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Abstract

Geometric probing considers problems of determining a geometric structure or some
aspect of that structure from the results of a mathematical or physical measuring de-
vice, a probe. A variety of problems from robotics, medical instrumentation, math-
ematical optimization, integral and computational geometry, graph theory and other
areas fit into this paradigm.

This paper surveys the field of geometric probing, with results ordered by probing
model. The emphasis is on interactive reconstruction, where the results of all previous
measurements are used to determine the orientation of the next probe so it provides
the maximum amount of information about the structure. Through interactive recon-
struction, finite determination strategies exist for such diverse models as finger, x-ray,
and half-plane probes.

1 Introduction

Many problems from mathematics and engineering can be described in terms of reconstruc-

tion from projections. We define a projection to be a measurement of some aspect of a

physical or mathematical object and reconstruction as the algorithmic problem of combining

the result of several projections to obtain some desired information about the object.
Practical reconstruction problems include:

e Computer-aided Tomography - CAT scanners and other tomographic imaging systems
represent a tremendous step forward in our ability to diagnose tumors and other med-
ical problems. Herman [38] defines tomography as “the process of producing an image
of a two-dimensional distribution (usually of some physical property) from estimates
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of its line integrals along a finite number of lines of known locations”. Tomographic
scanners estimate line integrals by sending an energy pulse of some type through an ob-
ject and measuring how much energy is absorbed. The most important reconstruction
algorithms are based on transform methods.

e Tuctile sensing in Robotics - Because it represents an inexpensive and robust technol-
ogy, tactile sensors have been studied [26, 31, 34] as an alternative to computer vision
for robotics. The robot touches the object several times, each time identifying a point
on the boundary of it. From this data, the system seeks to determine what the object
is.

e Theory of Learning - Abstractly, a concept is often modeled as a region in some high-
dimensional space [6, 9]. Such a concept can be ‘learned’ by asking questions of the
form “is this point in the region?,” and developing an approximation of the region’s
shape. For efficient learning, it is important to ask questions in a way that provide as
much information about the region as possible. Lower bounds are also of interest, for
showing that it requires a large number of questions to approximate the region proves
no efficient learning strategies exist.

Geometric probing considers problems of determining a geometric structure or some as-
pect of that structure from the results of a mathematical or physical measuring device, a
probe. A variety of problems from robotics, medical instrumentation, mathematical opti-
mization, integral and computational geometry, graph theory and other areas fit into this
paradigm.

The problem of geometric probing was introduced by Cole and Yap [15] and inspired by
work in robotics and tactile sensing [26, 72]. It has since been the focus of at least four
dissertations [30, 50, 59, 74] and several additional papers. The dissertation [74] is the most
complete presentation of results in probing, and is the basis for this paper. A comprehensive
collection of open problems and the following taxonomy of probing problems appears in [75].

There are a wide variety of interesting models of sensors, with inspiration either from
physical sensing devices or geometrical operations.

e [inger Probes - which measure the first point of intersection between a directed line
and an object.

e Hyperplane Probes - which measure the first time when a hyperplane moving parallel
to itself intersects an object.

e X-ray Probes - which measure the length of intersection between a line and an object.

e Half-space Probes- which return the area or volume of intersection between a half-space
and an object.

e (Cut-set Probes - which for a specified graph and partition of the vertices returns the
size of the cut-set represented by the partition.



More sophisticated sensing devices can be constructed from considering aggregates of
probes sharing certain properties, such as the set of all probes which are parallel to a given
line or which pass through a given point.

There are a variety of different properties which we are interested in optimizing or bound-

ing:

e Determination - how many probes are necessary to completely determine a particular
object? We are interested in both upper and lower bounds. Note that we use “deter-
mination” to refer to interactive reconstruction strategies, which Gardner [23] terms
“successive determination”.

e Verification - given a reputed description of the object, how many probes are necessary
to test if the description is valid?

o Computational Complexity - the complexity of planning the probes can be measured
under a RAM cost model, assuming that an oracle returns the results for a specified
probe in unit time.

e Simulation - given a probe model and a representation of the object, how much time
and space is necessary to simulate an actual probe?

e [eature Determination - how many probes are needed to determine some feature of the
object, such as volume, orientation, or convexity?

Results in probing are most naturally ordered by probing model. To provide a better
understanding of the field, the rest of this paper presents the major results for various models.

2 Finger Probes

Tactile sensing is an important paradigm in robotics. Cole and Yap [15] developed the notion
of a finger probe to model tactile sensors used in robotics. A finger probe is defined to be the
first point of intersection p between a directed line [ and an object P. The term probe will
sometimes be used to refer to p and sometimes to [, and we rely on context to distinguish
between these meanings.

The notion of finger probing has inspired work on a variety of problems and a growing
body of literature [8, 11, 16, 30, 53, 55]. We present the main results of this literature.
Together, these problems show both the power and limitations of finger probing and thus of
tactile sensing in robotics.

We assume that we are given O, a point within the interior of a convex polygon P.
Without this information, we have no idea where P is located, and an unbounded number
of probes can be required to find it. From each probe, in addition to the contact point we
obtain a half-line defined by p and [ which does not intersect P. This and the convexity
restrictions on P can be used to identify points known to be within P or known to be outside
of P. Together, these two sets represent the state of our knowledge about P. Let inside(P)



Figure 1: Information from Finger Probing.

be the closed set of points which can be proved to be within P, specifically, they are on
or within the convex hull of the set of contact points X U o. Let outside(P) be the set of
points which can be proven not to lie on or within P. Specifically, z € outside(P) if there
exists a point x € X such that x is in the interior of conv({z}UX), where conv(S) is the
convex hull of a set S. Figure 1 shows inside(P) and outside(P) for a specific collection of
probes. We say that P is determined when inside(P)Joutside(P) = E¢, where d is number
of dimensions of P.

We emphasize that we are interested in absolute determination, not an approximation to
P. When a convex polygon is determined we have identified the exact coordinates of each
of the n vertices. This notion of determination will be used throughout this paper, even for
probing models such as x-rays which do not return absolute information.

One final subtlety concerns tangent probes. Cole and Yap’s model [15], which will be
primarily considered in this paper, has a finger probe along an edge of P returning the first
vertex it encounters, although [12] assumes such probes miss the polygon completely. It is
even less clear what should be returned when the probe line intersects only a vertex of P,
but [15] makes the assumption that such probes miss P entirely. The point is moot as far
as this paper is concerned, as we avoid the use of such probes.

2.1 Determination and Verification

The fundamental problems in geometric probing are determination and verification. Deter-
mination counts the number of probes necessary to reconstruct an object P. We note that



the sequence of probing outcomes for a determination provides a complete representation
for P, because the probing algorithm can be used to generate the probe specifications. Thus
determination strategies suggest alternate representations for geometric objects.

Verification counts the number of probes necessary to prove that P is indeed the object in
question. This problem can be thought of as ‘non-deterministic’ probing, since it is assumed
that the algorithm always makes the right probe for any P. To do this, it is assumed that the
algorithm has a description of P as its input. Verification problems are important because
they provide a lower bound for determination, since P is an input for verification.

Cole and Yap presented the following optimal 2n probe strategy for verifying a convex
n-gon. To show necessity, note that each vertex and edge must be probed at least once,
since an unprobed vertex can be truncated and an unprobed edge extended with another
vertex. For sufficiency, we note that three collinear points must all lie on the same edge of
P, by convexity. Thus probing each vertex and edge interior once determines the extent and
position of each edge of P.

The deterministic version of this problem is more difficult. The following strategy is a
variation on the algorithm in [15].

Theorem 1 3n finger probes are sufficient to determine a convexr n-gon.

Proof: Our strategy will consist of two phases. The first phase ends when there are three
probes that are incident upon the same edge e;, the second when P is determined.

All probes in the first phase will be directed through the origin O, and thus the ith
probe can be specified by either its angle 6; or contact point z;. Send three probes through
P, where m < 03 < 0y < 0y < 2m. If x1, z9, and x3 are collinear, we have completed the
first phase. If not, note that x; and x3 cannot be incident upon the same edge because of
convexity constraints. We will insure that the next edge e, in a counter-clockwise direction
from e; has at most one probe incident upon it at the end of the first phase.

Let m be the slope of the line defined by x5 and z3. If m is not between 6; and 6, as
in Figure 2a, we will aim the fourth probe between #; and 65, and then until three contact
points are collinear aim probe ¢+ 1 with angle theta;; where 6y < 0; < 6,11 < 0;. The three
collinear points defining e; will be either x;_1, x;, ©1 or x2, x4, 1, Or T;_ 2, T;_1, ;. In the
two cases, convexity prevents (zg,z3) from being e,, and in the third, we have shown that
x1 cannot be on the same edge as z3. If m is between 67 and 6, as in Figure 2b, we will aim
the fourth probe between 05 and m, and then until three contact points are collinear aim
probe ¢ + 1 with angle theta;,, where 05 < 0; < 0,.1 < m. Edge e; will again be defined by
Ti_1, i, T1 OF Tg, Ty, T1, Ti_2, T;_1, T; and the same arguments apply.

