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Abstract
Light field techniques allow the rendering of objects in

time complexity unrelated to their geometric complexity.
The technique discretely samples the space of light rays
exiting the boundary around an object and then recon-
structs a requested view from these data. In order to gen-
erate high quality images a dense sampling of the space is
required which leads to large data sets. These data sets
exhibit a high degree of coherence and should be com-
pressed in order to make their size manageable.

We present a wavelet-based method for storing light
fields over planar domains. The parameterization is based
on the Nusselt embedding, which leads to simplifications
in shading computations when the light fields are used il-
lumination sources. The wavelet transform exploits the
coherence in the data to reduce the size of the data sets by
factors of 20 times or more without objectionable deteri-
oration in the rendered images. The wavelet representa-
tion also allows a hierarchical representation in which de-
tail can be added incrementally, and in which each coarser
view is an appropriately filtered version of the finer detail.

The wavelet coefficients are compressed by threshold-
ing the coefficients and storing them in a sparse hexade-
cary tree. The tree encoding allows random access over
the compressed wavelet coefficients which is essential for
extracting slices and point samples from the light field.

Key words: image based rendering, wavelets, compres-
sion, light fields, Nusselt embedding.

1 Introduction

The traditional input to 3-D graphics systems is a descrip-
tion of a scene comprised of geometric primitives and
their associated surface properties. For display some form
of lighting simulation is performed and the results ren-
dered. This process can be inexpensive and very approx-
imate, or very complex with a high degree of physical
accuracy. The main difficulty is that the time complexi-
ties of the rendering algorithms are all strongly dependant
on the geometric complexity of the scene. This leads to
very expensive computation when complex objects are in-
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cluded in the scene.
Recently a number of solutions to thses problems have

been proposed that are based on interpolation of pixel
data. Early results in this field include QuickTime VR [2],
in which environment maps at a fixed point are used to
generate continuous views of a scene as the user changes
his viewing direction. A number of other systems then al-
low movement through the scene by performing view in-
terpolation [3, 13]. These methods rely on having a depth
map of the image that can be used to compute position of a
pixel in a new view or else reconstruct the depth map from
images captured at multiple viewpoints. The remaining
challenge is in filling in the gaps where previously oc-
cluded regions become visible. These methods can be
viewed as ways of estimating the radiance arriving at the
eye from incomplete samples.

The plenoptic function completely describes the flow
of light in an environment as a function of 5 variables:
three to locate a point in space and two to specify the
direction. If we assume that the light is travelling in a
transparent medium then the radiance along a ray through
empty space is constant. This observation can reduce the
plenoptic function from a function of 5 variable to a func-
tion of 4, by considering only the boundary around an ob-
ject, reducing the spacial component to two parameters
on a surface. This observation leads directly to the Light
Field Rendering and Lumigraph approaches of Levoy and
Hanrahan [11] and Gortler et al. [6], respectively. In
these systems they parameterize the space of positions
and directions by the intersection of a line with two par-
allel planes, one of which represents a viewing window
while the other specifies a direction. A set of views of
the volume are stored, and a new view is generated by in-
terpolating from these views. Levoy and Hanrahan use a
lossy compression system based on vector quantization.
Gortler et al. do not compress their data, keeping a large
number of views in memory and using hardware texture
mapping to perform the interpolations. Neither use their
results for rendering applications, outside of generating
views of their objects.

A related set of results can be found in the field of il-
lumination engineering, where near field photometry is
concerned with representing the light field emitted from a



lamp. Ashdown [1] presents a method for measuring such
a data set for arbitrary luminaires, based on using a CCD-
based video camera to record the emitted radiance from a
number of positions around the luminaire.

