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Abstract 

In this paper, we describe an interactive system for 
positioning articulated figures which uses a 3D direct 
manipulation technique to provide input to an inverse 
kinematics algorithm running in real time. The sys- 
tem allows the user to manipulate highly articulated 

figures, such as human figure models, by interactively 
dragging 3D "reach goals." The user may also define 

multiple "reach constraints" which are enforced during 

the manipulation. The 3D direct manipulation interface 
provides a good mechanism for control of the inverse 
kinematics algorithm and helps it to overcome prob- 
lems with redundancies and singularities which occur 
with figures of many degrees of freedom. We use an 

adaptive technique for evaluating the constraints which 
allows us to ensure that only a certain user-controllable 
amount of time will be consumed by the inverse kine- 

matics algorithm a t  each iteration of the manipulation 

process. This technique is also sensitive to the time it 
takes to redraw the screen, so it prevents the frame dis- 

play rate of the direct manipulation from become too 
slow for interactive control. 

Introduction 

A major goal of the work in the Computer Graphics Re- 

search Lab at  the University of Pennsylvania is to de- 
velop an interactive system for manipulating human fig- 

ure models for static positioning, reach analysis, viewing 
assessment, and animation[l]. The models should be- 
have according to user-defined terms, obeying degrees 
of freedom and joint limits. The system should allow 
users unskilled in computer programming to interac- 

tively manipulate the models effectively and intuitively 
under these constraints. We wish to be able to position 

the figure using general commands equivalent to such 
expressions as "keep the feet on the floor," "put the 

hand on the coffee cup," or "put the coffee cup in the 
hand and keep it level with the floor." 

This facility is a part of Jack[6], a general purpose 3D 
modeling, manipulation, and animation system which 
is implemented on Silicon Graphics IRIS workstations. 
Jack is an interactive interface for visualizing and ana- 
lyzing articulated figures. It provides a basic framework 
for command execution, graphic display, and interaction 

mechanisms by which users interact with a world of ge- 
ometric objects. 

Jack represents articulated figures through a lan- 
guage and data structure called peabody. Peabody 

represents figures composed of rigid segments connected 
by joints. The joints may have specific degrees of free- 

dom and joint limits which are obeyed during manipu- 

lation. 

Peabody requires that figures be tree-structured, 
but it defines them independently of the hierarchy so 

that figures may be rooted at  any point in the tree. 
The root is not an intrinsic part of the figure definition: 

it is a user-changeable property. The root serves as the 
pivot point when the figure is manipulated as a whole. 
The underlying hierarchy of the figure is automatically 
recomputed whenever the user changes the root. Once 
the global placement of the root is set, the global place- 

ment of the remainder of the figure is completely defined 



in terms of the segment dimensions and the local joint 
displacements. This mechanism allows the user to de- 
fine the joints in a figure based on how he or she intends 

them to behave. 

3D Direct Manipulation 

The 3D direct manipulation facility in Jack allows the 
user to interactively manipulate figure positions and 
joint displacements[6]. The facility is built upon an 
operator which interactively manipulates general ho- 
mogeneous transformations with a three button mouse 
and the keyboard. The manipulation operator is used 
throughout the Jack system whenever geometric infor- 
mation is required. 

The direct manipulation operator is loop which re- 
peatedly does the following: 

1. read mouse coordinates and button status 

2. convert mouse information into a 3D geometric 
transformation 

3. apply transformation to the geometric environment 
(new figure location or joint displacement) 

4. traverse object hierarchy to recompute global seg- 

ment transformations 

5. redraw the graphics windows 

This loop continues until it is explicitly terminated or 
aborted by the user. 

The design of this operator is based on the notion that 
it should be relatively easy for the user to manipulate 
gross geometric transformations when a lot of precision 
is not required. It should also be easy for the user to 
predict what motion of the mouse will cause the desired 

motion of the object. 