For the second phase of this strategy, we note that to determine our first vertex vy,
between e; and e,, we can probe along the directed line from x; to x;_;. After determining
v1, we proceed in a clockwise direction around P. If e; is the most recent verified edge, and
x, and xp are the next two probe contact points around P, we aim the next probe along the
line defined by p and O, where p is the intersection of e; and the line through x, and x; as
in Figure 3. If the contact point is p, then p is vertex v; of P and a new edge is determined
by x, and x;,. If not, the contact point lies on another edge. This process is repeated until
x, is v; and vy, v, and x;, are collinear, so P is completely determined. Since at most one



Figure 2: Determining the first edge with 2n probes.

Figure 3: Determining the next edge of P.



Figure 4: Two distinct n-gons defined by 2n — 2 points.

probe was incident upon this last edge e, from the first phase, and it is probed in the second
phase only if necessary, it will be probed exactly once in its interior.

In summary, the interiors of n — 2 edges are incident upon at most two probes each, the
interior of ey is incident upon three probes, e, by one probe, and all n vertices are verified
once. Thus the number of probes used is at most 2(n —2) +3+ 1+ n = 3n. |

The probe directed along e; would be very unreliable for a real world application, since
only a slight perturbation could cause the probe to miss P entirely. A more robust strategy
would aim through the origin each time, and in this case 3n + 1 probes are necessary and
sufficient, will be discussed in Section 3.2.

Cole and Yap prove a lower bound of 3n — 1 for determination, which raises to 3n under
the mild assumption that a probe which passes through one vertex of P and not its interior
has a contact point at infinity. This proof is surprisingly complicated, involving substantial
case analysis. See [15] for details.

Figure 4 gives a simpler proof of the slightly weaker result that at least 3n — 1 finger
probes are necessary to determine a convex n-gon. We shall construct an adversary which
will force at least 3n — 1 probes from any probing strategy. Our adversary will use the
following strategy: for as long as possible, all contact points will be on a circle around O.
Also, no probe will contact a vertex until it is unavoidable. To delay these exceptions, we
may relabel the contact points until it leads to a contradiction.

First note that for any 2n — 2 points on a convex curve we can construct two convex
n-gons such that each point is on the interior of an edge of each polygon, as is illustrated in
Figure 4. Thus the 2n — 1th probe can be forced not to contact a vertex by suitable choice
of the two possibilities. To verify an n-gon, each of the n vertices must be probed. Thus at
least 2n — 1 +n = 3n — 1 probes are necessary.

Unfortunately, the powers of finger probing prove sharply limited when we attempt to
generalize the objects beyond a single convex polygon. Under Cole and Yap’s model, there
does not exist a finite strategy for determining a star-shaped polygon or multiple convex



Figure 5: A star-shaped polygon which is unverifiable by finger probing.

polygons using finger probes [74]. For multiple objects we make our standard assumption
that we know the coordinates of a point O within each polygons, which provides the general
location of each object.

To show that there does not exist a finite strategy to verify a star-shaped polygon with
finger probes, even if the vertices are in general position, consider the star-shaped polygon in
Figure 5. The difficulty is in verifying the edge e = (v2, v3). No number of probes intersecting
e is sufficient, since a polygon P can be constructed for any such set of probes where the
points of intersection are collinear despite each being incident upon different edges. Since v
and v, prevent probing directly along e, P is not distinguished from P. This proof does not
hold when probes may originate from a finite distance, and using a different finger probing
model to determine non-convex polygons is discussed in Section 2.3.

Dobkin, Edelsbrunner, and Yap [16] consider probing convex polytopes in higher dimen-
sions. Beyond two dimensions, the number of vertices is no longer identical to the number
of facets, so upper and lower bounds must be expressed in terms of f;(P), which represents
the number of i-dimensional faces of P, for 0 < i < d. So fo(P) is the number of vertices,
f1(P) the number of edges, and f4—1(P) the number of facets, the (d — 1)-dimensional faces,
of P.

They show that fo(P)+5f2(P) finger probes are sufficient to determine a convex polytope
in E3. The basic strategy is similar to what we have seen in the plane; conjecture and
verify vertices and facets of P. If we can insure that only a constant number of probes are
incident upon each face, this yields a linear probe strategy. However, the generalization is
not straightforward. In E?, three collinear contact points verify an edge. Unfortunately, no
number of co-planar contact points are sufficient to verify a facet in £2, unless one point lies
within the convex hull of the others, since these points can simply represent a cross-section
of P.

Also in [16], a lower bound of fo(P) + f2(P) is given for verification, noting that each



vertex and facet must be probed to ensure all vertices have been confirmed. These results
are also generalized to d dimensions, for a lower bound of fy(P) + fs—1(P) and an upper
bound of fo(P) + (d + 2) fa—1(P). Lindenbaum and Bruckstein [51] give an improved lower
bound of dfy(P) + fa_1(P).

2.2 Restricting the Objects

In the strategies we have considered thus far, all that was known about the objects was a
point within the interior and that they were convex. If we know more information about the
object, we may be able to determine it with fewer probes. Sometimes the extra information
reduces the number of probes required by only an additive constant, which becomes negligible
as n gets large. However, sometimes the multiplicative constant can be improved.

A natural question is how much knowing the number of vertices of P helps in probing
it. Cole and Yap considered this problem, showing that 8 probes are sufficient to determine
a triangle and giving a lower bound of 2n + 1 probes. An elementary 3n — 1 probe strategy
for determining a convex n-gon if n is known is given in [74]. This modifies the stopping
criteria of Cole and Yap’s strategy to save a single probe.

Tightening these bounds is an open problem. The subtlety of a tight lower bound argu-
ment when n is known is illustrated by the dramatic consequences for verification. 3[n/2]
probes are sufficient to verify a convex n-gon if n is known [74]. Simply label the edges as
even or odd. For each even edge e, make three probes: along e in both directions and one
incident to the center of e. These probes verify each even edge and prove that the endpoints
are vertices. Clearly, knowledge of all n vertices determines P.

Since constructing high-level computer vision systems has proven to be a difficult prob-
lem [42], tactile sensing has been studied as an alternative for robotic assembly systems.
The abstraction of such systems are very similar to finger probing. In a mechanical assem-
bly problem, the geometry of the parts is known to the robot, which must use sensing to
determine their type and orientation. Such problems are called model-based and differ from
the determination problems we have discussed in that the objects come from a finite set.

Here we review the work that has been done in tactile sensing and robotics. This work
is closely tied to real world applications. The problem of determining an object via tactile
sensing can be studied from several different perspectives. Researchers at MIT [26, 33] have
considered using heuristics to reconstruct polyhedra from random or oblivious probes, instead
of defining a strategy to plan the probes. Their probing model is somewhat more powerful
than the finger probe, returning both a contact point and the surface normal at that point.
From a small number of such tactile probes, they construct an interpretation tree consisting
of the possible mappings between contact points and the faces of model polyhedra. By using
local geometric constraints such as whether the distance between two probes is consistent
with the edge labelings, they prune this interpretation tree for m edges and s probes from
m® nodes to, what is in practice, a small number of interpretations. This system works well
even with non-convex polyhedra and for modeling sensing errors. It has been extended, with
somewhat less success, to the bin searching problem of overlapping parts [34] by adding a
‘null face’ to the interpretation tree, which accounts for probes which do not contact the



intended object.

Grimson [31] made a brave attempt to explain the excellent average case performance
of these oblivious tactile sensing strategies. If p is the probability that two random probes
represent a consistent set of interpretations, then it can be shown that the expected number
of consistent interpretations I.,, after s probes is

Iemp = msp(g)

where m is the number of model faces. From this can be calculated the expected number
of probes where I, is largest, and when there remains only one consistent interpretation.
One consistent interpretation can be expected when

B 2logm
log p

s=1

Of course, it is difficult if not impossible to determine p for a particular model. Regular
convex polygons will never converge upon a single interpretation. Grimson computes p by
assuming a uniform distribution of points in his relative configuration space. His results
compare well with the results of simulations and are generalized to account for uncertainties
in measurement.

Several researchers have developed strategies for using these tactile sensors. Grimson [32]
proposes the following scheme to select a probe which distinguishes between two or more
possible orientations. Select a probing direction, ie. the slope but not the intercept. Project
the visible vertices of the orientations onto the line normal to this direction. This divides the
line into segments. The midpoint of the segment which distinguishes the largest number of
orientations, subject to measurement uncertainty, defines the probe. An extensive analysis
of the error terms are provided.

