
 Open access Proceedings Article DOI:10.1145/91385.91452

Interactive real-time articulated figure manipulation using multiple kinematic
constraints — Source link

Cary B. Phillips, Jianmin Zhao, Norman I. Badler

Institutions: University of Pennsylvania

Published on: 01 Feb 1990 - Interactive 3D Graphics and Games

Topics: Direct manipulation interface, Inverse kinematics and Kinematics

Related papers:

 Spacetime constraints

 Interactive behaviors for bipedal articulated figures

 Articulated Figure Positioning by Multiple Constraints

 Goal-directed, dynamic animation of human walking

 A kinematic model of the human spine and torso

Share this paper:

View more about this paper here: https://typeset.io/papers/interactive-real-time-articulated-figure-manipulation-using-
pb4d13gdvz

https://typeset.io/
https://www.doi.org/10.1145/91385.91452
https://typeset.io/papers/interactive-real-time-articulated-figure-manipulation-using-pb4d13gdvz
https://typeset.io/authors/cary-b-phillips-2tmc9b7ura
https://typeset.io/authors/jianmin-zhao-3opufd12yj
https://typeset.io/authors/norman-i-badler-38ucmn07tc
https://typeset.io/institutions/university-of-pennsylvania-32r68p8r
https://typeset.io/conferences/interactive-3d-graphics-and-games-13ls4mae
https://typeset.io/topics/direct-manipulation-interface-3vwjf90n
https://typeset.io/topics/inverse-kinematics-nhklieku
https://typeset.io/topics/kinematics-12oa0wdy
https://typeset.io/papers/spacetime-constraints-4aga3zoq6g
https://typeset.io/papers/interactive-behaviors-for-bipedal-articulated-figures-awc5ya1kea
https://typeset.io/papers/articulated-figure-positioning-by-multiple-constraints-3yf8he3uk1
https://typeset.io/papers/goal-directed-dynamic-animation-of-human-walking-4u2ymz0jyv
https://typeset.io/papers/a-kinematic-model-of-the-human-spine-and-torso-3n1bb636k6
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/interactive-real-time-articulated-figure-manipulation-using-pb4d13gdvz
https://twitter.com/intent/tweet?text=Interactive%20real-time%20articulated%20figure%20manipulation%20using%20multiple%20kinematic%20constraints&url=https://typeset.io/papers/interactive-real-time-articulated-figure-manipulation-using-pb4d13gdvz
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/interactive-real-time-articulated-figure-manipulation-using-pb4d13gdvz
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/interactive-real-time-articulated-figure-manipulation-using-pb4d13gdvz
https://typeset.io/papers/interactive-real-time-articulated-figure-manipulation-using-pb4d13gdvz

University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

January 1990

Interactive Real-Time Articulated Figure Manipulation Using Interactive Real-Time Articulated Figure Manipulation Using

Multiple Kinematic Constraints Multiple Kinematic Constraints

Cary B. Phillips
University of Pennsylvania

Jianmin Zhao
University of Pennsylvania

Norman I. Badler
University of Pennsylvania, badler@seas.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation

Cary B. Phillips, Jianmin Zhao, and Norman I. Badler, "Interactive Real-Time Articulated Figure

Manipulation Using Multiple Kinematic Constraints", . January 1990.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-90-12.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/541
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F541&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/541
mailto:repository@pobox.upenn.edu

Interactive Real-Time Articulated Figure Manipulation Using Multiple Kinematic Interactive Real-Time Articulated Figure Manipulation Using Multiple Kinematic
Constraints Constraints