The three mouse buttons control translation and ro- 
tation. The default operation is translation; rotation is 

activated by the control key on the keyboard. In trans- 
lation, the left, middle, and right mouse buttons con- 
trol translation along the x, y, and z axes, respectively. 
The user controls the motion by moving the mouse cur- 

sor along the line which the selected axis makes on the 
screen. Pairs of axes may be selected simultaneously to 
translate in a plane, in which case the transformation 

automatically moves to the point in the selected plane 

which lies underneath the mouse cursor. A 3D graph- 
ical translation icon located at  the origin of the object 
being manipulated illustrates the selected axes and en- 
abled directions of motion. This technique is related to 
Bier's "skitters" [3]. 

When the user holds down the control key on the key- 
board, the transformation becomes rotation, in which 

the left, middle, and right mouse buttons control rota- 
tion around the x, y, and z axes, respectively. Only one 
axis may be selected at  a time. The axis is illustrated 

by a graphical "wheel" icon which describes the origin 

and direction of the axis. The user controls the rota- 
tion by moving the cursor around the perimeter of the 
rotation wheel, causing the transform to rotate around 
the axis. This is analogous to turning a crank by grab- 
bing the perimeter. Direct manipulation of rotations by 
"stirring" without the wheel display were used Wein[8]. 

Inverse Kinematics for Multiple 

Goals 

This type of direct manipulation is fairly easy to use, al- 
though it can be a tedious and ineffective way of manip- 
ulating figures as complex as the human body. Inverse 

kinematics techniques used in robotics [5] are useful ex- 
cept that the figures with which we are concerned are 
highly redundant so that goal-directed positioning tasks 

may have an infinite number of solutions. 

We have built a more powerful positioning facility 
which uses an iterative optimization technique, allow- 

ing us to solve for figure positions which satisfy mul- 

tiple simultaneous kinematic constraints [lo]. We de- 

fine a kinematic constraint in terms of a goal coordi- 
nate frame, an end effector coordinate frame, and a set 
of joints which control the end effector. The user de- 
scribes the set of joints by selecting a "starting joint." 
The joint set then consists of the chain of joints between 
the starting joint and the end effector. We sometimes 
call this a "reach" constraint because the application 
easiest to visualize is a reaching human arm, with the 
fingertips as the end effector. However, it can be used on 

any joint chain in the figure, not just at  the extremities. 

We sometimes refer to the entire constraint as a "goal" 
since it represents something to be achieved. The goal 

will be achieved when we arrive at  a set of joint angles 
which place the end effector at the goal, according to 
some user-controllable criteria. 

We begin by phrasing the constraint in terms of 
a minimization problem. For a specific reach con- 
straint, the position and orientation of the end effector 
in space is functionally dependent on the joint angles 

el, $2, ..., On: 

e = e(B1, $2, ..., 8,) 

where n is the total number of degrees of freedom of 
the joint chain. The value of the function e is a matrix 
which describes both position and orientation. Asso- 
ciated with each goal there is a characteristic vector 
function V such that the goal is met if and only if the 
function applied to the end effector yields the zero vec- 



tor: 
V(e) = 0 

Notice that V is a vector function of spatial arguments. 
For example, for a positional goal with fixed position x, 
V is the simple euclidean distance function: 

where ep is the positional component of e. The orien- 
tational component is ignored. 

We, like others[9], have developed several types of 
characteristic functions: 

orientat ion Only the orientation of the end 

effector is significant. 

weighted position a n d  orientation 
The position and orientation of the end 
effector are both significant, according to 

an arbitrary weighting factor. The de- 

fault weight makes 5 degrees of angular 
displacement approximately equivalent to 

one centimeter of euclidean distance. 

line The end effector is constrained so that its 
position must line along a specific line in 

space. 

direction The end effector is constrained so 
that it "aims" a reference vector in its 
own coordinate frame towards the origin 

of the goal. 

plane The end effector is constrained so that 
its origin lies in a specific plane in space. 

Once the characteristic functions are set up, the prob- 
lem is then to solve for dl, 02, . . ., 6, SO that 

where V may contain several goals instead of just one. 
At each iteration k ,  we compute the joint angle vector 
0k by first computing the partial derivative of V with 
respect to each joint angle Bj and use this as a first-order 

approximation of V: 

We then compute the pseudo-inverse of to determine 

60: 

This process continues until either the end effectors are 

within some user-controllable tolerance of their goals, 
or successive iterations do not decrease the distance to- 
wards the goal. 