Ellis, Riseman, and Hanson [19] describe a similar system which represents probes inci-
dent upon an edge as a trapezoid in a projective space and selects a probe which is represented
in the intersection of a number of trapezoids. They consider the problem of stability, where
a probe at too oblique an angle deflects off the polygon. Spyridi and Requicha [80] consider
inspection problems with coordinate measuring machines, which are closely related to finger
probes.

For industrial robot applications in manufacturing and assembly, either the parts must
be carefully positioned for the robot to manipulate or the robot must be able to detect
the orientation of parts and adjust to them. Since the technical problems associated with
computer vision systems remain very difficult, systems for the sensorless orientation of ob-
jects [60] or using simpler, more robust sensors to determine orientation have been studied.
Natarajan [61] poses the problem of determining the orientation of a known polytope moving
past simple ray sensors on a guide plane, with improved results appearing in [74]. Lyons and
Rappaport [55] consider a similar problem: given a collection of m known convex polygons
with fixed orientation on a plane, how many finger probes are required to identify an instance
of one of the models? They prove that m — 1 finger probes are necessary and sufficient to
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Figure 6: Determining the next edge of model polygon P.

determine the instance, which is interesting because this result is independent of the number
of sides in the models. This property is lost when the models may assume arbitrary orienta-
tions. Belleville [7] shows that the problem of minimizing the number of probes to identify
a unimodal convex polygon from a set of oriented models is NP-hard, when all probes must
be made simultaniously, instead of interactively as in the problem posed by Cole and Yap.

Since model based problems predominate in robotics, it is not surprising that general
probing strategies have been developed. Two distinct model-based determination problems
will be considered, the first when all the models are convex and the second with much more
general objects. For both problems, we assume there are m distinct models of at most n
sides each.

Bernstein [8] gives a solution to this problem for convex polygons. Surprisingly, his result
that any convex polygon from a known set of models can be determined in 2n + 2 probes, is
independent of the number of models m. Joseph and Skiena [43] improved this to within an
additive constant of optimality, showing that n 4+ 3 probes are sufficient and n — 1 necessary
to determine a convex n-gon P selected from a finite set p.

The intuition behind these strategies is that if the set of candidate polygons is known, it
is possible to aim probes close enough to each other to insure that they are incident upon the
same edge. In particular, we need to pre-calculate two quantities from the set of polygons p.

The first quantity is an angle 6. small enough, so whatever the point is selected as

origin and whatever polygon is the model, aiming five probes at O within #? . means the
contact points are on at most two consecutive edges. Thus one edge gets at least three
contact points, determining it.

For any convex polygon P with vertices V' = vy, ..., v,, let hY. = min{d(v;v;1,v)|v #
v;, Vi1, where d(I, v) represents the minimum distance from line [ to point v. Thus any probe
sent parallel to a known edge e of P within kL, of e is guaranteed to hit the next edge, as
in Figure 6. Finally, let h2. = min{hl, |P € p}.

With these two quantities pre-calculated for p, a strategy is to send probes towards O
within an angular sector of 67, until three are collinear. This must happen after at most
five probes regardless of which model P is, with up to two probes contacting a neighboring
edge. We now walk around P, aiming two probes parallel to the previous edge of P within
h? . of it, so these two probes are guaranteed to contact the next edge. These two points

determine the new edge and we can resume walking around P in this manner until P is
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determined. By refining A’ as discussed in [43], in fact one probe is sufficient to determine

the next edge, resulting in an n + 3 probe strategy. The key idea is aiming the probes below
the lowest point of intersection in an arrangement of superimposed models.

Things get much more difficult when the models move beyond convex polygons. For
example, 0. is no longer necessarily > 0, since a point within P can lie on a line defining one
of its edges. Unfortunately, as we move beyond convex polygons, we lose the independence
on m. In [74], it is shown that O(mn) probes are both necessary and sufficient to determine
an n-gon P selected from a set p of m star-shaped models if O is within the kernal of P.

This dependence on m proves it is difficult in the worst case to distinguish between
multiple non-convex models. Thus, it is understandable that heuristics have been used for

this problem, particularly in light of Grimson’s [32] average case results.

2.3 Other Models of Finger Probes

We have considered using finger probes to determine an unknown convex polygon or identify
a polygon drawn from a known set of objects. Researchers have also studied different models
of tactile sensors, with interesting questions of how increasing the power of the probe effects
its efficiency at determination and verification. The goals of such efforts include increasing
robustness, determining non-convex objects, and studying the effect of parallelism.

Dobkin, Edelsbrunner, and Yap [16] consider the problem of probing with uncertainty.
This is clearly of practical importance, since any real world sensing device would have some
degree of measurement error, and the probing strategies we have seen are not robust. For
example, we aim probes directly at vertices, which is not a stable operation. One way to
formalize uncertainty is to assume a lower bound [ on the size of any edge of P and that the
returned contact point on all probes is within a distance € of the actual contact point. If € is a
function of [, meaningful results can be expressed in terms of € and n. Particularly interesting
will be the relationships between the uncertainty of the probing device €, the desired accuracy
of reconstruction ¢, and the number of probes needed to achieve it. Obviously, there are
many alternative ways to formulate probing with uncertainty. Lindenbaum and Bruckstein
[52] remove the assumption that the object is a polygon, and provide an adaptive strategy
to find an approximate reconstruction under the Hausdorff metric. This work is based on
line probes, which are duals of finger probes as discussed in Section 3.1. Related work on
polygon approximation appears in [65, 70].

As we have seen, Cole and Yap’s finger probing model is not powerful enough to determine
non-convex objects. There are three major reasons for this, illustrated in Figure 7. A tiny
crack in an edge can go forever undetected, since no finite strategy can explore the entire
surface of the polygon. Second, it is easy to construct non-convex polygons whose features
cannot be entirely contacted with straight-line probes. Finally, there exists no constant k
such that & collinear probes determines an edge.

Alevizos, Boissonnat, and Yvinec [4, 3] attack each of these problems to develop a tactile
sensing model which can determine a large class of polygons. To eliminate the problem
of tiny cracks, they limit their attention to polygons where each of the supporting lines of
the edges are unique. To eliminate the problem of reachability, they generalize the probe
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Figure 7: Generalizing finger probing to non-convex objects.

paths from directed lines to arbitrary curves. Finally, they augment the sensor to return
the surface normal as well as the contact point. This is a reasonable assumption since the
surface normal is determined locally, and permits an edge to be determined with each probe.
In the event that a probe contacts a vertex of the polygon, they assume that normals for
both adjacent edges are returned.

Under this model, they prove that 3n — 3 probes are necessary and sufficient to determine
a simple n-gon with non-collinear edges. Similar questions can be asked for collections of k
polygons or polyhedra in E3. Boissonnat and Yvinec [11] (corrected [12]) prove that a scene
of k polyhedra with a total of n faces and m edges can be determined in 10n(m+k)/3—2m—3k
probes, where no two edges are collinear and no two faces coplanar.

The relaxation of the convexity constraint has a variety of effects on reconstruction from
finger probes. Consider probing the boundary of a simple, closed curve. With convex objects,
the order in which a set of contact points occur on the curve is uniquely determined by their
convex hull, but the situation gets more complicated with arbitrary closed curves. Alevizos,
Boissonnat, and Yvinec [2] prove that a unique solution exists given the probe paths as well
as the contact points for arbitrary closed curves, and further such an order can be found in
O(nlogn) time where n is the number of probes.

Parallelism is a technique commonly employed to speed up a computation. The problem
associated with parallelism is the degree of achievable time speedup for a problem of size
n given k processors. Clearly, in the best case, the job can be completed k times faster.
However, the structure of most problems makes it impossible to realize this. This is true in
real life as well as theory, as anyone who has ever been on a committee can attest.
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Now we can consider the problem of to what extent we can speed up the number of
“rounds” it takes to determine a convex object, when we have the ability to make up to k
probes per round. This is similar in flavor to the “sorting in rounds” problem [64] which has
been extensively studied. By Cole and Yap’s strategy, 3n probes suffice for any £ > 1, and
their lower bound shows 3n/k rounds are necessary. For k = 2, [74] shows that 8n/3 probes
are sufficient.

Lindenbaum and Bruckstein [53] prove bounds tight to within an additive constant for
all k. For k = 2, they show 2n — 2 probes are necessary and 2n sufficient. For k = 3, they
show 2n — 3 probes are necessary, and 2n sufficiency follows from the strategy for k = 2.
For k = 4 or k = 5, they show that (4n — 5)/3 are necessary and |(4n + 2)/3] sufficient.
Finally, for k£ > 6 n probes are necessary and n + 1 sufficient. Their parallel strategies are
fairly simple to implement and describe, but the complexity analysis is more difficult.

