
 1

Interactive Ray Tracing on Reconfigurable SIMD MorphoSys

H. Du, M. Sanchez-Elez†, N. Tabrizi, N. Bagherzadeh, M. L. Anido††, M.Fernandez†

Electrical and Computer Engineering, University of California, Irvine, CA 92697
†Universidad Complutense de Madrid, Spain

††Federal University of Rio de Janeiro, NCE, Brazil
{hdu, ntabrizi, nader} @ece.uci.edu, {marcos, mila45}@fis.ucm.es, mlois@nce.ufrj.br

Abstract - MorphoSys is a reconfigurable SIMD architecture.
In this paper, a BSP-based ray tracing is gracefully mapped
onto MorphoSys. The mapping highly exploits ray-tracing
parallelism. A straightforward mechanism is used to handle
irregularity among parallel rays in BSP. To support this
mechanism, a special data structure is established, in which no
intermediate data has to be saved. Moreover, optimizations
such as object reordering and merging are facilitated. Data
starvation is avoided by overlapping data transfer with
intensive computation so that applications with different
complexity can be managed efficiently. Since MorphoSys is
small in size and power efficient, we demonstrate that
MorphoSys is an economic platform for 3D animation
applications on portable devices.

I. Introduction

MorphoSys [1] is a reconfigurable SIMD processor
targeted at portable devices, such as Cellular phone and
PDAs. It combines coarse grain reconfigurable hardware
with one general-purpose processor. Applications with a
heterogeneous nature and different sub -tasks, such as MPEG,
DVB-T, and CDMA, can be efficiently implemented on it. In
this paper a 3D graphics algorithm, Ray tracing, is mapped
onto MorphoSys to achieve realistic illumination. We show
that SIMD ray -tracing on MorphoSys is more efficient in
power consumption and has a lower hardware cost than both
multiprocessors and the single CPU approaches.

Ray tracing [2] is a global illumination model. It is well
known for its highly computation characteristic due to its
recursive behavioral. Recent fast advancement of VLSI
technology has helped achieving interactive ray tracing on a
multiprocessor [3] and a cluster system [9,10] for large
scenes, and on a single PC with SIMD extensions [4] for
small scenes. In [3], Parker achieves 15 frames/second for a
512x512 image by running ray tracing on a 60-node (MIPS
R12000) SGI origin 2000 system. Each node has a clock
faster than 250MHz, 64-bit data paths, floating-point units,
64K L1 cache, 8MB L2 cache, and at least 64MB main
memory. Muuss [9,10] worked on parallel and distributed ray
tracing for over a decade. By using a cluster of SGI Power
Challenge machines [10], a similar performance as Parker’s
is reached. Their work is different in their task granularity,
load balancing and synchronization mechanisms. The
disadvantage of their work is that there are extra costs such as
high clock frequency, floating-point support, large memory

bandwidth, efficient communication and scheduling
mechanisms. Usually, the sub-division structure (such as BSP
tree-Binary Space Partitioning [7,8]) is replicated in each
processor during traversal. As will be seen, only one copy is
saved in our implementation.

Wald [4] used a single PC (Dual Pentium-III, 800Mhz,
256 MB) to render images of 512x512, and got 3.6
frames/second. 4-way Ray coherence is exploited by using
SIMD instructions. The hardware support for floating-point,
as well as the advanced branch prediction and speculation
mechanisms helps speed up ray tracing. The ray incoherence
is handled using a scheme similar to multi-pass scheme [14],
which requires saving intermediate data, thus causing some
processors to idle.

The migration from fixed-function pipeline to
programmable processors also makes ray tracing feasible on
graphics hardware [5,6]. Purcell [6] proposes a ray-tracing
mapping scheme on a pipelined graphics system with
fragment stage programmable. The proposed processor
requires floating-point support, and intends to exploit large
parallelism. Multi-pass scheme is used to handle ray
incoherence. As a result, the utilization of SIMD fragment
processors is very low (less than 10%). Carr [5] mapped
ray-object intersection onto a programmable shading
hardware: Ray Engine. The Ray Engine is organized as a
matrix, with vertical lines indexed by triangles, and
horizontal lines by rays represented as pixels. Data is
represented as 16-bit fixed-point value. Ray cache [5] is used
to reorder the distribution of rays into collections of coherent
rays. They got 4 frame/sec for 256x256 images but only for
static scenes. Although still on its way to achieve interactivity,
all these schemes represent one trend towards extending the
generality of previous rasterization-oriented graphics
processors [10].