Although this is a typical root-finding problem for al- 
gebraic equations, there are some special requirements: 

the joint angle variables 61,62, ... ,On  are bounded 
by upper and lower limits. Solutions which are not 
in this region are deemed not feasible. 

The algorithm should converge from any feasible 
initial configuration. 

When the system is underconstrained, the redun- 
dancies should be resolved in some acceptable man- 
ner. 

When the system is overconstrained, the solution 
should be a close as possible. 

The algorithm should be fast enough to be used 
interactively. 

The Newton-Raphson method is very powerful, but it 
is not globally convergent so its behavior depends on the 
initial guess of the solution. To overcome this defect, we 
use a hybrid method proposed by Powell.[7] In addition 
to V ,  Powell also considers the scalar function 

Clearly, V(61, 62, ..., 6,) = 0 if and only if 
f (61 ,62, ..., 6,) = 0. Powell uses the Newton-Raphson 
method whenever that method decreases the function f 
enough. Otherwise, the gradient (steepest descending) 

method is used, although this may end up with a local 
minimum. We have extended this method to consider 
the limits on the variables 8. Currently, we consider the 
special case 

lowerlimit; 5 6i 5 upper-limiti 

and use the projection method for linear constraints. 

We use a pseudo-inverse method to compute the 

Newton-Raphson solution since the Jacobian matrix 

is not in general invertible and typically is not even a 
square matrix. The solution complexity for the pseudo- 
inverse of the Jacobian is then O(n2), where n is the 
number of the degrees of freedom. But for the multiple 
goal problem, if the number of goals is comparable to 

the number of degrees of freedom n, the Jacobian would 
be O(n) x O(n) and the complexity therefore becomes 

o ( ~ ~ ) .  

So in the multiple goal case, we chose to use a variable 

metric method to minimize the function f with linear 
constraints for 6's. In this method, inversion of the ma- 
trix is not computed explicitly. Its approximation is im- 
proved from each iteration to the next. Each iteration 
needs O(n2) operations. It is super-linear convergent. A 
detailed explanation of this algorithm is available [lo]. 



Positioning with Inverse Kine- 

matics 

The ability to solve multiple inverse kinematic con- 

straints is very powerful, and our implementation is 
fairly computationally efficient, but by itself it has some 
severe limitations. One basic interface for the inverse 

kinematic positioning facility is a command-oriented 
specification of the reach parameters. The user se- 
lects the goal, the type of reach (the characteristic func- 
tion), the end effector, the starting joint, and the other 
numeric parameters which control the reach. This is 

done successively for each kinematic constraint. After 
the complete specification of all constraints, the inverse 

kinematics algorithm is invoked to solve for each joint 
angle, after which the figure assumes its new position. 

This interface fails for several reasons. The position- 
ing tasks for which this facility is used are usually un- 
derconstrained. The prototypical example is the reach- 
ing human arm, where the position of the elbow is not 
uniquely specified by a positional goal for the hand or 
fingers. The problem becomes much more complex for 
position tasks involving more degrees of freedom, such 
as a reach with a joint chain extending from the hand 

to the waist. 

The algorithm also suffers from problems of local min- 

ima, since the initial guess of the solution comes from 
the current configuration of the joints. This means that 
it may fail to arrive at  a solution even when one does 
exist, or that the solution at which it arrives is not really 
the one the user intended. The only feasible approach in 
this type of interface is for the user to reissue the reach 
command with more constraints to reduce the number 
of redundancies. 

Interactive Methodology 

There are several possibilities for overcoming the prob- 
lems with redundancies and local minima. One is to in- 
corporate more information into the objective function, 
modeling such factors as strength, comfort, and agent 

preference [ll]. This is an important addition, although 
it adds significantly to the computational complexity of 
the goal solving procedure. Our technique is to provide 
the positional input to the inverse kinematics algorithm 
with the 3D direct manipulation system. We allow the 
user to interactively "drag" goal positions and have the 

end effector follow. In this case, the geometric infor- 
mation obtained by the mouse at  each iteration of the 
manipulation process is applied to the goal position of a 
reach, and the inverse kinematics algorithm is called to 
solve the goals before the graphics windows are redrawn. 