3 Hyperplane Probes

At an early age, we are taught that it is not polite to point. Finger probes are defined in
terms of a moving point, like a finger. Here we introduce the notion of the hyperplane probe,
which is defined as a moving hyperplane which stops when it is tangent to the polytope.
The palm of a hand which hits an object is an example of such a probe. As we shall see,
this anthropomorphic description is not the only connection between finger and hyperplane
probes.

The terminology has the potential to become confusing, as the same concept has been
referred to in the literature as line probes [49], support planes [30, 51], and hyperplane probes
[16]. We will use the following terminology. A hyperplane probe will be a (d — 1)-dimensional
hyperplane, typically aimed at a d-dimensional object. A one-dimensional hyperplane probe
will be called a line probe. Like finger probes, hyperplane probes originate from infinity.

3.1 Duality between Finger and Hyperplane Probes

Duality [14] is one of the fundamental ideas of computational geometry and occurs frequently
in many areas of mathematics. Two problems P, and P, are duals if there is a transform
which relates each instance of P, to a unique instance of P, and each instance of P, to a
unique instance of P;. Thus any algorithm which solves one of the problems can also be used
to solve the other, since any instance of P; can be transformed to one of P, and solved with
the known algorithm. Duality is important because it provides alternative representations
for problems which lead to solutions which otherwise might not become apparent.

We will demonstrate the power of duality by proving that finger and hyperplane probing
are really identical problems. This duality relationship was independently discovered by
Dobkin, Edelsbrunner, and Yap [16] and Greschak [30].

Let P be a convex polytope and O be a point within P. Each point p # O defines a
vector in £ Let the dual of p, d(p), be the closed half-space containing O, defined by the
hyperplane normal to the vector p containing the point p/ |p|2. The dual of the polytope P
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Figure 8: The dual of a polygon.

is defined
D(P) = (1 d(p)

peP

Figure 8 shows the effect of the duality transform on a polygon. Each vertex v of P
is replaced by an edge e of D(P) which is normal to (O, v). Likewise, the normal to each
edge of P defines a vertex of D(P). The dual of any hyperplane probe which contacts v of
P corresponds to a finger probe which intersects e. If we consider a finger probe moving
towards the origin, it dualizes to a hyperplane probe moving normal to it away from the
origin. The finger probe contacts P at the last point in time when the hyperplane probe
intersects D(P). We can thus view the hyperplane as moving towards D(P) and stopping
when it touches D(P) - this gives the same result and is more intuitive than the hyperplane
that moves away from the origin.

Thus, any strategy for finger probing where all probes are aimed through O defines a
strategy for hyperplane probes. Dualizable results include the 2n bound for verification of
convex polygons and and the 3n determination lower bound. Unfortunately, the optimal 3n
determination strategy of Theorem 1 and the n + 3 model-based strategy of [43] rely on at
least one non-origin probe and do not dualize to line probes.

In fact, the line probing model is slightly weaker for determining convex polygons than
the finger probing model. Li [49] showed 3n + 1 line probes are necessary and sufficient for
determination, using a simplified dual of the finger probing strategy of Theorem 1.

If we dualize a finger probe f which is not directed through O, it sweeps out a region
between two hyperplanes, as the hyperplanes rotate about an axis. The first hyperplane is
defined by its normal f and O and the second hyperplane intersects D(P) in the appropriate
point. Thus any finger probing strategy is equivalent to a combined strategy of hyperplane
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probes and probes which rotate hyperplanes around a (d — 2)-dimensional flat, which we
call supporting hyperplane probes. The (d — 2)-dimensional axis of rotation is a dual of the
line defining the finger probe. The direction of rotation is specified by the direction traveled
along f.

Supporting hyperplane probes occur naturally in various robotics problems. In E?, we
can consider supporting line probes. Specified by a starting point p, angle, and direction of
rotation, they return the angle of the line through p which first intersects P. By considering
two such probes with opposing directions of rotation, we obtain an angle range over which
P lies. This is exactly the information obtained by gripping the object between two fingers
of a rigid but endless hand. An alternate and more realistic problem involves a finite sized
claw, such as the section of an object one can grab with a hand. Okada and Tsuchiya [62]
discuss a system which distinguishes between a ball, cylinder, and various prisms using the
contact points of finger positions while grasping the object.

The model-based finger probing strategies of [8] and [43] do not dualize to line probes.
However, in [43] we prove that 2n +4 probes are sufficient to identify a convex n-gon from a
collection of known models p. Further, 2n — 3 probes are necessary, so the bounds are tight
to within an additive constant.

3.2 Silhouette Probes

One problem researchers in computer vision must contend with is that photographic images
can provide too much information. It is difficult for a program to associate regions of different
shadings as portions of the same object. Thus they often deal with silhouettes, thresholded
binary images when the object is dark and the rest of the image is light, like a shadow where
the illumination originates from infinity. Projecting a silhouette defines an infinite cylinder
in which the object must lie. Intersecting several silhouettes refines our knowledge of the
object’s shape and has formed the basis of many vision and solid modeling systems. For
example, Wang, Magee, and Aggarwal [86] describe a system which performs model based
recognition of different types of cars from their silhouettes. See Martin and Aggarwal [58]
for more extensive references on the applications of silhouettes.

There is a duality relationship between silhouette probes and the equally natural notion
of cross-sectional slices. The cylinder defined by a silhouette with direction ¥ represents the
intersection of half-spaces containing O and defined by all hyperplane probes perpendicular
to . The duals of these hyperplanes are the complete set of finger probes along a slice
through O perpendicular to .

In two dimensions, a silhouette probe represents two line probes with identical slope
originating from +oo. Each such probe dualizes to the pair of finger probes defined by a line
through O, the cross-sectional interpretation. Li [49] terms two-dimensional silhouette probes
projection probes and proves that 3n — 2 probes are necessary and sufficient to determine
convex polygons with silhouettes. Thus in the worst case, only three probes are saved using
projections instead of single line probes. Weaker results for this problem were independently
proven by [59]. Prince and Willsky [65] reconstruct convex sets from noisy silhouette probes,
also called supporting lines.
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Li proves the upper bound by describing three projection probes which do the work of
the first six line probes in the 3n + 1 determination strategy. From here the 3n + 1 strategy
can be continued, with the other side of the projection probe ignored. To prove a matching
3n—2 lower bound, the adversary works with a convex polygon P such that both the interior
angles incident upon an edge e are acute. Thus at least one half of any projection probe
contacts e, meaning that once e is determined half of each projection probe is wasted.

It is interesting that doubling the number of probes only buys us an improvement of three
in the time it takes to determine polygons. Lindenbaum and Bruckstein’s results reported
in Section 2.3 show that more dramatic improvements are possible when the two probes per
iteration are not restricted to the same line.

Silhouette probes also provide surprisingly little power in higher dimensions. Recall
that silhouette probes are dual to cross-sectional slices. Dobkin, Edelsbrunner, and Yap
[16] prove that fo(P)/2 cross-section probes (fa(P)/2 silhouette probes) are necessary and
fo(P)+5f2(P) (5fo(P)+ f2(P) silhouettes) are sufficient to determine a convex polyhedron
in E3. These bounds are optimal within a multiplicative constant, since 3fo(P) — 6 < fo(P)
by Euler’s formula.

A simple verification argument suffices to show the lower bound. Let P have no three
vertices be co-planar with O. Since every vertex must be the vertex of a cross-section to be
verified, at least fo(P)/2 probes are necessary. For sufficiency, we note that a finger probe
can be wastefully simulated by a cross-section probe perpendicular to the desired probing
direction. The result follows from the complexity of the higher dimensional finger probing
strategy of [16]. For silhouettes, we simulate a hyperplane probe.

It is an open problem to tighten these results, noting that Chazelle, Edelsbrunner, and
Guibas [13] prove there exist polytopes such that each silhouette has at most O(log n/log logn)
edges.

In the problems we have studied thus far, the dimension of the probe was always one
less than the object being probed. For example, we used line probes to determine convex
polygons. It is possible to develop a strategy for using line probes to determine convex
polyhedra. This increased gap in dimension leads to interesting problems.

Edelsbrunner, Dobkin, and Yap [16] present a 9fo(P) + f2(P) strategy for reconstruction
with line probes. Unfortunately, their strategy is very unstable, as each vertex is verified
by two opposing line probes, which sweep out a plane except for clipping the vertex. A
more stable linear algorithm for determination with line probes appears in [74], where it
is shown that fo(P) + f2(P) line probes are necessary and 2fo(P) + fi(P) + 13f2(P) line
probes sufficient to reconstruct a convex polytope P. Boissonnat and Yvinec [12] consider
line probes to determine non-convex polyhedra.