Abstract Abstract
In this paper, we describe an interactive system for positioning articulated figures which uses a 3D direct
manipulation technique to provide input to an inverse kinematics algorithm running in real time. The
system allows the user to manipulate highly articulated figures, such as human figure models, by
interactively dragging 3D "reach goals." The user may also define multiple "reach constraints" which are
enforced during the manipulation. The 3D direct manipulation interface provides a good mechanism for
control of the inverse kinematics algorithm and helps it to overcome problems with redundancies and
singularities which occur with figures of many degrees of freedom. We use an adaptive technique for
evaluating the constraints which allows us to ensure that only a certain user-controllable amount of time
will be consumed by the inverse kinematics algorithm at each iteration of the manipulation process. This
technique is also sensitive to the time it takes to redraw the screen, so it prevents the frame display rate
of the direct manipulation from become too slow for interactive control.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-90-12.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/541

https://repository.upenn.edu/cis_reports/541

Interactive Real-Time Articulated

Figure Manipualt ion Using
Multiple Kinematic Constraints

MS-CIS-90-12
GRAPHICS LAB 32

Cary B. Phillips
Jianmin Zhao

Norman Badler

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

Interactive Real-Time Articulated

Figure Manipulation Using
Multiple Kinematic Constraints

MS-CIS-90-12
GRAPHICS LAB 32

Cary B. Phillips

Jianmin Zhao
Norman I. Badler

Department of Computer and Informat ion Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

February 1990

Interactive Real-time Articulated Figure Manipulation Using Multiple

Kinematic Constraints

Cary B. Phillips
Jianmin Zhao

Norman I. Badler

Computer Graphics Research Laboratory
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, Pennsylvania 19104-0389

Abstract

In this paper, we describe an interactive system for
positioning articulated figures which uses a 3D direct
manipulation technique to provide input to an inverse
kinematics algorithm running in real time. The sys-
tem allows the user to manipulate highly articulated

figures, such as human figure models, by interactively
dragging 3D "reach goals." The user may also define

multiple "reach constraints" which are enforced during

the manipulation. The 3D direct manipulation interface
provides a good mechanism for control of the inverse
kinematics algorithm and helps it to overcome prob-
lems with redundancies and singularities which occur
with figures of many degrees of freedom. We use an

adaptive technique for evaluating the constraints which
allows us to ensure that only a certain user-controllable
amount of time will be consumed by the inverse kine-

matics algorithm a t each iteration of the manipulation

process. This technique is also sensitive to the time it
takes to redraw the screen, so it prevents the frame dis-

play rate of the direct manipulation from become too
slow for interactive control.

Introduction

A major goal of the work in the Computer Graphics Re-

search Lab at the University of Pennsylvania is to de-
velop an interactive system for manipulating human fig-

ure models for static positioning, reach analysis, viewing
assessment, and animation[l]. The models should be-
have according to user-defined terms, obeying degrees
of freedom and joint limits. The system should allow
users unskilled in computer programming to interac-

tively manipulate the models effectively and intuitively
under these constraints. We wish to be able to position

the figure using general commands equivalent to such
expressions as "keep the feet on the floor," "put the

hand on the coffee cup," or "put the coffee cup in the
hand and keep it level with the floor."

This facility is a part of Jack[6], a general purpose 3D
modeling, manipulation, and animation system which
is implemented on Silicon Graphics IRIS workstations.
Jack is an interactive interface for visualizing and ana-
lyzing articulated figures. It provides a basic framework
for command execution, graphic display, and interaction

mechanisms by which users interact with a world of ge-
ometric objects.

Jack represents articulated figures through a lan-
guage and data structure called peabody. Peabody

represents figures composed of rigid segments connected
by joints. The joints may have specific degrees of free-

dom and joint limits which are obeyed during manipu-

lation.

Peabody requires that figures be tree-structured,
but it defines them independently of the hierarchy so

that figures may be rooted at any point in the tree.
The root is not an intrinsic part of the figure definition:

it is a user-changeable property. The root serves as the
pivot point when the figure is manipulated as a whole.
The underlying hierarchy of the figure is automatically
recomputed whenever the user changes the root. Once
the global placement of the root is set, the global place-

ment of the remainder of the figure is completely defined

in terms of the segment dimensions and the local joint
displacements. This mechanism allows the user to de-
fine the joints in a figure based on how he or she intends

them to behave.