This dragging mechanism is a modified version of the 

basic direct manipulation scheme. After selecting the 
parameters of the reach, the manipulation procedure 
proceeds as follows: 

1. read mouse coordinates and button status 

2. convert mouse information into a 3D geometric 
transformation 

3. apply transformation to the placement of the goal 

4, invoke inverse kinematics positioning algorithm 

5. redraw the graphics windows 

The inverse kinematics procedure is invoked not just 
once, but at  every screen refresh during the interactive 

manipulation. 
This a very effective and efficient tool for manipula- 

tion for several reasons. Because of the incremental na- 
ture of the interactive manipulation process, the goals 
never move very far from one iteration to the next. 

Therefore, the initial guess for the inverse kinematics 
algorithm is almost always very good, making the al- 
gorithm effectively very computationally efficient. The 

algorithm still suffers from problems of local minima, 

but since the user can drag the end effector around in 
space in a well-defined and easy to control way, it is rel- 

atively easy to overcome these problems by "stretching" 
the figure into temporary intermediate configurations to 
get one part of the figure positioned correctly, and then 
dragging the end effector itself into the final desired po- 
sition. 

A common example of this dragging technique in- 

volves the elbow. The user may initially position the 
hand at  the proper place in space but then find that 
the elbow is too high. If this is the case, the user can 

extend the hand outwards to drag the elbow into the 
correct general region and then drag the hand back to 
the proper location. This is illustrated in Plates 1 and 
2. Plate 1 illustrates an awkward position of the elbow 
during a reach. Plate 2 shows a better elbow position 
which was achieved by interactively dragging the hand 
out and then back. The trace shows the 3D path along 

which the hand was dragged. 

Another effective feature of the direct manipulation 
interface is the use of orientation constraints, particu- 
larly the weighted combination of position and orienta- 

tion. In this case, the orientation of the goal is signifi- 
cant as well as the position, so the user may manipulate 

segments in the interior of the reach chain by twisting 
the orientation of the goal and end effector. This is espe- 
cially helpful because of the difficulty the user encoun- 
ters in visualizing and numerically describing rotations 
which will achieve a desired orientation. The above ex- 
ample of the elbow position may be handled this way, 



too. By twisting the desired orientation of the hand, the 
interior of the arm can be rotated up and down while 

the hand remains the the same location. This achieves 
in real-time a generalization of the "elbow circle" posi- 
tioning scheme implemented by Korien. [4] 

Plates 3 and 4 show a sequence of rotating the arm 
from the hand, with the rotation wheel. Plate 5 shows 
a rotation of both the arm and the torso. 

Manipulation with Constraints 

The nature of the 3D direct manipulation mechanism 

allows the user to interactively manipulate only a single 
element at  a time, although most positioning tasks in- 
volve several parts of the figure, such as both feet, both 
hands, etc. The interactive reach described above ma- 
nipulates only a single chain of the figure at  one time. 

In addition to interactively dragging a single end ef- 
fector, the user may define any number of kinematic 
"reach constraints" which are goals of any objective type 

to be enforced as the figure is manipulated using any of 
the other manipulation tools. By first defining multi- 

ple constraints and then manipulating the figure, either 

directly or with the dragging mechanism, the user may 
enforce complex positioning restrictions. 

This mechanism involves another slight modification 
to the direct manipulation loop: 

1. read mouse coordinates and button status 

2. convert mouse information into a 3D geometric 
transformation 

3. apply transformation to the geometric environment 
(new figure location or joint displacement) 

4. traverse object hierarchy to recompute global seg- 
ment transformations 

5. invoke inverse kinematics positioning algorithm to 
solve multiple goals 

6, redraw the graphics windows 

Step #4 may cause the end effectors to move away from 
their goal positions. The inverse kinematics algorithm 
in step #5 repositions the joints so the goals are satis- 
fied. 

Plate 6 shows a posture achieved by interactively ma- 
nipulating the figure under the influence of four reach 

constraints constraining the feet to the floor and the 
hands to the toes. 