1.1 Radiance Representations for Rendering

A related area of work that must be considered in the
context of light field rendering are those representations
of the light field used implicity or explicitly in global il-
lumination rendering systems. For example, traditional
ray tracing [16] samples a light field algorithmically for
only those directions required for the current view. At
the other extreme, Lucifer, the wavelet radiative trans-
port based renderer of Lewis et al. [12] builds explicit
representations of the light field at a large number of cell
boundaries throughout the environment. A similar repre-
sentation is implicit in Christensen et al.’s wavelet radios-
ity system[4]. Their representation of radiance distribu-
tions uses a non-standard wavelet decomposition over a
unit patch and a radially stretched gnomonic projection of
the hemisphere of directions. They then solve two point
light transport equations by numerical sampling of the re-
flectance funtion and of the transport integrals. These sys-
tems can both use light field objects as light sources as
well as generate light field objects representing incident
and emitted light on surfaces. Given that the informa-
tion is available as a by-product of the global illumination
computation it would be adventageous to be able to view
them directly.

One important area in the use of light field objects is
in using them as models in synthetic scenes. Since ob-
jects are described as a radiance field it is easy to integrate
them into scenes by treating them as light sources. In a ray
tracing application this means that we can trivially include
emission toward the viewer. Emission into the rest of the
scene is more difficult, requiring either fine subdivision or
Monte Carlo sampling to account for the light shed onto
other objects in the scene [9, 7]. One area of considerable
difficulty is in re-shading the objects to account for addi-
tional lights in the scene. This topic is beyond the scope
of this paper.

2 Wavelets

The wavelet transform takes a signal and decomposes
it in terms of the wavelet basis functions. These basis
functions have the property that they can localize fea-
tures in the signal at different resolutions. Unlike the
Fourier transform non-stationary signals can be decom-
posed meaningfully.

Wavelets are built from scaling functions, which we de-
fine by dilationsand translations of a base scaling function

�(x) of the form:

�lm(x) = 2�l=2�(2�lx�m)

each level l corresponds to a function space Vl, which is
part of a nested sequence of subspaces : : :� V�1 � V0 �
V1 � V2 : : :with these properties:

� the union of all Vl spans L2

� f 2 Vl ! g 2 Vl where g(x) = f(x + k)

� f 2 Vl $ g 2 Vl+1 where g(x) = f(2lx)

� any f 2 Vl has a unique representation as a linear
combination of �lm’s

A wavelet function spaceWl is defined as composed of
those functions that need to be added to a given space Vl
to span the next finer space Vl+1 = Vl � Wl. The ba-
sis functions for Wl are also dilations and translations of
a parent wavelet  (x):

 lm(x) = 2�l=2 (2�lx�m)

Since �(x) 2 V0 and V0 � V1, we can write �(x) as a
linear combination of the basis functions �(2x � m) for
V1:

�(x) =
p
2
X
m

hm�(2x�m)

This also holds for  :

 (x) =
p
2
X
m

gm�(2x�m)

These are the dilation or refinement equations. They
are the essence of multi-resolution analysis. Wavelet
bases differ principally in their choices of fhmg (which
in the case of orthogonal bases determine fgmg).

3 Wavelet Light Fields

We propose a wavelet based solution for a number of rea-
sons:

1. The representation allows a good control of the ac-
curacy/space trade-off;

2. The point-wise reconstruction is logarithmic in the
number of original light field samples;

3. A wavelet reconstruction can interpolate the original
data;

4. Error metrics are easy to compute;

5. Incremental levels of accuracy can be used; and

6. The wavelet transform exploits the spacial and angu-
lar coherence present in multiple views of an object.



3.1 Parameterization
There are a number of decisions to be made in chosing a
light field representation. The most basic is the parame-
terization. Whatever parameterization is chosen it should
support those operations we require in a natural and ef-
ficient way. We also require a parameterization that is
amenable to the wavelet transform and allows reasonable
exploitation of angular and spacial coherence.

The topology of the light field’s function space is an
hemisphere crossed with a surface. The most common
wavelet formulations are applied on Cartesian spaces.
The surface is usually parameterized by two parameters, u
and v. Fortunately there are straightforward embeddings
of S2�R2 intoR4. For our experiments we chose to use
the Nusselt embedding, which is related to the direction
cosines [12]. Related work shows that the Nusselt embed-
ding also has advantages when the light field objects are
used for shading, simplifying the local shading equation
[10, 8].