3D Direct Manipulation

The 3D direct manipulation facility in Jack allows the
user to interactively manipulate figure positions and
joint displacements[6]. The facility is built upon an
operator which interactively manipulates general ho-
mogeneous transformations with a three button mouse
and the keyboard. The manipulation operator is used
throughout the Jack system whenever geometric infor-
mation is required.

The direct manipulation operator is loop which re-
peatedly does the following:

1. read mouse coordinates and button status

2. convert mouse information into a 3D geometric
transformation

3. apply transformation to the geometric environment
(new figure location or joint displacement)

4. traverse object hierarchy to recompute global seg-

ment transformations

5. redraw the graphics windows

This loop continues until it is explicitly terminated or
aborted by the user.

The design of this operator is based on the notion that
it should be relatively easy for the user to manipulate
gross geometric transformations when a lot of precision
is not required. It should also be easy for the user to
predict what motion of the mouse will cause the desired

motion of the object.

The three mouse buttons control translation and ro-
tation. The default operation is translation; rotation is

activated by the control key on the keyboard. In trans-
lation, the left, middle, and right mouse buttons con-
trol translation along the x, y, and z axes, respectively.
The user controls the motion by moving the mouse cur-

sor along the line which the selected axis makes on the
screen. Pairs of axes may be selected simultaneously to
translate in a plane, in which case the transformation

automatically moves to the point in the selected plane

which lies underneath the mouse cursor. A 3D graph-
ical translation icon located at the origin of the object
being manipulated illustrates the selected axes and en-
abled directions of motion. This technique is related to
Bier's "skitters" [3].

When the user holds down the control key on the key-
board, the transformation becomes rotation, in which

the left, middle, and right mouse buttons control rota-
tion around the x, y, and z axes, respectively. Only one
axis may be selected at a time. The axis is illustrated

by a graphical "wheel" icon which describes the origin

and direction of the axis. The user controls the rota-
tion by moving the cursor around the perimeter of the
rotation wheel, causing the transform to rotate around
the axis. This is analogous to turning a crank by grab-
bing the perimeter. Direct manipulation of rotations by
"stirring" without the wheel display were used Wein[8].

Inverse Kinematics for Multiple

Goals

This type of direct manipulation is fairly easy to use, al-
though it can be a tedious and ineffective way of manip-
ulating figures as complex as the human body. Inverse

kinematics techniques used in robotics [5] are useful ex-
cept that the figures with which we are concerned are
highly redundant so that goal-directed positioning tasks

may have an infinite number of solutions.

We have built a more powerful positioning facility
which uses an iterative optimization technique, allow-

ing us to solve for figure positions which satisfy mul-

tiple simultaneous kinematic constraints [lo]. We de-

fine a kinematic constraint in terms of a goal coordi-
nate frame, an end effector coordinate frame, and a set
of joints which control the end effector. The user de-
scribes the set of joints by selecting a "starting joint."
The joint set then consists of the chain of joints between
the starting joint and the end effector. We sometimes
call this a "reach" constraint because the application
easiest to visualize is a reaching human arm, with the
fingertips as the end effector. However, it can be used on

any joint chain in the figure, not just at the extremities.

We sometimes refer to the entire constraint as a "goal"
since it represents something to be achieved. The goal

will be achieved when we arrive at a set of joint angles
which place the end effector at the goal, according to
some user-controllable criteria.

We begin by phrasing the constraint in terms of
a minimization problem. For a specific reach con-
straint, the position and orientation of the end effector
in space is functionally dependent on the joint angles

el, $2, ..., On:

e = e(B1, $2, ..., 8,)

where n is the total number of degrees of freedom of
the joint chain. The value of the function e is a matrix
which describes both position and orientation. Asso-
ciated with each goal there is a characteristic vector
function V such that the goal is met if and only if the
function applied to the end effector yields the zero vec-

tor:
V(e) = 0

Notice that V is a vector function of spatial arguments.
For example, for a positional goal with fixed position x,
V is the simple euclidean distance function:

where ep is the positional component of e. The orien-
tational component is ignored.