In this paper, a novel scheme that maps ray tracing with
BSP onto MorphoSys is discussed. Large parallelism is
exploited such that 64 rays are traced together. To handle the
problem that the traversal paths of these rays are not always
the same, a simple and straightforward scheme is
implemented. Two optimizations, object test reordering and
merging, are utilized. The overhead caused by them is very
small after being amortized in highly paralleled ray tracing.
Compared with the other schemes, MorphoSys achieves 13.3
frames/second for 256x256 scenes under 300MHz with a
smaller chip size, with a simple architecture (SIMD,

 2

fixed-point, shared and small memory), with power efficient
performance (low frequency), and highly parallel execution
(64-way SIMD). This justifies MorphoSys as an economic
platform for 3D game applications targeted at portable
devices.

The paper begins with an architecture overview of
MorphoSys. Section 3 describes ray tracing pipeline process,
followed by the SIMD BSP traversal in Section 4. Some
design issues, such as data structure, emulated local stack,
and memory utilization are detailed in Sections 5, 6, 7.
Section 8 describes the global centralized control. We give
the implementation and results in Section 9, followed by the
conclusion in Section 10.

II. MorphoSys Architecture

MorphoSys [1] is a reconfigurable SIMD architecture
targeted for portable devices. It has been designed and
intended for a better trade-off between generality and
efficiency in today’s general-purpose processors and ASICs,
respectively. It combines an array of 64 Reconfigurable Cells
(RCs) and a central RISC processor (TinyRISC) so that
applications with a mix of sequential tasks and coarse-grain
parallelism, requiring computation intensive work and high
throughput can be efficiently implemented on it. MorphoSys
is more power efficient than general-purpose processors
because it was designed with small size and low frequency
yet to achieve higher performance through highly paralleled
execution and minimum overhead in data and instruction
transfers and reconfiguration time. The detailed design and
implementation information of the MorphoSys chip are
described in [16]. The general architecture is illustrated in
Fig. 1.

The kernel of MorphoSys is an array of 8 by 8 RCs. The
RC array is responsible for the parallel part of an application,

RC is a 16-bit fixed-point processor, mainly consisting of an
ALU, a 16-bit multiplier, a shifter, a register file with 16 and
is organized as SIMD style. 64 different sets of data are
processed in parallel when one instruction is executed. Each
registers, and a 1KB internal RAM for storing intermediate
values and local data.

MorphoSys has very powerful interconnection between
RCs to support communication between parallel sub-tasks.
Each RC can communicate directly with its upper, below, left
and right neighbors peer to peer. One horizontal and one
vertical short lane extend one RC’s connection to the other 6
RCs in row wise and column wise in the same quadrant (4 by
4 RCs). And one horizontal and one vertical global express
lane connect one RC to all the other 14 RCs along its row and
column in the 8 by 8 RC array.

The reconfiguration is done through loading and
executing different instruction streams, called “contexts”, in
64 RCs. A stream of contexts accomplishes one task and is
stored in Context Memory. Context Memory consists of two
banks, which can be flexibly used to support pre-fetch: while
the context stream in one bank flows through RCs, the other
bank can be loaded with a new context stream through DMA.
Thus the task execution and loading are pipelined and
context switch overhead is reduced.

A specialized data cache memory, Frame Buffer (FB), lies
between the external memory and the RC array. It broadcasts
global and static data to 64 RCs in one clock cycle. The FB is
organized as two sets, each with double banks. Two sets can
supply up to two data in one clock cycle. While the contexts
are executed over one bank, the DMA controller transfers
new data to the other bank.

A centralized RISC processor, called TinyRISC, is
responsible for controlling RC array execution and DMA
transfers. It also takes sequential portion of one application
into its execution process.

The first version of MorphoSys, called M1, was designed
and fabricated in 1999 using a 0.35um CMOS technology
[16].

III. Ray Tracing Pipeline

Ray tracing [2] works by simulating how photons travel

in real world. One eye ray is shot from the viewpoint (eye)
backward through image plane into the scene. The objects
that might intersect with the ray are tested. The closest
intersection point is selected to spawn several types of rays.
Shadow rays are generated by shooting rays from the point to
all the light sources. When the point is in shadow relative to
all of them, only the ambient portion of the color is counted.
The reflection ray is also generated if the surface of the
object is reflective (and refraction ray as well if the object is
transparent). This reflection ray traverses some other objects,
and more shadow and reflection rays may be spawned. Thus
the ray tracing works in a recursive way. This recursive
process terminates when the ray does not intersect with any
object, and only background color is returned. This process is
illustrated in Fig. 2.