To express a direction given by a vector ~v in a local co-
ordinate frame given by the normal ~N and surface tangent
~T , we let �x = ~v � ~T and �y = ~v �( ~N� ~T ) be the direction
cosines. We normalize these to the range (0::1), and call
them � and �:

� = (�x + 1:0)=2:0

� = (�y + 1:0)=2:0

� and � then index in the unit square. Directions then
cover only the circle at the center of the square. Figure
1 illustrates this mapping. We define the value of any
function of directions for which �2x + �2y > 1 as zero.
Although this might appear to be wasteful of storage the
wavelet transform, and our sparse representation of it, is
particularly efficient at compressing zero values — none
are stored.

To represent our light field object, L, we use 4 parame-
ters: u and v define the position on the surface, usually a
quadrilateral, and � and � are the Nusselt parameters for
the given viewer direction. We then write the light field
object as L(u; v; �; �).

3.2 Choice of Decomposition
Although wavelet transforms are easily defined in one
dimension, the extension to higher dimensions allows a
number of choices of decompositions. The two most
common are called the standard decomposition, and the
non-standard decomposition [5]. A third option that mer-
its a few words is the spherical wavelets proposed by
Schröder and Sweldens [14]

Schröder and Sweldens showed a method for encoding
the reflections from one incident direction using a spher-
ical wavelet representation. This restriction to one inci-
dent direction is a serious shortcoming. This method does
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Figure 1: The Nusselt embedding. The given direction is
mapped to a particular pair (�; �) by projecting the inter-
section with the hemisphere onto the unit square.

not easily extend to encoding the image information in
each direction, as their method is very dependant on the
underlying topologyof the function space, which does not
map to the topology of the space our light field objects are
embedded in. The more serious difficulty is that even ex-
tending the method to higher dimensions, the basis func-
tions of their transforms are built by subdivision of the in-
put space. The basis functions are no longer self-similar,
and cannot be composed of sets of unidimensional func-
tions, which as we shall see is critical to efficient recon-
struction of the light field at a given point and direction.

We chose instead to use a multi-dimensional wavelet
transform, mapping the parameter space of the light field
object (two positional and two directional) to a Cartesian
grid. The multi-dimensional wavelet decomposition al-
lows a choice in how the uni-dimensional decomposition
is extended to higher dimensions. In the standard case a
product of one-dimensional decompositions is used. In
the non-standard case a product of the basis functions
is used, leading to a multi-dimensional multi-resolution
analysis that is analogous to the uni-dimensional case [5].
We will examine each in turn, and the algorithms that fol-
low.

Standard Decomposition

The standard four-dimensional wavelet decompositionL
of a light field object L yields:

L(u; v; �r; �r) =

DgX
g=0

DhX
h=0

DjX
j=0

DkX
k=0

cg;h;j;kBg(u)Bh(v)Bj (�)Bk(�) (1)



whereDg ,Dh,Dj , andDk are the dimensions of each the
dimensions and Bn is defined as

Bn(x) =

8<
:

�(x) if n = 0
2�l=2 (2�lx�m) if n = 2l +m

for some l and m � 0
(2)

and  is our mother wavelet and � is our smoothing func-
tion.

Consider the coefficients and basis functions that must
be examined to reconstruct L at point (u; v; �; �) in the
standard decomposition. Each coefficient cg;h;j;k for
which any of Bg(u); Bh(v); Bj(�); Bk(�) is non-zero
needs to be examined. We say that a point x is in the sup-
port ofB ifx < �l orx > �r where �l is the smallest value
for which B(�) 6= 0 and where �r is the largest value for
which B(�) 6= 0. Recall that Bn(x) = 2�l=2 (2�lx �
m) if n = 2l +m for some l and m � 0 when n > 0.
We can then, for each l and m, establish which functions
 l;m(x) are non-zero. If the wavelet has a width of sup-
port w then there will be w basis functions to examine at
each level l.

Observe then that each term in the summations of equa-
tion 1 can reference basis functions  l;m at different lev-
els. This interaction means that a reconstruction costs
O(w4l4); if there are n4 original samples in the signal the
cost isO(w4 log42 n). This cost is too high to use the stan-
dard decomposition to evaluate the value of the light field
at a point.