4 X-ray probes

In this section, we consider the problem of reconstruction with x-ray probes. An z-ray probe
X (P, 1) is defined to be the length of intersection between a polygon P and the line [. X-ray
probes have characteristics which make them more difficult to use than finger or hyperplane
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Figure 9: Different polygons satisfying the same collection of x-ray probes.

probes, but also have a close connection to important problems in tomography.

A collection of x-ray probes through an object provides us with a great deal of information
about it but not directly with the coordinates of a point on the surface. Obtaining such
absolute information is the difficulty in working with x-ray probes. Figure 9 demonstrates
some of these difficulties; the collection of probes provides very little constraint on the
location, shape, or number of sides of P. Another polygon P bears little resemblance to P,
but gives identical results for the collection of probes. In fact, the complete set of probes
X(P,1(0,0)) through O over all angles 6 describes two different polygons, P and P reflected
through O, denoted as —P. Thus x-ray probes are a fundamentally different type of device
from finger probes, although it is not clear which should be considered more powerful.

Radon [66] proved that any reasonable function f(z,y) in two variables can be recon-
structed from the complete set of line integrals of this function and developed the Radon
inversion formula to specify how this can be done. This is the fundamental result upon which
tomography is based. However, it can be shown [38] that in general all line integrals are
necessary for reconstruction. We shall show that if f(z,y) is restricted to convex polygons
that a finite collection of x-rays are sufficient for determination.

4.1 Tomographic Reconstruction

Tomography, from the Greek word for “cut”, is the field which studies image reconstruc-
tion from projections. CAT scanners and other tomographic imaging systems represent a
tremendous step forward in our ability to diagnose tumors and other medical problems. G.
N. Hounsfield and A. M. Cormack were awarded the 1979 Nobel Prize in Medicine for their
contributions to tomography. For more extensive surveys of tomography, see the textbook
by Herman [38], a special IEEE Proceedings issue devoted to computerized tomography [39],
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or one of the following excellent articles [73, 79].

Tomographic scanners estimate line integrals by sending an energy pulse of some type
through the object and measuring how much energy is absorbed. In a heterogeneous material,
each different component will transmit a different percentage of energy per unit distance.
The image reconstructed will be a map of these attenuation coefficients. A wide variety of
sensing technologies have arisen, based on different types of energy sources.

The most common form is z-ray tomography, where a point radiation source is aimed
through the patient to a point detector. The pattern used for collecting line integrals de-
pends upon the type of scanner. In fan beam scanners, a collection of rays eminate from a
single point source. Pencil beam scanners use several sources and detectors defining a set of
parallel lines. In both cases, the sources and the detectors rotate together and measurements
are taken at regular angular intervals. Single-photon emission computed tomography [45] re-
lies upon the patient ingesting some radioisotope, with the sensors being located outside the
body. A collimator is used to insure that the measured photons are identified by direction.
Ultrasound [29] is a non-electromagnetic technology which uses sound as the energy source.
Since sound needs matter to travel though, there are strong interactions with physical prop-
erties of the tissue to measure. Nuclear magnetic resonance [40] or NMR immerses patients
in a magnetic field and measures variations in the field resulting from molecular interactions.
These interactions depend upon the molecular properties of the material.

We have made the assumption throughout this paper there is no error associated with the
results of any probe. While this abstraction makes possible all of our results, it is not a valid
assumption for real measurements. For this reason, tomographic reconstruction algorithms
rely heavily on mathematical techniques developed in signal processing to handle noise.
It is these considerations that makes tomographic reconstruction techniques an interesting
combination of pure mathematics and ad hoc engineering.

There are three major types of reconstruction algorithms in use. Backprojection methods
reconstruct the value of a pixel as the average value of the rays through the point, normalized
by the distance the ray passed through the pixel area. Obviously, such techniques cannot
reconstruct a low density area surrounded by high density material, such as brain tissue
surrounded by the skull. Although simple to implement and understand, they have no real
mathematical pedigree and give poor results.

The most important reconstruction algorithms are transform methods, which are direct
implementations of the Radon inversion formula. A detailed discussion of such methods
is well beyond the scope of this paper. Since the theory is based on having the complete
set of line integrals, interpolation techniques are used to approximate this from the set of
observations. There is a close relationship between Radon and Fourier transforms which is
exploited in these algorithms.

Since the final image to be displayed will be a matrix of pixel values, algebraic recon-
struction techniques view reconstruction as an optimization problem, where each pixel is a
different variable. Each probe represents a linear constraint, where the weighted sum of the
pixels traversed by the probe is set equal to the value of the line integral. Due to insufficient
data or errors leading to inconsistent constraints, this is typically solved as an optimization
problem, according to some criteria such as least squares. Additional constraints to produce
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certain smoothness properties can also be included.

Three dimensional reconstruction is typically done by combining information from a
number of two-dimensional slices. Boissonnat [10] describes an algorithm for constructing a
polyhedron from a set of planar cross-sections based on Delaunay triangulations. There has
been work done on full three-dimensional reconstruction by using non-parallel cross sections,
although for many medical imaging applications obtaining such measurements is impossi-
ble. Such algorithms can be based on either transform methods or algebraic reconstruction
techniques.

The probing problems in this paper are primarily interactive. The direction of probe p;11
is a function of the results of the first ¢ probes. This is different than in traditional tomo-
graphic systems, where the selection of probes is made in advance. To minimize the amount
of radiation the patient is exposed to, it would be desirable to identify the probing direction
which will provide the most information. With the advent of more powerful computers and
special purpose signal processors, interactive tomography becomes a possibility.

4.2 Bounds for X-ray Probes

We can prove a non-trivial lower bound for determining convex polygons by x-ray probing
with a comparison to finger probing, since any x-ray probe X (P, 1) can be simulated by two
finger probes. Simply send finger probes down each end of the line, and compute and return
the Euclidean distance between these two points.

Using Cole and Yap’s 3n lower bound for finger probing, this gives a 3n/2 lower bound
for determination with x-ray probes. However, Lindenbaum and Bruckstein [54] prove a
3n — 3 lower bound for determination where two opposing finger probes on a line count as
a single probe. This is a generalization of Li’s [49] projection probe where the lines do not
have to go through the origin. Since an x-ray probe provides strictly less information than
one of these probes, 3n — 3 x-ray probes are necessary to determine a convex n-gon.

For a determination strategy, we must obtain absolute information about the polygon.
To obtain absolute information about P from x-ray probes, it is necessary to think in terms
of groups of probes which work together to determine something about P. This leads us to
consider four different classes of probes, and study the powers and limitations they possess
and how they interact to lead to probing strategies.

The first class of probes are origin probes, a set of x-ray probes all aimed through a
common point O within the object. Any x-ray probe which hits a convex polygon and
avoids its vertices will go through exactly two edges of the object. The largest number of
such edge pairs is n [17].

We can define a mapping of X (P, (O, 0)) to two points p; and p, on [(O, #) at a distance
X(P,1(0,0)) from O, where [(O, 0) is the line through O that encloses an angle of 6 radians
with the x-axis. By the following result, these points lie on hyperbolas defined by the edges
probed through:

Lemma 2 Letly : y = mix + by and Iy : y = mox + by be two distinct lines and map each
angle 0 to the two points on line 1(O,0) at distance d from O, where d is the distance between
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Figure 10: Hyperbolas associated with two straight lines.

I1NI(0,0) and ;N 1(0,0). Then these points define the hyperbolas
v — zy(my + ma) £y(by — by) — 2% (myma) £ z(miby — maby) = 0.

Proof: Consider the situation in Figure 10. The line I(O, #) contains points (z,y) such that
y = tan(f)x. With t = tan(6), we have

d = /(14 2)(ba/(t — ma) — by/(t —my))2.

The z-coordinates of the corresponding points can be found by subtracting the z-coordinates
x1 and x5 of the intersections of [(O, 0) with [; and with [y, respectively:

xr = :f:($2 — $1) = i(bg/(t — mg) — bl/(t — ml))

This can be solved for t and used with y = tx to get y as a function of x. To obtain a simpler
formula, we set A = mqi+mq, B =mimso, C = by — by, and D = m1by — msb;. Then we have

Az ¥ C + \/(Az ¥ C)2 — (4B2? £4Dx)
a 2

Y

and

Az ¥ C — \/(Az F C)? — (4Bx? £ 4Dx)
5 .
After simplification, this reduces to the assertion. J

’y:
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Figure 11: The “spider web” S(P) around a convex polygon P.

We will use Lemma 2 to determine the equations of the lines that contain edge pairs. If
we have some number of origin probes through a common edge pair, then we can determine
the hyperbolas through the associated points. From the equations of these hyperbolas, we
then deduce the equations of the lines.