Fig 1. MorphoSys SIMD architecture

RC R
RC R
RC R
RC R

RC R
RC RC

RC RC

RC RC

RC RC

RC RC

RC RC

RC RC

R RC

R RC

R RC

R RC

RC R
RC R
RC R
RC R

RC RC

RC RC

RC RC

RC RC

RC RC

RC RC

RC RC

RC RC

R RC

R RC

R RC

R RC

Quad0 Quad1

Quad2 Quad3

Tiny RISC

F
R
A
M
E

B
U
F
F
E
R

Context Memory
DMAC

cache

M
A
I
N

M
E
M
O
R
Y

 3

Ray tracing is basically a pipelined process. The
algorithm is separated into four steps. First, rays are
generated. Then each ray t raverses BSP tree to search for the
object with the closest intersection point. This is an iterative
process in term of programming model, where BSP tree
nodes are checked in depth-first-order [11]. Once a leaf is
reached, the objects in this leaf are scanned. If no intersection
in this leaf or the intersection point is not in the boundary of
this leaf, BSP tree is traversed again. Finally, when the
closest point is found, the shading is applied, which
recursively generates more rays. This pipeline process is
illustrated in Fig. 3.

IV. SIMD BSP Traversal

The ray object intersection occupies more than 95% of

ray tracing time. Some techniques have been developed to
accelerate it. BSP [7,8] is one of them. It tries to prevent
those objects lying far away from being tested. BSP
recursively partitions a 3D cube into 2 sub-cubes, defined as
left and right children. BSP works like a Binary -Search Tree
[15]. When one ray intersects with one cube, it tests whether
it intersects with only left, right, or both children. Then the
ray continues to test these sub-cubes recursively. The
traversal algorithm stops when the intersection is found or
when the tree is fully traversed.

The efficiency may be sacrificed in SIMD ray tracing.
Each BSP-tree ray traversal involves many conditional
branches, such as if-then-else structure. Program
autonomous [12] is thus introduced to facilitate them in a
SIMD. We implemented pseudo branch and applied guarded
execution to support conditional branch execution [13].

During parallel BSP traversal different rays may traverse
along the same BSP tree path (“ray coherence [15]”) or
along different BSP tree paths (“ ray incoherence”). The
coherence case is easily handled in a SIMD architecture.

However, the incoherence case demands a high memory
bandwidth because different object data and also different
object contexts are required concurrently. It can be further
observed that two types of ray incoherence exist:

? First type, the ray incoherence occurs in an internal tree
node, and not all rays intersect with the same child of the
current node. In this case, BSP traversals of all rays are

stopped and all objects under this node are tested.

? Second type, the ray incoherence occurs in a leaf,
where not all rays find the intersection points in that leaf. In
this case the RCs that find the intersections are programmed
to enter the sleep mode (no more computation), while the
others continue the BSP traversal. Power is saved in such a
way.

Sometimes, some rays may terminate traversal earlier and
may start ray -object intersection while others are still
traversing. In this case, different context streams are required
for different rays. In [6], the extended multi-pass [14] scheme
is used to address this problem. In their scheme, if any ray
takes a different path from the others, all the possible paths
are traversed in turn. The disadvantage of this scheme is that
the intermediate node information has to be saved for future
use.

In our design, SIMD BSP traversal is implemented in a
simple and straightforward way. Whenever there is a ray
taking a different path than the others (“ray incoherence”),
the traversal is stopped and all the objects descended from
the current node are tested. Thus, all the RCs process the
same data and over the same contexts at the same time. This
process is illustrated in Fig. 4.

The advantages of this scheme is that no intermediate
node information needs to be saved, thus simplifying control
and reducing memory accesses since fewer address pointers
are followed.

In this scheme, each ray may test more objects than
necessary. Thus some overhead is introduced. However,
simulations show that the amortized overhead is very small
when 64 rays are processed in parallel, although each ray
itself may take more time to finish than those with 4, 8, 16, or

 : viewer ; : light source;, : objects
Refraction rays Reflection rays Shadow rays

Fig. 2. Illustration of ray tracing

Object
s

Objects from all
descending leaves

Fig. 4. Novel BSP incoherence handling.(a) All the 64 rays have
ray-coherence. Objects in one leaf are tested. (b) Not all the 64
rays have ray-coherence. All the leaf objects under the node are
tested.