We, like others[9], have developed several types of
characteristic functions:

orientat ion Only the orientation of the end

effector is significant.

weighted position a n d orientation
The position and orientation of the end
effector are both significant, according to

an arbitrary weighting factor. The de-

fault weight makes 5 degrees of angular
displacement approximately equivalent to

one centimeter of euclidean distance.

line The end effector is constrained so that its
position must line along a specific line in

space.

direction The end effector is constrained so
that it "aims" a reference vector in its
own coordinate frame towards the origin

of the goal.

plane The end effector is constrained so that
its origin lies in a specific plane in space.

Once the characteristic functions are set up, the prob-
lem is then to solve for dl, 02, . . ., 6, SO that

where V may contain several goals instead of just one.
At each iteration k , we compute the joint angle vector
0k by first computing the partial derivative of V with
respect to each joint angle Bj and use this as a first-order

approximation of V:

We then compute the pseudo-inverse of to determine

60:

This process continues until either the end effectors are

within some user-controllable tolerance of their goals,
or successive iterations do not decrease the distance to-
wards the goal.

Although this is a typical root-finding problem for al-
gebraic equations, there are some special requirements:

the joint angle variables 61,62, ... ,On are bounded
by upper and lower limits. Solutions which are not
in this region are deemed not feasible.

The algorithm should converge from any feasible
initial configuration.

When the system is underconstrained, the redun-
dancies should be resolved in some acceptable man-
ner.

When the system is overconstrained, the solution
should be a close as possible.

The algorithm should be fast enough to be used
interactively.

The Newton-Raphson method is very powerful, but it
is not globally convergent so its behavior depends on the
initial guess of the solution. To overcome this defect, we
use a hybrid method proposed by Powell.[7] In addition
to V , Powell also considers the scalar function

Clearly, V(61, 62, ..., 6,) = 0 if and only if
f (61 ,62, ..., 6,) = 0. Powell uses the Newton-Raphson
method whenever that method decreases the function f
enough. Otherwise, the gradient (steepest descending)

method is used, although this may end up with a local
minimum. We have extended this method to consider
the limits on the variables 8. Currently, we consider the
special case

lowerlimit; 5 6i 5 upper-limiti

and use the projection method for linear constraints.

We use a pseudo-inverse method to compute the

Newton-Raphson solution since the Jacobian matrix

is not in general invertible and typically is not even a
square matrix. The solution complexity for the pseudo-
inverse of the Jacobian is then O(n2), where n is the
number of the degrees of freedom. But for the multiple
goal problem, if the number of goals is comparable to

the number of degrees of freedom n, the Jacobian would
be O(n) x O(n) and the complexity therefore becomes

o (~ ~) .

So in the multiple goal case, we chose to use a variable

metric method to minimize the function f with linear
constraints for 6's. In this method, inversion of the ma-
trix is not computed explicitly. Its approximation is im-
proved from each iteration to the next. Each iteration
needs O(n2) operations. It is super-linear convergent. A
detailed explanation of this algorithm is available [lo].

Positioning with Inverse Kine-

matics

The ability to solve multiple inverse kinematic con-

straints is very powerful, and our implementation is
fairly computationally efficient, but by itself it has some
severe limitations. One basic interface for the inverse

kinematic positioning facility is a command-oriented
specification of the reach parameters. The user se-
lects the goal, the type of reach (the characteristic func-
tion), the end effector, the starting joint, and the other
numeric parameters which control the reach. This is

done successively for each kinematic constraint. After
the complete specification of all constraints, the inverse

kinematics algorithm is invoked to solve for each joint
angle, after which the figure assumes its new position.