The hyperbolas that show up in Lemma 2 are defined by four constants A = my + mo,
B = mymso, C = by — by, and D = mibs — myby. It follows that, in general, four probes
through a pair of edges is enough to determine the hyperbolas, and from the hyperbolas the
equations of the lines that contain the two edges. Given A, B, C', and D, we have

A+ +A%2—-4B AFVA?2—-4B
- 2 e 2
C 2D+ AC —C 2D + AC
bl = —* Y, and bg = + .
2 2¢/A?2 - 4B 2 2/ A2 — 4B

From these equations two limitations on our ability to reconstruct the edges are apparent.
First, there is the ambiguity between P and —P. More serious is that b; and by are undefined
when the square root vanishes, that is, when m; = msy. Thus any probing strategy using
origin probes must take special action on parallel edges. Note, however, that there is no
ambiguity between P and — P for parallel edges, since reflection through O is equivalent to
rotation through 7 radians.

We can now recognize the structure formed by mapping origin probes to points. Each
opposing pair of edges gives rise to their own pair of hyperbolas. Two adjacent hyperbolas
meet on the line through O and each vertex. Thus the probes define the extremes of a
“spider web” S(P) (see Figure 11) around the object. This permits us to interpret an origin
probe for P to be a finger probe on S(P). Both P and —P generate the same spider web,
S(P) = S(—P). S(P) consists of at most 2n pieces of hyperbolas.

However, to make use of these properties of origin probes for a probing strategy we need
some means to verify that four or possibly some higher but constant number of origin probes
pass through the same pair of edges. With finger probes, it was possible to confirm an edge

ma
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Figure 12: The histogram C(P,#), § = 0, of a convex polygon P.

with three probes; two to define it and one in-between to verify it. Unfortunately, a constant
number of extra confirmation probes lying on the same hyperbola is not sufficient to verify
an edge pair [17].

Verifying edge pairs is the motivation for parallel probes. Parallel probes are a set of x-ray
probes aimed with a common angle . A complete collection of parallel probes for a given
angle produce a histogram C(P,0) (see Figure 12) of the thickness of the obstacle. This is
the situation in a medical x-ray photograph. Formally, C'(P, ) is obtained as follows. Let
b, the base line, be normal to the probing direction # and call one of the half-planes defined
by b its positive side. Let [(b, p) be the line normal to b such that p = bN (b, p); thus, I(b, p)
has angle §. We map the probe X (P, (b, p)) to the point on (b, p) at distance X (P,1(b,p))
from b that lies in the positive side of b. C(P,0) is the polygon bounded by b and the images
of all probes with angle . For a convex n-gon this histogram will be bounded by up to n
line segments, including the one on b. C(P,0) is convex for all convex P over all angles 6.
Note that an x-ray probe with angle 6 can be interpreted as a finger probe on C'(P,#). Each
vertex of C'(P, ) determines a line on which must lie a vertex of P. Thus they provide a
capability for verifying edge pairs. In fact, three parallel probes through a pair of edges are
sufficient to verify them.

There are two apparent weaknesses of parallel probes. First, a finite number of them can-
not be guaranteed to locate certain vertices, specifically the extreme vertices that correspond
to the vertices of C'(P,#) that lie on the base line b. Without any bounding information,
repeated probes may intersect the same pair of edges. Second, once a vertex is finally lo-
cated, it is impossible without more information to distinguish whether there are one or two
vertices on the line.

It is interesting to consider using an infinite number of parallel probes, as approximated
in medical x-ray photographs where all probes perpendicular to the photographic plate are
recorded at once. The first weakness vanishes although the second remains. This problem
was first posed for convex sets by P.C. Hammer in 1963 [36] and will be discussed in Section
4.3.
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Since parallel and origin probes have complementary properties of verification and iden-
tification, by combining them we can obtain our first piece of absolute information about the
polygon. The idea behind this strategy is to bound a section of the polygon where we know
there must be at least one edge pair and repeatedly send parallel probes to this section until
three images on the boundary of the corresponding histogram are collinear. Once we have
an edge pair, origin probes can be used to determine the lines containing the two edges. The
procedure is complicated by parallel edges, but in [17] we show that 2n + 23 x-ray probes
are sufficient to identify the lines that contain the first pair of edges and a point on one of
the two edges.

A complete probing strategy for P could perhaps be constructed along these lines by
repeating the process for each pair of edges. However, since O(n) edge pairs can be parallel
this would lead to a quadratic number of probes. A simpler strategy can be developed once
we know a point on the boundary of P.

The power of the finger probe is that it returns a point on the boundary of the polygon.
To get a similar effect, we define the boundary probe, which relies on the observation that
sending an x-ray line probe through a known point on the boundary of a convex polygon
identifies another point on the boundary of the polygon. This means that once we have
identified the coordinates of any point p on the boundary of the polygon, any x-ray probe
through p determines another boundary point. The dual of Li’s [49] line probe determination
strategy can be modified to use boundary probes in place of finger probes.

Starting from one of the semi-verified edges, we will walk along the polygon, conjecturing
vertices based on the intersection of the semi-verified edge and the line defined by the next
two known points. Each of the n vertices will eventually be probed, and each of the n — 2
other edges will have at most two interior points probed, for a total of 5n + 19.

For determination in higher dimensions, at most fo(P) +4f2(P) + (d+2) fa — 1(P) + 46
x-ray probes are required to determine a convex polytope P in E? [17]. A linear lower bound
in £? and higher dimensions can be obtained from the lower bound for finger probing and
the fact that two finger probes can simulate an x-ray probe.

In any verification strategy, clearly each vertex and edge must be confirmed. Otherwise,
P could have a triangle on any unconfirmed edge or be truncated before any unconfirmed
vertex. Since an x-ray probe passes through members of the set of edges and vertices, and
there are at least 2n points of interest, n probes is a verification lower bound.

To verify a convex n-gon P, (3n/2) + 6 x-ray probes are sufficient. Given the polygon to
verify, three parallel probes are sufficient to verify the existence of a non-parallel edge pair
and three origin probes are enough to define the hyperbola of it. One final probe to verify
that P is not reflected through O identifies a boundary point.

From this boundary point, n boundary probes can verify the vertices. The remaining
n — 2 edges can be verified with (n — 2)/2 probes, each bisecting a different pair of edges.
Since P is the convex hull of its vertices, none of these probes can have length other than
expected without violating convexity unless there exists another vertex. Since 2n finger
probes are required to verify polygons, this is a case where x-ray probes are more powerful
than finger probes.
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4.3 Hammer’s X-ray Problem

P. C. Hammer [36] posed the following problems in 1963: How many x-ray pictures must be
taken to permit exact reconstruction of a convex body if the x-rays issue from a finite point
source?” How many are needed if the x-rays are assumed to be parallel? These problems
have since generated a substantial literature [20, 21, 22, 24, 27, 67, 85] which is based on
integral geometry [71]. The distinction between the two problems is basically the distinction
between origin and parallel probing [17] models as discussed above.

In the terminology associated with Hammer’s problem [23], a class of sets is “determined”
by n directions if there are n predetermined directions such that all sets can be reconstructed
from these n projections. Further, a class of sets is “verified” by n directions if for each
particular set there are n projections which distinguish this set from any other. Note that
this definition of determination is different from the notion of interactive reconstruction used
previously in this paper. Giering [27] proved that three parallel z-rays are sufficient to verify
any convex set, where a parallel x-rays consists of the set of all x-ray probes parallel to a
given direction. For the purposes of x-ray problems, a parallel x-ray can be reguarded as
equivallent to the corresponding Steiner symmetral. Gardner [22] and Voléi¢ [84] present
simpler proofs of Giering’s result. Gardner and McMullen [24] showed that any four parallel
x-rays are sufficient to determine a convex set, so long as their directions are not a subset of
the directions of diagonals of an affinely regular polygon. There also exist a body of results
for point sources, the complete set of x-ray probes originating from a point p, which may lie
either inside or outside the convex body. This is a more powerful probe than the complete
set of x-ray probes passing through O (an origin probe), since the second probe would be
unable to distinguish between a convex set K and the same set rotated 7 radians around O.
Falconer [21] proved that two point sources p; and pe, which lie on a line through the interior
of K are sufficient to reconstruct K. Voléi¢ [85] proves that three non-collinear point sources
are sufficient for determination. Except for Falconer’s, these results only demonstrate the
uniqueness of K and are thus non-constructive. Other results include [46, 47, 57].

These theorems have been derived for convex sets, not the more restricted set of convex
polygons. In this paper, we have only been concerned with polygons. It is not yet clear
whether some results for convex sets may be obtained from those on convex polygons by
suitable approximations.

First, we show that two parallel x-rays are not sufficient to determine a convex polygon,
where we now use ‘determine’ in the usual interactive sense. We will use an adversary
argument to show that there will be at least two convex polygons P which satisfy the results
of two parallel probes, regardless of how they are selected. Let the first probe return the
image of a trapezoid 7, and the second probe, aimed at an angle # with respect to [, return
a similar trapezoid 7». Figure 13 shows the construction of two quadrilaterals which both
give rise to images 71 and 7». Thus two parallel probes do not suffice to determine P.