(a) (b)

Ray
Generatio

n

BSP
Traversal

Ray-Obj
Intersect

Shading,
more Rays

Not found

Fig. 3. Ray tracing pipeline.

 4

32 parallel rays.To further remove this overhead, we applied
object test reordering and object merging . We will discuss
these optimizations in more details in the next section.

V. Data Structure and Optimizations

We have developed a special data structure to support

BSP mapping. This structure reduces data and contexts
reload, as we describe in this section.

Our data structure is created so that for each node the
objects under it are known immediately. The data structure is
illustrated in Fig. 5. In this figure, the item bit-length (e.g., 16
bits) is specified in parenthesis after each item. C hild Address
stands for the address of each child node in FB. The objects
descending from this node are grouped by object type.
Sphere, cylinder, rectangle and other objects stand for
vectors where each bit indicates whether or not the object of
this type specified by its positions belongs to this node. Fig. 5
gives one example for sphere case. We order all spheres as
sphere 0, sphere 1, sphere 2, and so on. If any of these
spheres belongs to the node, the bit indexed by its order is set
to ‘1’ in the sphere vector. In this example, sphere 1, 3, 4
belong to the current node. TinyRISC tests these vectors to
know which geometrical data to operate on when
incoherence happens. All the identified objects under this
node are tested. In all the cases, the objects are tested only
once. This is called “object merging”, or mailbox” in [6]. If
one object is tested, it is labeled as tested. The calculated
value is retained in the FB. If one object to be tested has been
labeled, this testing is cancelled, and the value is fetched
from FB.

This data structure automatically does “object test
reordering”, which tests the same objects without context
reload. For example, we check all the spheres before we
continue with other object types. Moreover this data structure
allows the object addresses in the FB to be easily calculated,
as is shown in the algorithm in Fig. 6. It also facilities
pre-fetching since objects are known in advance.

VI. Local Stack for Parallel Shading

After all rays find the closest intersection points and

intersected object, the ray-tracing algorithm calculates the
color (using Phong-Shading model [2,3]). The shadow and
reflection rays are generated and again traverse the BSP tree,
as described in Section 3.

However, during this process, the intersection points and
intersected objects can be different for different rays. This
data cannot be saved to and later fetched from the FB. The
reason is that they would have to be fetched one by one for
different RCs due to limited bandwidth, which means all but
one RC are idle and cycles are wasted.

Local RC RAM is used to emulate a stack to address this
problem. Besides stack, each RC has one vector to store the
current intersection point and intersected object. During
ray-object intersection process, when one object is found to
be closer to the eye than the one already in the vector, the
corresponding data replaces the data in the vector. Otherwise,
the vector is kept unchanged. When new recursion starts, the
vector is pushed into the stack. When recursion returns, the
data is popped from the stack into the vector. In this way, the
object data and intersection point required for shading are
always available for different rays. The overhead due to these
data saving and restoring is very small compared with the
whole shading process. This proces s is illustrated in Fig. 7.

VII. Memory Utilization

Division plane (16 bits)
Plane-max (32 bits)
Child(0) address (16 bits)
Child(1) address (16 bits)
Sphere (16 bits)
Cylinder (16 bits)
Rectangle (16 bits)
Other objects

1 0 1 1 0 0 … 0

r12:= BSP sphere data;
r13:= First sphere address;
r14:= Sphere size;
r0:= 0;
while r0 = number of sphere in the image do {

 if r12 < 0 then compute_sphere(r13);
r13 := r14 + r13;
r12 << 1;

 r0 = r0 +1;
}

Fig. 6. Calculation of FB address from data structure in each
node.

intersection: Object
Data intersection: Object

Data:L0

intersection: Object
Data:L1

intersection: Object
Data:L2 ̀

New Recursion

Recursion Return

Fig. 7. Local stack and vector to keep track of the current
closest intersection point and the intersect object.
 Fig. 5. Data structure for our BSP algorithm.