This interface fails for several reasons. The position-
ing tasks for which this facility is used are usually un-
derconstrained. The prototypical example is the reach-
ing human arm, where the position of the elbow is not
uniquely specified by a positional goal for the hand or
fingers. The problem becomes much more complex for
position tasks involving more degrees of freedom, such
as a reach with a joint chain extending from the hand

to the waist.

The algorithm also suffers from problems of local min-

ima, since the initial guess of the solution comes from
the current configuration of the joints. This means that
it may fail to arrive at a solution even when one does
exist, or that the solution at which it arrives is not really
the one the user intended. The only feasible approach in
this type of interface is for the user to reissue the reach
command with more constraints to reduce the number
of redundancies.

Interactive Methodology

There are several possibilities for overcoming the prob-
lems with redundancies and local minima. One is to in-
corporate more information into the objective function,
modeling such factors as strength, comfort, and agent

preference [ll]. This is an important addition, although
it adds significantly to the computational complexity of
the goal solving procedure. Our technique is to provide
the positional input to the inverse kinematics algorithm
with the 3D direct manipulation system. We allow the
user to interactively "drag" goal positions and have the

end effector follow. In this case, the geometric infor-
mation obtained by the mouse at each iteration of the
manipulation process is applied to the goal position of a
reach, and the inverse kinematics algorithm is called to
solve the goals before the graphics windows are redrawn.

This dragging mechanism is a modified version of the

basic direct manipulation scheme. After selecting the
parameters of the reach, the manipulation procedure
proceeds as follows:

1. read mouse coordinates and button status

2. convert mouse information into a 3D geometric
transformation

3. apply transformation to the placement of the goal

4, invoke inverse kinematics positioning algorithm

5. redraw the graphics windows

The inverse kinematics procedure is invoked not just
once, but at every screen refresh during the interactive

manipulation.
This a very effective and efficient tool for manipula-

tion for several reasons. Because of the incremental na-
ture of the interactive manipulation process, the goals
never move very far from one iteration to the next.

Therefore, the initial guess for the inverse kinematics
algorithm is almost always very good, making the al-
gorithm effectively very computationally efficient. The

algorithm still suffers from problems of local minima,

but since the user can drag the end effector around in
space in a well-defined and easy to control way, it is rel-

atively easy to overcome these problems by "stretching"
the figure into temporary intermediate configurations to
get one part of the figure positioned correctly, and then
dragging the end effector itself into the final desired po-
sition.

A common example of this dragging technique in-

volves the elbow. The user may initially position the
hand at the proper place in space but then find that
the elbow is too high. If this is the case, the user can

extend the hand outwards to drag the elbow into the
correct general region and then drag the hand back to
the proper location. This is illustrated in Plates 1 and
2. Plate 1 illustrates an awkward position of the elbow
during a reach. Plate 2 shows a better elbow position
which was achieved by interactively dragging the hand
out and then back. The trace shows the 3D path along

which the hand was dragged.

Another effective feature of the direct manipulation
interface is the use of orientation constraints, particu-
larly the weighted combination of position and orienta-

tion. In this case, the orientation of the goal is signifi-
cant as well as the position, so the user may manipulate

segments in the interior of the reach chain by twisting
the orientation of the goal and end effector. This is espe-
cially helpful because of the difficulty the user encoun-
ters in visualizing and numerically describing rotations
which will achieve a desired orientation. The above ex-
ample of the elbow position may be handled this way,

too. By twisting the desired orientation of the hand, the
interior of the arm can be rotated up and down while

the hand remains the the same location. This achieves
in real-time a generalization of the "elbow circle" posi-
tioning scheme implemented by Korien. [4]

Plates 3 and 4 show a sequence of rotating the arm
from the hand, with the rotation wheel. Plate 5 shows
a rotation of both the arm and the torso.

Manipulation with Constraints

The nature of the 3D direct manipulation mechanism

allows the user to interactively manipulate only a single
element at a time, although most positioning tasks in-
volve several parts of the figure, such as both feet, both
hands, etc. The interactive reach described above ma-
nipulates only a single chain of the figure at one time.