Three parallel probes are sufficient to determine a convex polygon. Consider two orthog-
onal probes. From the first, we will obtain the complete set of x-coordinates of vertices in
P. From these we can determine z,,;,, the smallest distance between distinct x-coordinates.
Note that up to two vertices may lie on any line of the form = ¢. From the second probe we
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Figure 13: Two parallel probes are not sufficient for interactive determination.

will determine the complete set of y-coordinates of vertices and thus 9,,4,, an upper bound
on the length of intersection between any line y = ¢ and P.

Aiming the third probe with angle a, 7/2 — arctan(min/Ymaz) < o < 7/2 will insure
that no two vertices will be incident upon the same histogram line. This is steep enough so
that no line with angle o will contain two of the old intersections. A linear sweep through
the histogram vertices from the first and third probe will permit the intersections to be
computed in O(n) time.

For the probing models discussed earlier, the ability to interactively select probing direc-
tions is what made finite probing strategies possible. Aggregate probes are powerful enough
to wave this restriction. However, let P be a 2n-gon with equal sized isoscelese-triangular
“bites” taken out of every other corner. Then two distinct orientations of P exist where
each direction is perpendicular to the base of a cut, and as Figure 14 shows for both of these
every probe image is identical.

Origin probes present a different set of problems, which to solve we will need some earlier
results. Recall Section 4.2 where we showed that the complete set of x-ray probes through
O determines a “spider-web” So(P), which can be inverted such that any non-parallel edge
pair of P is determined up to rotation by m. It is this ability to determine edge pairs which
makes origin probes more powerful than parallel probes. Two origin probes are necessary
and sufficient to determine a convex polygon.

To show that two origin probes are sufficient, let O; be the origin of our first origin probe.
From the previous discussion, it is clear that if the resulting spider web indicates no parallel
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Figure 14: Directions from regular polygons do not suffice for determination.

Figure 15: The two cases with all parallel edge pairs.

edges (ie. a degenerate linear segment of Sp,(P)), that P is determined up to rotation and
that a second origin probe can easily be selected to distinguish between the possibilities P
and P.

Further, P is determined up to central reflection, or equivalently rotation through =, if
there is even one non-parallel edge pair in Sp, (P) since this pair of edges is determined. The
neighboring parallel edge pair has their slope m and the distance between them determined
by the inversion formula. A vertex of this edge is determined from the known edge pair and
with m gives the next edge. Walking around in this way determines P.

The only cases remaining are illustrated in Figure 15. Either O is within P or it is outside
P. If O is within P, all edge pairs are parallel which implies that P is centrally symmetric
with center O. However, for such a polygon P = P and the polygon is determined. In the
second case, O is outside P and P may be located anywhere in the angle sectors defined
by P. By convexity, there is at most one parallel edge pair of P, and the other edges are
defined by directions through O. With the slopes of all four edges known, a second point
can be selected to yield a non-parallel edge-pair and determine P.
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Figure 16: Invisible vertices in star-shaped polygons.

Aggregate probes make possible the determination of a larger class of polygons than for
single probes, since aspects of the entire polygon are recorded in each probe. However, one
important property of parallel probes for convex polygons does not hold for star-shaped
polygons, namely that each vertex of P lies on a line determined by each probe. Figure 16
shows how vertices in star-shaped polygons can be inwvisible to parallel probes. Gardner [23]
shows that star-shaped polygons cannot be determined (in the terminology of Hammer’s
X-ray problem) with constant number of probes, but the implications of this result on the
interactive reconstruction of star-shaped polygons is unclear.

This problem of invisible vertices leads to the study of k-projections, discussed in [77].
A k-projection of a set of n points is an orthogonal projection that yields at most k£ point
images. The hope is that further study of k-projections will provide insight into how many
invisible vertices can possibly remain after m probes.

5 Half-Space Probes

One of the most famous stories in the history of science is that of Archimedes figuring out
how to test if the King’s crown was made of solid gold as ordered or if the goldsmith cheated
and added silver to the metal. The problem revolved around how to measure the volume
of the irregularly shaped crown. Archimedes had the inspiration, while taking a bath, of
measuring how much water the crown would displace and comparing it to the volume of
water displaced an equal weight of gold. On making this discovery, he was so excited he ran
naked through the streets of Syracuse yelling “Eureka”. This tale provides inspiration for
the study of half-space probes.

We define a half-plane probe to be the area of intersection between a closed half-plane h
and a polygon P. Let h(l) be defined as the area of intersection between P and the closed
half-plane to the left of the directed line [. This notion can be generalized to half-space
probes in higher dimensions, where each probe returns the volume of P which intersects
with the half-space. There is a close relationship between x-ray and half-plane probes which
can be exploited to develop a linear half-plane probing strategy.

As mentioned above, the original inspiration for studying half-plane probes was the fa-
mous story of Archimedes measuring the volume of water the crown displaced. Such dunks
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in the tub are really half-space probes. More importantly, half-plane probing problems have
application to tomography and remote sensing, such as the lunar occultation observations
used to map astrostellar radio sources [81]. The instruments for measuring such radio sources
have a lower resolution than desired, so each measurement represents the total amount of
energy over an area. By waiting until the moon passes over a portion of the region and
measuring how much the energy is reduced, detailed maps of the source can be produced.
This is very close to our notion of a half-plane probe.

Half-plane probes have the advantage over other types of probes we have considered that
they in some sense reflect the entire structure of the polygon in every probe. Thus they
provide the possibility of extending probing results to simple polygons, since unlike with
finger and x-ray probes concave edges are potentially verifiable.

5.1 Upper and Lower Bounds

To obtain absolute information about P from half-plane probes, it is necessary to think in
terms of groups of probes which work together. These are the same classes as defined for
x-ray probes, and are again designed to reflect the complementary goals of recognizing and
determining edge pairs.

The first class of probes are origin probes, a set of half-plane probes bounded by lines all
aimed through a common point O within the object. Any half-plane probe which intersects
a convex polygon and avoids its vertices will go through exactly two edges of the object.

Each half-plane is defined by a directed line. We can therefore consider the complete
set of origin probes through a point O = (0,0) as defined by [, : y = tz, where t = tan(0),
27 < 0 < 0. These define a function f(t) = h(l;) — h(lp). This function will contain
enough information to determine the edges probed through, except for special cases. Here,
we consider f(t) for a wedge defined by two lines and containing the origin.

Theorem 3 Letly : y = myx+0by andls : y = mox+by be two distinct lines, my, mo, by, by #
0, P be the unbounded wedge between Iy and ly containing the origin, and let y = f(t) be
defined as above. Then

Ayt* + Byt + Cy + Dt* + Et = 0,

where A = 2mimgy, B = —2(m1*my + mimy?), C = 2mi*my?, D = by’>my — bi*my, and
E = m22612 — mlzbgz.

Proof: Consider the situation in Figure 17, where both edges intersect the x-axis. This
involves no loss of generality, since a rotation of the axes can always be performed. Hence,
we need not consider the case where either slope is 0. For any ¢, the area swept out between
y = 0 and y = tx is the sum of the areas of the two triangles defined by y = 0, y = tx, and
either [y or l. The value of y = f(¢) is defined to be the difference in area between the two
triangles, y = A; — As. More formally,

oty thy”
J= 2m1 (m1 — t) 2m2(m2 — t) ‘
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Figure 17: Defining f(¢), the probes through an edge pair.

Multiplying through by the denominators and simplifying gives the result. g

We note that f(¢) is infinite and hence ill-defined when ¢ is between m; and msy. For
example, when t = my or t = mg, f(t) reduces to m; = ms. This complication does not
occur when probing polygons since additional edges occur in this range. We will use Lemma
3 to determine the equations of the lines that contain edge pairs. If we have some number
of origin probes through a common edge pair, then we can determine the f(t) through the
associated points. From f(t), we then deduce the equations of the lines.

The function f(¢) is determined by five constants: A, B, C', D, and E. It follows that,
in general, five probes through a pair of edges are enough to determine the function. Since
all five constants are functions of the four line parameters they cannot all be independent.
Indeed, C'= A?/2. Given A, B, D, E, we can solve for the parameters of the equations:

—B++VB?—-2A3
2A

mi1 = Mo =

bz E‘I_mlD
.

b 2 E + ng
mz(mz _ml)’ ?

N ml(mg — ml)'

From these equations several limitations on our ability to reconstruct the edges become
apparent. Since b; and by are squared, we obtain no information on the sign of the intercepts.
Neither my or my are distinguished from each other, meaning we cannot associate which
intercept belongs to which line. More serious is that b; and by are undefined when m; = ms.
Thus any probing strategy using origin probes must take special action on parallel edges.