Sphere:

Test sphere 1 Test sphere 3 Test sphere 4

 5

SIMD processing of 64 RCs demands high memory
bandwidth. For example, up to 64 different data may be
concurrently required in MorphoSys. Fortunately, this is not
a problem in our design. Our implementation guarantees that
all RCs always require the same global data for BSP traversal
and intersection, such as BSP tree structure, static object data,
etc. Thus, only one copy of this data is needed. The
implementation of object merging is also simplified. Since all
rays are always required to test the same set of objects,
whether they are coherent or not, one copy of the object test
history is kept for all RCs.

One parameter that affects all ray tracing mapping
schemes is the memory size. For a very large scene, the size
of BSP tree structure or object data can be so large that not all
of them can fit in the main memory or cache. The result is
that processors have to wait for the data to be fetched from
the external memory. Also, the context stream may be very
large so that not all of them are available for execution.
However, this can be easily solved by our double-bank
organizations of the FB and Context Memory, as was
described in Section 2.

VIII. Centralized TinyRISC Control

Using our ray tracing mapping scheme, all the rays
traverse along the same BSP tree path and find the
intersection with the same set of objects. Thus one central
controller is enough to broadcast data and contexts to all 64
RCs. TinyRISC in MorphoSys plays this role. The same
context is loaded and broadcast to all 64 RCs. Traversal starts
from the BSP tree root downward toward the leaves. At each
internal node, the status of all rays is sent to TinyRISC.
TinyRISC loads the corresponding tree node and also
contexts and broadcast them to all 64 RCs. This interaction
continues until leaves are reached, where the object data are
broadcast. In case that the status information indicates
incoherence, TinyRISC loads all the objects data descended
from the current node and broadcast them for calculation.

VIIII. Simulation and Experimental Results

MorphoSys is designed to be running at 300MHz. It has
512x16 internal RC RAM, 4x16Kx16 FB, 8x1Kx32 Context
Memory, and 16 internal registers in each RC. The chip size
is expected to be less than 30mm 2 using 0.13um CMOS
technology. Thus MorphoSys is more power efficient than
general-purpose processors.

Our targeted applications are those running on portable
devices with small images and small number of objects. In
our experiment s, applications are 256x256 in size. The BSP
tree is constructed with maximum depth of 15, maximum 5
objects in each leaf. The recursive level is 2.

Different from the other ray tracing mapping schemes
[4,5,6], whose primitives are only triangles, the primitives
mapped in our implementation can be any type, such as
sphere, cylinder, box, rectangle, triangle, etc. The advantages

Frame Rates at Different ways of SIMD at
300MHz

0.36 1.16 2.06
3.94

7.34

13.33

0.00

5.00

10.00

15.00

1-way 4-way 8-way 16-way 32-way 64-way

Number of SIMD ways

F
ra

m
e

R
at

e

are: (1) the object data size is small compared with pure
triangle scheme. Much more data is needed to represent
scenes using only triangles, and very small triangles are used
to get good images. (2) No preprocessing time is needed to
transform original models into triangles. However, using
pure triangles can simplify BSP traversal since some
condition al branches are removed, and also only one
ray-object intersection code is needed. Thus, we decided to
use a mix of different objects, to attain a better trade-off
between algorithm complexity and memory performance.

The algorithm was translated into MorphoSys Assembly
and then into machine code. The Simulation is run on
MorphoSys processor simulator “Mulate” [16]. We did
simulation to get the frame rates for 4, 8, 16, 32, and 64
parallel rays, so that a view of ray tracing performance under
different levels of parallel processing is seen. The result is
shown in Fig. 8.

This figure shows that the frame rates increase with more
paralleled rays. However, the performance of 64-way ray
tracing is not twice that of 32-way, but less than that. The
reason is that overhead increases as well, although the
amortized overhead is actually decreased. This can be
formulated and explained as follows. Suppose the processing
time for one ray without overhead is T , total number of rays
is N, and number of rays processed in parallel is n, and the
overhead in processing one ray is OV, the total processing
time is:

N*(T+OV)/n

Thus the frame rate is C*n*/(N(T+ OV)), where C is a
constant. If overhead is constant, the frame rate is O(n).
However, O V increases as n increases. Thus frame rate is
sub-linear with n, the number of parallel rays.