3.3 Non-Standard Decomposition
Consider instead the non-standard decomposition. Ex-
press the objectL as its projection onto a multi-resolution
wavelet space. For a univariate wavelet basis, the basis
functions are all derived from two functions by scaling by
a factor l (we willus l = 0 as the coarsest level of the pyra-
mid, that is a larger l in the discrete case corresponds to a
larger number of elements) and translations by m, which
can range from 0 to 2l. One group comes from the scaling
function �:

�lm(p) = 2l=2�(2lp�m)

and the other from the mother wavelet function :

 lm(p) = 2l=2 (2lp�m)

To manage the notation for multidimensional wavelet
bases, we will use a four-variable vector q:

q = (u; v; �; �)

and a multi-resolution index j:

j = (�; l;mu;mv;m�;m�)

Here � is the selector index for the wavelet functions, l is
the level in the wavelet subspaces, 0 being the coarsest,
and mp the offset at that level for parameter p. With the
non-standard decomposition the level is the same for all
variables because the bases themselves are multidimen-
sional [5, 15]. Since the basis functions all have an hyper-
cube support (same extent for all variables at a given
level) the data structure is simpler, as are many geomet-
ric operations. The selector � determines the product of
one dimensional wavelet and smooth basis functions that
together define Bj(q). We introduce a special notation to
indicate the selection, where �[h] is interpreted as the hth
bit of �:

�hl;m;� (p) =

�
�l;m(p) if �[h] = 0
 l;m(p) if �[h] = 1

�

Then we then write the basis functionBj(q) as:

�0l;mu;�(u) � �1l;mv ;�(v) � �2l;m�;�(�)� �3l;m�;�(�) (3)

Then the projection of the light field object L onto the
multi-resolution space is given by:

L(u; v; �; �) =
X
j

cjBj(u; v; �; �) (4)

where Bj are the appropriate basis functions. The cj are
given by

cj = hL(u; v; �; �)j ~Bj(�i; �i; �r; �r)i

=

1Z
0

1Z
0

1Z
0

1Z
0

L(u; v; �; �) ~Bj(u; v; �; �)dudvd�d�

where ~Bj is the dual of Bj .
Since our functions are defined as zero when �2x +

�2y >= 1 we can safely narrow the bounds of integration
from (�1::1) to (0::1).

If we now examine the time-complexity of the recon-
struction at a point we find that since the basis functions
Bj used in the analysis are multi-dimensional, each of the
terms of the summation in equation 4 has a unique level
l for all combinations of  and � required to assemble
Bj . There are then 16 basis functions withw4 translations
at each level that support the point q at which we are re-
constructing, where w is the width of the basis functions.
This means we have only O(w4 log2 n) terms to exam-
ine during our traversal to evaluate at a point if the initial
dataset had n4 samples. Figure 2 illustrates the difference
in which terms must be examined in the standard vs non-
standand decompositions for a 2-D example. In view of
these results, we use the non-standard decomposition for
our representation.



Figure 2: Coefficients examined for a point reconstruc-
tion using the standard decomposition (left) and the non-
standard decomposition (right).

3.4 Choice of Bases
Our choice of wavelet basis functions is determined by
two properties: the width of support of the basis, and the
amount of compression a basis can provide. Since one
of our goals in using the wavelet representation is to re-
duce the memory requirements we see immediately why
greater compression is a goal. It is not so obvious why
the width of support of the basis is important, or how it
relates to compression rates. The narrower the width of
support of a wavelet, the less computational work is re-
quired in the reconstruction, since the scaled and trans-
lated wavelets will cover fewer terms. When extending to
higher dimensions the amount of work required by wider
bases increases with the power of the dimension. The
number of terms examined then becomes a dominant fac-
tor in the cost of the reconstruction. In the case of bi-
orthogonal wavelets all we care about is the width of the
reconstruction wavelet. The analysis wavelet can be as
wide as necessary, since the wavelet transform is per-
formed off-line using the fast wavelet transform.