We are primarily interested in the interactive nature 
of the system. The user must have the feeling of real- 
time control over the figures. A slow screen update rate 

is detrimental to this sense of interactive control. Unfor- 
tunately, the inverse kinematics algorithm can be fairly 

time consuming when there are several constraints. The 

lag time between the motion of the mouse and the ensu- 
ing motion of the objects makes the manipulation pro- 
cess difficult to control. To alleviate this problem, we 
limit the amount of time which can be consumed by the 
inverse kinematics algorithm at  each interactive itera- 

tion. 

The inverse kinematics algorithm is iterative, and it 
converges monotonically, so at  each iteration the end 

effectors move closer to the goals. We exploit this prop- 
erty and accept an intermediate solution if the entire s* 
lution cannot be computed quickly enough. Rather than 
limiting the number of iterations, we limit the amount 
of time consumed. We do this by recording the time 
at which the algorithm begins1, and then checking the 
current time at the beginning of each iteration. If the 
time limit has expired, we terminate the algorithm and 
accept the current configuration. The direct manipu- 
lation process then proceeds with the next interactive 

iteration. 

This has an interesting effect on the "feel" of the ma- 
nipulation. With the time limit set properly, the frame 

rate never deteriorates beyond several frames per second 

even with several constraints, so the user never looses 
the sense of interactive control. However, the end ef- 
fectors move more slowly towards their goals. For ex- 
ample, with constraints on the hands and feet, the user 

may quickly yank the figure away from its current loca- 
tion, and the arms and legs will gradually drift back in 
the direction of their goals. This fills the "dead time," 
when the user is just looking at the screen, with useful 
computation. 

We have also developed an adaptive technique for 
making this time limit sensitive to the amount of time 
consumed at  each frame by the drawing of the graph- 
ics windows. This works well since when there are many 

large, complex geometric objects, much of the time con- 
sumed by the manipulation loop is spent in drawing 
the graphics windows. This sensitivity means that the 
amount of time allotted to the inverse kinematics algo- 

rithm is automatically decreased. We implement this 
by keeping a record of how much time is consumed each 

time the screen is drawn. This timing information is 
only approximate. 

Performance and Examples 

The interactive performance of the inverse kinematics 
positioning facility depends of course on the speed of 
the workstation on which it runs, but it runs well on any 

This information is available in 60th'~ of seconds 



of the Silicon Graphics IRIS 4D line of workstations, in- 
cluding the Personal IRIS. We give some approximate 
timing values here for an IRIS 4D-70GT. The human 
figure model we manipulate consists of 653 wireframe 

vectors, or 378 shaded polygons, with 30 segments, 29 
joints, and 53 total degrees of freedom. The ordinary 
direct manipulation interface without inverse kinemat- 
ics displays the wireframe model a t  approximately 25 

frames per second. The shaded model displays at  15 
frames per second. 

Under the influence of a single constraint consisting 

of 7 degrees of freedom, the rate is approximately 10 fps 
when the goal is reachable, slightly less when the goal 

is not achievable. 

Under the influence of 4 simultaneous constraints con- 
sisting of 7 degrees of freedom each (one for each arm 

and leg), the rate never deteriorates beyond 3-4 fps. 

We set the default value of the iteration time limit to 
be 0.1 seconds, and we have found empirically that this 

value works quite well. The value is controllable by the 
user, but there is actually little need to adjust it. 

Future work 

The current implementation of our kinematics algo- 
rithm is purely geometric. It uses no other criteria to 
evaluate the acceptability of a goal solution other than 
the joint angles, subject to the joint limits. We are cur- 
rently developing strength and comfort models to en- 
corporate into the objective functions. We are also de- 

veloping collision detection and avoidance capabilities. 
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Plate 1 illustrates an awkward position of the elbow during a reach. Plate 2 shows a better elbow position which 
was achieved by interactively dragging the hand out and then back. The trace shows the 3D path along which the 
hand was dragged. Plates 3 and 4 show a sequence of rotating the arm from the hand, with the rotation wheel. 
Plate 5 shows a combined arm and torso rotation. Plate 6 shows a posture achieved by interactively manipulating 
the figure under the influence of four reach constraints constraining the feet to the floor and the hands to the toes. 