In addition to interactively dragging a single end ef-
fector, the user may define any number of kinematic
"reach constraints" which are goals of any objective type

to be enforced as the figure is manipulated using any of
the other manipulation tools. By first defining multi-

ple constraints and then manipulating the figure, either

directly or with the dragging mechanism, the user may
enforce complex positioning restrictions.

This mechanism involves another slight modification
to the direct manipulation loop:

1. read mouse coordinates and button status

2. convert mouse information into a 3D geometric
transformation

3. apply transformation to the geometric environment
(new figure location or joint displacement)

4. traverse object hierarchy to recompute global seg-
ment transformations

5. invoke inverse kinematics positioning algorithm to
solve multiple goals

6, redraw the graphics windows

Step #4 may cause the end effectors to move away from
their goal positions. The inverse kinematics algorithm
in step #5 repositions the joints so the goals are satis-
fied.

Plate 6 shows a posture achieved by interactively ma-
nipulating the figure under the influence of four reach

constraints constraining the feet to the floor and the
hands to the toes.

We are primarily interested in the interactive nature
of the system. The user must have the feeling of real-
time control over the figures. A slow screen update rate

is detrimental to this sense of interactive control. Unfor-
tunately, the inverse kinematics algorithm can be fairly

time consuming when there are several constraints. The

lag time between the motion of the mouse and the ensu-
ing motion of the objects makes the manipulation pro-
cess difficult to control. To alleviate this problem, we
limit the amount of time which can be consumed by the
inverse kinematics algorithm at each interactive itera-

tion.

The inverse kinematics algorithm is iterative, and it
converges monotonically, so at each iteration the end

effectors move closer to the goals. We exploit this prop-
erty and accept an intermediate solution if the entire s*
lution cannot be computed quickly enough. Rather than
limiting the number of iterations, we limit the amount
of time consumed. We do this by recording the time
at which the algorithm begins1, and then checking the
current time at the beginning of each iteration. If the
time limit has expired, we terminate the algorithm and
accept the current configuration. The direct manipu-
lation process then proceeds with the next interactive

iteration.

This has an interesting effect on the "feel" of the ma-
nipulation. With the time limit set properly, the frame

rate never deteriorates beyond several frames per second

even with several constraints, so the user never looses
the sense of interactive control. However, the end ef-
fectors move more slowly towards their goals. For ex-
ample, with constraints on the hands and feet, the user

may quickly yank the figure away from its current loca-
tion, and the arms and legs will gradually drift back in
the direction of their goals. This fills the "dead time,"
when the user is just looking at the screen, with useful
computation.

We have also developed an adaptive technique for
making this time limit sensitive to the amount of time
consumed at each frame by the drawing of the graph-
ics windows. This works well since when there are many

large, complex geometric objects, much of the time con-
sumed by the manipulation loop is spent in drawing
the graphics windows. This sensitivity means that the
amount of time allotted to the inverse kinematics algo-

rithm is automatically decreased. We implement this
by keeping a record of how much time is consumed each

time the screen is drawn. This timing information is
only approximate.

Performance and Examples

The interactive performance of the inverse kinematics
positioning facility depends of course on the speed of
the workstation on which it runs, but it runs well on any

This information is available in 60th'~ of seconds

of the Silicon Graphics IRIS 4D line of workstations, in-
cluding the Personal IRIS. We give some approximate
timing values here for an IRIS 4D-70GT. The human
figure model we manipulate consists of 653 wireframe

vectors, or 378 shaded polygons, with 30 segments, 29
joints, and 53 total degrees of freedom. The ordinary
direct manipulation interface without inverse kinemat-
ics displays the wireframe model a t approximately 25

frames per second. The shaded model displays at 15
frames per second.

Under the influence of a single constraint consisting

of 7 degrees of freedom, the rate is approximately 10 fps
when the goal is reachable, slightly less when the goal

is not achievable.