As far as our application is concerned, our principal
goal is speed. As such we choose to use the Haar basis [5],
which is the narrowest wavelet, having a support of only
2 samples, in contrast to the linear spline wavelet with a
support of 4, or the Daubechies 4 basis, with a width of
support of 8. Figure 3 shows the Haar smooth and wavelet
functions. It should also be noted that the Haar wavelet
is not a bad choice for compression results either. Com-
pression ratios of 20:1 frequently result in less than 10%
relative RMS error. These results will be expanded upon
in section 4.

3.5 Storage
The remaining difficulty is in representing the coeffi-
cients. The major advantage of using a wavelet based rep-
resentation is that the representation is sparse, with many
of the wavelet coefficients being zero or small. To in-
crease our compression rate at the cost of accuracy we
threshold small coefficients to zero. A property of the
wavelet transform is that the sum of these thresholded co-
efficients gives us the root mean square of the error in-
duced in the reconstruction by ignoring the thresholded
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Figure 3: The Haar smooth and wavelet functions.

terms. If the original light field object is f , the coeffi-
cients of its wavelet transformed representation are wi,
and fA represents the light field object reconstructed by
using only the coefficients in the set A then the error is
given by:

jjf � fAjj = (
X
(i)=2A

jwij2 )1=2: (5)

The difficulty is that there are as many wavelet coeffi-
cients as original data points, even though a large number
of them may be zero. Thus we want to find a representa-
tion that stores only the non-zero coefficients, allowing us
considerable economies in storage.

In a one dimensional transform it is possible to use a
binary tree structure that at each node records the value
of the coefficient and mimics the structure of the wavelet
analysis. Then it is possible to prune any subtrees that
contain only zero coefficients. There may remain nodes
in the tree that record zero values (if any of its descen-
dants are non-zero) but these add no more than a small
linear factor to the size of the stored tree. For reconstruc-
tion it is sufficient to traverse a path down the tree, follow-
ing a child pointer if the child’s basis functionsupports the
point being evaluated. We let this structure inspire us in
higher dimensions.

An efficient option for the representation is as a Wavelet
Coefficient Tree. This tree is a sparse hexa-decary tree
(16 ordered children), where the depth of the nodes in-
dicates the depth of the coefficients in the representation,
and where each node stores the non-zero coefficients with
the same offset m, indexed by �, the wavelet basis selec-
tor.

We use a structure called a wavelet node that stores
all non-zero wavelet coefficients with the same indices
(l;m0;m1;m2;m3), and different basis selector �. The
wavelet node also maintains a list of non-empty sub-
trees rooted at a wavelet node with indices l + 1; 2m0 +
bf0g; 2m1 + bf1g; 2m2 + bf2g; 2m3 + bf3g where b =
0::15 and bfig selects the value of the ith bit of the binary
representation of b. The addition of 2 16-bit masks indi-
cating which coefficients (the value mask) and which chil-



function Eval(WCTree lf, vector d)
f

result = 0;
for b = 0 . . 15

if (lf�>valueMask & (0x01>>b))
j = (b,lf�>level,lf�>m[0. .3]);
result += lf�>value[b] � B j(d);

if (lf�>childMask & (0x01>>b))
j = (b, lf�>level+1,

lf�>m[0] � 2 + ((b>>0)&0x01),
lf�>m[1] � 2 + ((b>>1)&0x01),
lf�>m[2] � 2 + ((b>>2)&0x01),
lf�>m[3] � 2 + ((b>>3)&0x01));

== Check the support of B j()
if (InSupportOf B j(d))

result += Eval(lf�>child[b], d);
return result;

g

Figure 4: Reconstruction of a 4-variable Wavelet com-
pressed function at point q

dren (the child mask) are present allow very compact stor-
age of the tree. By storing the child nodes in a contiguous
block only a pointer to the first child is required, reducing
the overhead of the data structure to one pointer and two
16 bit masks per node. The child pointer and child masks
need not be stored for leaf nodes, leading to an amortized
cost of half a pointer plus 24 bits per node.