X. Conclusion

This paper gives a complete view of how to utilize the
simple SIMD MorphoSys to achieve real-time ray tracing
with an efficient use of hardware resources. BSP traversal is
mapp ed in a straightforward way such that no complicated
decision and intermediate data saving are necessary.
Optimizations, such as object reordering and merging, help

Fig.8. Frame rates under different SIMD ways

 6

simplify the SIMD mapping. The resulted overhead is
amortized and is very small when large number of rays are
traced in parallel, thus the performance can be very good.
Memory is also flexibly utilized. Due to its small size and
potential power efficiency, MorphoSys can be used as an
economic platform for 3D games on portable devices. Right
now, we are further optimizing the architecture so that better
hardware supports, such as 32-bit data paths, more registers,
etc, are included. Based on what we have achieved (more
than 13 frames/second in 300MHz), it is believed that
obtaining real-time ray tracing on portable devices is
practical soon.

Acknowledgements

We would like to thank everyone in MorphoSys group,
University of California, Irvine, for their suggestions and
help in our architectural and hardware modifications. We
thank Maria-Cruz Villa-Uriol and Miguel Sainz in
Image -Based-Modeling-Rendering Lab for giving sincere
help in our geometry modeling and estimation. This work
was sponsored by DARPA (DoD) under contract
F-33615-97-C-1126 and the National Science Foundation
(NSF) under grant CCR-0083080.

References

[1] G. Lu, H. Singh, M.H.Lee, N. Bagherzadeh, F. Kurdahi,
and E.M.C. Filho. “The MorphoSys Parallel Reconfigurable
System ,” Proc. of Euro-Par 1999.
[2] A. Glassner. “An Introduction to Ray Tracing ,” Academic
Press, 1989.
[3] S. Parker, W. Martin, P.P.J.Sloan, P.Shirley, B.Smits, and
C.Hansen. “Interactive Ray Tracing,” In Proc. ACM
Symposium on Interactive 3D Graphics, ACM 1999.
[4] I.Wald, P.Slusallek, C. Benthin, and M.Wagner.
“Interactive Rendering with Coherent Ray Tracing,”
Computer Graphics Forum 20, 2001 153-164.

[5] N.A.Carr, J.D.Hall, J.C.Hart, “The Ray Engine,” Tech.
Rep. UIUCDCS-R-2002-2269, Department of Computer
Science, University of Illinios.
[6] T.J.Purcell, I.Buck, W.R.Mark, and P.Hanrahan, “Ray
Tracing on Programmable Graphics Hardware,”
SIGGraphics 2002 Proc.”, 2002.
[7] K. Sung and P.Shirley. “Ray Tracing with the BSP-Tree,”
Graphics Gem III, 271-274. Academic Press 1992.
[8] A. Watt. “3D Computer Graphics. 2nd Edition,”
Addison-Wesley Press.
[9] M.J.Muuss. “Rt and Remrt-Shared Memory Parallel and
Network Distributed Ray-Tracing Programs,” In USENIX:
Proc. of the Fourth Computer Graphics Workshop, October
1987.
[10] M.J.Muuss. “Toward Real-Time Ray-Tracing of
Combinational Solid Geometric Models,” In Proc. of
BRL-CAD Symposium, June 1995.
[11] T.H.Cormen, C.E.Leiserson, R.L.Rivest, C.Stein,
“Introduction to Algorithms, 2nd Edition,” McGraw -Hill and
MIT Press, 2001.
[12] P.J.Narayanan. “Processor Autonomy on SIMD
Architectures ,” ICS-7, 127-136. Tokyo 1993.
[13] M.L. Anido, A. Paar, and N. Bagherzadeh, “ Improving
the Operation Autonomy of SIMD Processing Elements by
Using Guarded Instructions and Pseudo Branches ,”
DSD’2002, Proc. EUROMICRO Symposium on Digital
System Design, North Holland, Dortumond, Germany,
September, 2002.
[14] M.S. Peercy, M. Olano, J.Airey, and P.J. Ungar.
“Interactive Multi-Pass Programmable Shading ,” ACM
SIGGRAPH, New Orleans, USA July 2000.
[15] L.R. Speer, T.D. DeRose, and B.A.Barsky. “ A
Theoretical and Empirical Analysis of Coherent Ray
Tracing,” Computer -Generated Images (Proc. of Graphics
Interface’85), May 1985, 11-25.
[16] H. Singh, H., M.H.Lee, G.Lu, F.J.Kurdahi, N.
Bagherzadeh, and E.M.C. Filho, “MorphoSys: An Integrated
Reconfigurable System for Data-Parallel and
Computation-Intensive Applications,” IEEE Transactions on
Computers 49 (5): 465-481 (2000).