Under the influence of 4 simultaneous constraints con-
sisting of 7 degrees of freedom each (one for each arm

and leg), the rate never deteriorates beyond 3-4 fps.

We set the default value of the iteration time limit to
be 0.1 seconds, and we have found empirically that this

value works quite well. The value is controllable by the
user, but there is actually little need to adjust it.

Future work

The current implementation of our kinematics algo-
rithm is purely geometric. It uses no other criteria to
evaluate the acceptability of a goal solution other than
the joint angles, subject to the joint limits. We are cur-
rently developing strength and comfort models to en-
corporate into the objective functions. We are also de-

veloping collision detection and avoidance capabilities.

Acknowledgements

This research is partially supported by Lockheed En-

gineering and Management Services (NASA Johnson
Space Center), NASA Ames Grant NAG-2-426, FMC
Corporation, Martin-Marietta Denver Aerospace, NSF
CER Grant MCS-82-19196, and ARO Grant DAALO3-
89-C-0031 including participation by the U.S. Army Hu-

man Engineering Laboratory.

References

[I] Norman I. Badler, "Artificial Intelligence, Natu-

ral Language, and Simulation for Human Anima-
tion" in State-of-the-Art in Computer Animation,
N. Magnenat-Thalmannn and D. Thalmann (eds.),
Springer-Verlag, 1989, pp. 19-31.

Multiple Constraints", Computer Graphics and
Applications, Vol. 7, No. 6, June, 1987.

[3] Eric Allan Bier, "Skitters and Jacks: Interac-
tive Positioning Tools," In Proceedings of 1986
Workshop on 3D Interactave Computer Graphics,
(Chapel Hill, NC, October 23-26, 1986), ACM,
New York, 1987.

[4] James Korien, A Geometric Invesi?igation of Reach,
MIT Press, 1985.

[5] Richard P. Paul, Robot Manipulators: Mathemat-
ics, Programming, and Control, MIT Press, 1981.

[6] Cary B. Phillips and Norman I. Badler, "Jack: A
Toolkit for Manipulating Articulated Figures" Pro-

ceedings of ACM/SIGGRAPH Symposium on User
Interface Software, Banff, Alberta, Canada, 1988.

[7] M.J.D. PowellUA Hybrid Method for Nonlinear

Equations", in Numerical Methods for Nonlinear
Algebraic Equations, edited by Philip Rabinowitz,

Gordon and Breach Science Publisher, 1970.

[8] M. Wein et. al. "Graphics Interactions at NRC",
SIGGRAPH Video Revzew Issue #4, ACM, 1981.

[9] Andrew Witkin, Kurt Fleischer, and Alan Barr,

"Energy Constraints on Parametrized Models,"
Computer Graphacs 21, No. 3, 1987.

[lo] Jianmin Zhao and Norman I. Badler, "Real Time
Inverse Kinematics With Joint Limits and Spa-

tial Constraints", Technical Report MS-CIS-89-09,
University of Pennsylvania.

[l l] Philip Lee, Norman Badler, Cary Phillips, and
Ernest Otani, "The Jack Interactive Human
Model", in Proceedings of the First Annual Sym-
posium on Mechanical System Design in a Con-
current Engineering Environment, Iowa City, Iowa,
October 1989.

[2] Norman I. Badler, Kamran Manoochehri, and Gra-
ham Walters, "Articulated Figure Positioning By

Plate 1 illustrates an awkward position of the elbow during a reach. Plate 2 shows a better elbow position which
was achieved by interactively dragging the hand out and then back. The trace shows the 3D path along which the
hand was dragged. Plates 3 and 4 show a sequence of rotating the arm from the hand, with the rotation wheel.
Plate 5 shows a combined arm and torso rotation. Plate 6 shows a posture achieved by interactively manipulating
the figure under the influence of four reach constraints constraining the feet to the floor and the hands to the toes.