3.6 Reconstruction

Using the Wavelet Coefficient Tree the reconstruction of
the light field for a given position and direction becomes
a traversal of the wavelet coefficient tree. From the root,
the basis functions corresponding to each non-zero coeffi-
cient is evaluated and summed, and then each child is vis-
ited whose corresponding basis function extents intersect
the given point. The most important optimization is that
if the a wavelet or smooth basis function at a given level
and offset does not support our sample point then neither
will any of that basis’s children.

The traversal then is comprised of a number of bit-mask
operations and tests for coverage by the relevant child’s
basis function. This coverage operation can frequently be
implemented much more efficiently than a basis function
evaluation. For efficiency the non-Haar wavelet and scal-
ing functions �(x) are tabulated off line, and basis func-
tion evaluation becomes a table lookup after scaling and
translating the parameter x. Haar bases are coded algo-
rithmically because of their simplicity.

Fig. 4 shows the traversal pseudo-code for a point-
evaluation.

3.7 Level of Detail and Partial Rendering
The above algorithm is suitable for reconstructing a light
field at one point. This could be used to generate each
pixel in a view of an object, but much of the computation
would be redundant. Consider that the many of the basis
functions evaluated have wide support, and that the Haar
basis is piecewise constant over this support. This means
that for a given view direction we could re-use many of
the basis function evaluations for neighbouring pixels. At
the extreme the level 0 basis function need only be evalu-
ated once for the entire patch. The finest level leaf nodes
are the only ones that need to be seperately evaluated at
every pixel.

We can modify our implicit pixel at a time depth first
traversal into a breadth-first traversal that generates an en-
tire view each pass. By halting the computation at each
level partial results can be made available for display, al-
though the breadth-first traversal is fast enough to dis-
play 64 by 64 pixel images in real time. The modified al-
gorithm is showin in Figure 5. A quick analysis shows
that this algorithm is O(n), where n is the number of leaf
nodes that contribute to the image seen from one direc-
tion. In the extreme this can be one leaf for each pixel in
the reconstruction. There is one quarter less work at the
next level up, one sixteenth above, and so on, leading to an
overall cost of O(n), in contrast with the O(logn) work
required at each pixel in the pixel-by pixel reconstruction.

This algorithm also allows us to perform level-of detail
culling, when the method is used to generate texture maps
in an interactive application. By truncating the evaluation
at a depth in the tree at which the width of a basis function
spans a single pixel we can realize considerable compu-
tational savings. In addition the resulting image is appro-
priately filtered by the smoothing function used in our de-
composition. In the case of the Haar basis this smoothing
is equivalent to the mip-map averaging scheme that is in
wide circulation. The resulting visual artifacts fall in line
with the artifacts caused by using mip-maps.

4 Results

4.1 Sampling Light Field Objects
Ashdown has shown a system based on CCD video cam-
eras and a moving gantry for measuring the emissivity of
a luminaire over an encircling sphere [1]. His method
records video images from a number of directions, and
these then need to be transformed into positional and di-
rectional samples. The camera registration and lens dis-
tortion effects can cause serious artifacts. These problems
may also appear in the Gortler et al.’s Lumigraph [6] as
their data are collected with a hand-held video camera.
Levoy and Hanrahan [11] use a modified Cyberware scan-
ner to aquire their data. This option is not feasible on our



== We use a queue to implement the breadth-�rst search.
== The queue stores the wavelet tree node
== and the u,v position at that level
== The TextureMap structure is indexed by level and u,v.
function Eval(float kappa, float lambda, WCTree �lf )
f

TextureMap[] = 0; == initialize the results
AddToQueue( lf, 0, 0 );
while (QueueNotEmpty)

Current = DeQueue();
EvalNode( kappa, lambda, Current�>lf )

g
function EvalNode( float kappa, float lambda, WCTree �lf )
f

resul= 0;
for q = 0. .3 == for each quadrant

u = lf�>m[0] + (q&0x01);
v = lf�>m[1] + ((q>>1)&0x01);
result = 0;
for b = 0. .15
== only evaluate if we have a non-zero value
if (lf�>valueMask & (0x01 >> b))

j = ( b, lf�>level, lf�>m[0. .3] );
result[q] += lf�>value[b] � B j(u,v,kappa,lambda);

