with maximum depth of 15, maximum 5 
objects in each leaf. The recursive level is 2.  

Different from the other ray tracing mapping schemes 
[4,5,6], whose primitives are only triangles, the primitives 
mapped in our implementation can be any type, such as 
sphere, cylinder, box, rectangle, triangle, etc. The advantages  
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are: (1) the object data size is small compared with pure 
triangle scheme. Much more data is needed to represent 
scenes using only triangles, and very small triangles are used 
to get good images. (2) No preprocessing time is needed to 
transform original models into triangles. However, using 
pure triangles can simplify BSP traversal since some 
condition al branches are removed, and also only one 
ray-object intersection code is needed. Thus, we decided to 
use a mix of different objects, to attain a better trade-off 
between algorithm complexity and memory performance. 

The algorithm was translated into MorphoSys Assembly 
and then into machine code. The Simulation is run on 
MorphoSys processor simulator “Mulate” [16]. We did 
simulation to get the frame rates for 4, 8, 16, 32, and 64 
parallel rays, so that a view of ray tracing performance under 
different levels of parallel processing is seen. The result is 
shown in Fig. 8. 

This figure shows that the frame rates increase with more 
paralleled rays. However, the performance of 64-way ray 
tracing is not twice that of 32-way, but less than that. The 
reason is that overhead increases as well, although the 
amortized overhead is actually decreased. This can be 
formulated and explained as follows. Suppose the processing 
time for one ray without overhead is T , total number of rays 
is N, and number of rays processed in parallel is n, and the 
overhead in processing one ray is OV, the total processing 
time is:  

N*( T+OV)/n 
 

Thus the frame rate is C*n*/(N(T+ OV)), where C is a 
constant. If overhead is constant, the frame rate is O(n). 
However, O V increases as n increases. Thus frame rate is 
sub-linear with n, the number of parallel rays. 
 
 

X. Conclusion 
 

This paper gives a complete view of how to utilize the 
simple SIMD MorphoSys to achieve real-time ray tracing 
with an efficient use of hardware resources. BSP traversal is 
mapp ed in a straightforward way such that no complicated 
decision and intermediate data saving are necessary. 
Optimizations, such as object reordering and merging, help 

Fig.8. Frame rates under different SIMD ways 
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simplify the SIMD mapping. The resulted overhead is 
amortized and is very small when large number of rays are 
traced in parallel, thus the performance can be very good. 
Memory is also flexibly utilized. Due to its small size and 
potential power efficiency, MorphoSys can be used as an 
economic platform for 3D games on portable devices. Right 
now, we are further optimizing the architecture so that better 
hardware supports, such as 32-bit data paths, more registers, 
etc, are included. Based on what we have achieved (more 
than 13 frames/second in 300MHz), it is believed that 
obtaining real-time ray tracing on portable devices is 
practical soon. 
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