However, to exploit Lemma 3 we must insure our probes intersect the same edge pair.
Unfortunately, extra probes lying on f(¢) are not sufficient to verify f(t). Parallel probes
are a set of half-plane probes defined by lines of identical slope and direction. A complete
collection of parallel probes of a given slope 6 results in a cumulative area histogram C(P, 0)
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Figure 18: A polygon with C'(P,0) and its derivative.

Figure 19: Determining vertices of P.

of the area of the object. The derivative of C' at any point gives the value of the x-ray
probe defined by the probing line. The complete derivative of C' gives the result of a parallel
x-ray aggregate probe as shown in Figure 18. By analogy with x-ray probes, they provide
a mechanism for verifying edge pairs. Four parallel half-plane probes through an edge pair
are sufficient to verify the edge pair, where three x-ray probes sufficed for the same task.

As shown in [78], 3n+ 15 probes are sufficient to determine the first edge pair and a point
on the boundary of P, with up to 3n — 3 parallel probes defining a section to origin probe,
and the added complication of bounding the height of the polygon within this section, so
the probes intersect P within this section.

Probes through known points on the boundary of P are defined as boundary probes. We
can use boundary probes to develop a more efficient probing strategy through the observation
that three parallel probes through an edge pair are sufficient to determine the second edge,
if one edge is known to be contained in [y : mx + b.

After determining an edge pair, we have the situation in Figure 19. The edges contain
known points py, po and ¢, g2. We conjecture the edges meet at v. To test this, we need a
probe through ¢; and po. If it returns the area of triangle (¢, p2,v), we have verified vertex
v, otherwise, there is at least one additional edge in the unexplored corner. Let ¥ be the
point on Iy such that the result of this probe equals a(q, p2,v) — a(qe, ¥, v), where we define
a(a, b, c) to be the area of the triangle defined by the three points.
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Thus edge (p1p2) cannot extend past © without violating convexity. Probing parallel to
¢10 between ¢; and go we intersect a new edge pair, one of which is (q1¢2).

We can parallel probe this section, and then consider these probes as boundary probes
once we have determined an edge pair with (g;¢2) as the known line. Aim the ith parallel
probe between the (i —1)st and the (i —2)nd parallel probe. If it takes more than five parallel
probes to verify an edge pair, we have identified another section to parallel probe.

We shall pivot around edge (q1¢2), repeatedly determining the edge in the rightmost
unexplored section. Since the initial probe to verify the vertex corresponds to one of the origin
or parallel probes used previously, we only need four additional probes each to determine
the rest of the edges.

This completes the determination strategy for convex n-gons. As discussed above, 3n+15
probes are sufficient to determine the first two edges. From the preceding discussion, 4 probes
are sufficient to determine each additional edge. Thus the total number of probes required
is (B3n+15)+4(n—2)=Tn+7.

A lower bound of 2n half-plane probes can be based on topological arguments [78]. We
can represent a convex polygon P as a point in 2n-dimensional space. Every point in an €
neighborhood around P represents a slightly different convex polygon.

Lefschetz [48] proves that a region of a Euclidean m-space cannot be parameterized by
less than m parameters. Since the result of a probe is an algebraic function of P it can be
considered to be a parameter of P. Thus at least 2n probes are necessary to determine a
convex polygon.

The following argument shows that n+1 half-plane probes are sufficient to verify a convex
n-gon. For one of the edges of P, probe in both directions of the line containing the edge.
For the remaining n — 1 edges, probe once along the defining line. With each edge, we know
P entirely lies within each of n half-planes. The intersection of these half-planes is P. Since
the intersection of these half-planes has exactly the area of P, we have verified P. Note that
fewer half-plane probes are sufficient for verification than for finger or x-ray probes. In [78],
it is shown that at least 2n/3 half-plane probes are necessary to verify a convex n-gon.

Two more interesting generalizations of half-plane probes to higher dimensions prove
to be much more difficult to analyze. Consider a cross-sectional area probe which, for a
given plane in £ returns the area of intersection with P. This differs from the half-plane
probe described above in that the line which defines the appropriate half-plane is at oo.
The results in this paper do not appear to help with cross-sectional area probes, since they
rely on isolating a section of P containing only two facets, which is not possible with a full
cross-section of P. Even the problem of determining a tetrahedron in a constant number of
probes is open and appears difficult.

The other interesting generalization would be to half-space probes in E?, which for a
specified half-space returns the volume of intersection. The simpler problem of determining
tetrahedra is also open for half-space probes.
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6 Oracles and Learning

The problems we have discussed thus far in this paper have all involved probing purely
geometric objects, usually convex polytopes. But the notion of probing leads to interesting
problems even if we stretch the definition of geometric object.

In the theory of computation [41], an oracle is a black box which can answer certain
questions in one unit of time. Augmenting a model of computation with a particular oracle
produces a potentially more powerful one, and so studying these models provides a frame-
work for studying the power of the oracle. The probing models we have discussed can be
thought of as oracles, and we have shown that different models require different number of
probes for determination. Considering more general oracles extends the notion of interactive
reconstruction to different types of problems.

6.1 Optimization Problems and Algorithmic Paradigms

Hyperplane probes have a close connection to optimization problems, since the constraints for
mathematical programs are typically represented by hyperplanes. We shall look more closely
at this connection, as well as at hyperplane probes as a paradigm for solving algorithmic
problems.

The results of a hyperplane probe can be simulated by a linear program, assuming each
facet of the polytope is described by the equation of the hyperplane supporting its faces. Let
d be the number of dimensions of P. Each facet i is represented by one constraint:

C1i%1 + C2iT2 + ... + CaiTa < Cdy1)i

The objective function F'(z) describes the moving hyperplane, which is specified by the
vector (ay, as, ..., aq), is
F(x):aixy + asxo + ... + ag.

The result of the probe is determined by maximizing or minimizing F'(z), depending
upon whether the probe originates from 400 or —oo. This value is the intercept which with
F(x) completely specifies the hyperplane.

These simulated probes are actually more powerful than the previously defined hyper-
plane probes, since the contact vertex is specified by the optimal vector x.

A problem of interest in combinatorial optimization can be solved using these simulated
probes. Given a convex polytope P containing the origin O, what vertex of P, vz, i8S
furthest from O7 This can be easily formulated as a quadratic program, with the previous
set of constraints and maximizing the objective function

2 2 2
]+ + ...+ Ty

Unfortunately, the problem of solving quadratic programs is NP-hard [25] and Rajan and
Taylor [82] have considered using simulated probes to determine v,,q,. If all vertices of P
are equidistant from O, P will need be determined. Since the number of vertices can be
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exponential in the number of constraints this is not efficient, but it is reasonable to consider
heuristics to select the probes.

Determining an approximation to the volume of an object has been considered for a
slightly different computational model. Barany and Fiiredi [5] consider an oracle which for
a point z tests whether x € P, where P is a convex body and seek to determine upper and
lower bounds to the volume of P. They prove that no polynomial time algorithm exists such
that the ratio of these quantities will be less than (d/logd)? in E¢. Elekes [18] proves the
combinatorial result that the volume of the convex hull of n points on a unit sphere in E¢
is at most n/2¢, which leads directly to results for finger and hyperplane probes. Gritzman,
Klee, and Westwater [35] consider several problems on using probes to construct bounded
polytopes which contain P, which imply an upper bound on the volume.

If the coefficients and variables in a linear program are restricted to integer values, the
result is an integer program. Although the problem of solving an integer program is NP-
complete, its great practical importance has lead to the development of a variety of tech-
niques for solving integer programs. One class of techniques, the cutting-plane algorithms
[63], relaxes the problem by considering the equivalent linear program and repeatedly adds
constraints or cutting planes which prunes the feasible region without removing any integer
lattice points. The algorithm terminates when the optimal point of the revised linear pro-
gram has integer coordinates. These cutting-planes are in fact hyperplane probes, and an
integer programming algorithm results from using simulated hyperplane probes to determine
the convex hull of lattice points beneath the feasible region.

6.2 Cut-set Probes

Consider a graph G = (V, E) whose n vertices are points in general position in the plane
(that is, no three points are collinear) and whose edges are all straight line segments between
pairs of vertices. We assume that the positions of the vertices are known, but nothing about
the edges is specified. A cut-set probe returns the number of edges cut by a specified line.

It is not obvious that cut-set sizes should permit reconstruction. Complete knowledge
of other graph parameters, such as degree sequences do not have this property. A problem
similar to ours involves the complexity of determining properties of graphs given queries of
the form “is edge {7, j} in the graph?”. Karp has conjectured that monotone graph properties
such as connectivity are evasive, meaning that in the worst case all edges must be queried
to determ