Sum result into texture map at u,v corresponding to j
== Add any necessary children to the evaluation queue
for b = 0. .15
== check the child supports
j = (b, lf�>level+1,lf�>m[0] � 2 + ((b>>0)&0x01),

lf�>m[1] � 2 + ((b>>1)&0x01),
lf�>m[2] � 2 + ((b>>2)&0x01),
lf�>m[3] � 2 + ((b>>3)&0x01));

u c = u�2 + ((b>>0)&0x01);
v c = v�2 + ((b>>1)&0x01);
if (InSupportOf (B j,u,v,kappa,lambda))

AddToQueue( lf�>child[b] );
g

Figure 5: Reconstruction of a 4-variable Wavelet
compressed function over the unit square in direction
(kappa,lambda)

budget.
Instead of building a physical instrument we have cho-

sen to instrument our test-bed ray tracer to sample detailed
geometries. Similar measurements can be made with Lu-
cifer, a global illumination software package that uses a
wavelet representation of light, with the added benefit of
obtaining our data already in the wavelet domain [12].
Both these methods make measurements completely re-
peatable and lets us ignore calibration issues allowing us
to concentrate on representational issues.

Using our system we sampled 3 light field objects at a
resolution of 32 samples in each of u; v; �; and �:

� A set of spheres, illuminated from within;

� A ceiling mounted fluorescent lamp with sharp baf-
fles; and

Figure 6: The three objects used in our experiments.

� A simple room environment with a red wall, a blue
wall, a green floor, reflective white walls and ceiling
and a blue sphere.

A view of each is show in Figure 6.
Table 1 sumarizes the performance of the algorithm.

The timings are for the breadth-first version of the re-
construction, as presented in Section 3.7, running on an
R10000 SGI workstation. The most recent implementa-
tion is included on the acompanying CD, and runs on any
PC running Windows. Its run time typically improve on
the SGI timings by a factor of 5 times. The most impor-
tant observations is that thresholding the data set can, as
expected, reduce the running times, although not as much
as might have been originally expected. The other obser-
vation is that the data sets are reduced in size by approxi-
mately half during the wavelet transform, without thresh-
olding. Thresholding can then drop the size considerably
more for most data sets without unduly affecting drawing
quality up to about ratios of 20:1, as seen in the lamp and
room examples.

5 Conclusions and Future Work

We have shown that the non-standard wavelet decompo-
sition provides a powerful tool for compressing light field
data. Using sparse trees to store the data leads to effi-
cient reconstruction algorithms that provide real-time re-
construction of views of an object. In particular it is possi-
ble to reconstruct 2-D slices from a 4-D volume inO(n2)
time, where there are n2 samples in the slice. The recon-



struction is sensitive to level-of-detail considerations and
can be built incrementally.

This paper has only examined compression by thresh-
olding. Another important technique is that should be ex-
amined is quantization. By quantizing the wavelet co-
efficients to an 8 or 12 bit representation we should be
able to cut the storage requirements by another factor of
8. Likewise, we currently store red, green, and blue chan-
nels seperately. Instead of using the RGB colour space we
should use a luminance based space, such as YIQ, to ap-
portion more of our precision to the luminance channel,
which could lead to visually better reconstructions.
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# Coef. % Size RMS Err. % Err. Time
Lamp
Initial Size 1048756

89476 0.085 0.0 0.0 12.9
26841 0.025 17.59 0.15 9.8
17894 0.017 24.96 0.21

8946 0.0085 37.37 0.32 3.1
Dataset RMS 116.62
Spheres
# Coefs. 1048756

488833 0.47 0.0 0.0
97764 0.093 83.36 0.24
47276 0.045 120.87 0.35

4887 0.0046 205.42 0.59
RMS 342.57
Room
# Coefs. 1048756

541234 0.51 0.0 0.0 22
54122 0.051 24.82 0.09 9.5
27060 0.026 40.06 0.14

5411 0.0051 75.54 0.27 3.7
RMS 281.34

Table 1: Performance figures. The timings (in millisec-
onds) are for the algorithm presented in Section 3.7.


