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Abstract

Light field techniques allow the rendering of objectsin
time complexity unrelated to their geometric complexity.
The technique discretely samples the space of light rays
exiting the boundary around an object and then recon-
structs a requested view from these data. In order to gen-
erate high quality images a dense sampling of the spaceis
required which leads to large data sets. These data sets
exhibit a high degree of coherence and should be com-
pressed in order to make their size manageable.

We present a wavelet-based method for storing light
fieldsover planar domains. The parameterizationisbased
on the Nusselt embedding, which leads to simplifications
in shading computationswhen the light fields are used il-
lumination sources. The wavelet transform exploits the
coherence in the data to reduce the size of the data sets by
factors of 20 times or more without objectionabl e deteri-
oration in the rendered images. The wavelet representa-
tionaso allowsahierarchical representation in which de-
tail can be added incrementally, and in which each coarser
view isan appropriately filtered version of thefiner detail.

The wavelet coefficients are compressed by threshold-
ing the coefficients and storing them in a sparse hexade-
cary tree. The tree encoding allows random access over
the compressed wavel et coefficients which is essential for
extracting slices and point samples from thelight field.

Key words: image based rendering, wavelets, compres-
sion, light fields, Nusselt embedding.

1 Introduction

Thetraditional input to 3-D graphics systemsisadescrip-
tion of a scene comprised of geometric primitives and
their associated surface properties. For display someform
of lighting smulation is performed and the results ren-
dered. This process can be inexpensive and very approx-
imate, or very complex with a high degree of physical
accuracy. The main difficulty is that the time complexi-
tiesof the rendering algorithmsare all strongly dependant
on the geometric complexity of the scene. This leads to
very expensive computationwhen complex objectsarein-
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cluded in the scene.

Recently a number of solutionsto thses problems have
been proposed that are based on interpolation of pixel
data. Early resultsinthisfield include QuickTimeVR[2],
in which environment maps at a fixed point are used to
generate continuous views of a scene as the user changes
hisviewing direction. A number of other systemsthen al-
low movement through the scene by performing view in-
terpolation[3, 13]. These methodsrely on having a depth
map of theimage that can be used to compute position of a
pixel inanew view or elsereconstruct the depth map from
images captured at multiple viewpoints. The remaining
challenge is in filling in the gaps where previously oc-
cluded regions become visible. These methods can be
viewed as ways of estimating the radiance arriving at the
eye from incomplete samples.

The plenoptic function completely describes the flow
of light in an environment as a function of 5 variables:
three to locate a point in space and two to specify the
direction. If we assume that the light is travelling in a
transparent medium then the radiance along aray through
empty space is constant. This observation can reduce the
plenoptic function from afunction of 5 variableto afunc-
tion of 4, by considering only the boundary around an ob-
ject, reducing the spacial component to two parameters
on asurface. This observation leads directly to the Light
Field Rendering and Lumigraph approaches of Levoy and
Hanrahan [11] and Gortler et al. [6], respectively. In
these systems they parameterize the space of positions
and directions by the intersection of aline with two par-
allel planes, one of which represents a viewing window
while the other specifies a direction. A set of views of
the volume are stored, and anew view is generated by in-
terpolating from these views. Levoy and Hanrahan use a
lossy compression system based on vector quantization.
Gortler et al. do not compress their data, keeping alarge
number of views in memory and using hardware texture
mapping to perform the interpolations. Neither use their
results for rendering applications, outside of generating
views of their objects.

A related set of results can be found in the field of il-
[umination engineering, where near field photometry is
concerned with representing the light field emitted from a



lamp. Ashdown [1] presentsamethod for measuring such
adataset for arbitrary luminaires, based on usinga CCD-
based video camera to record the emitted radiance from a
number of positions around the luminaire.

1.1 Radiance Representationsfor Rendering

A related area of work that must be considered in the
context of light field rendering are those representations
of the light field used implicity or explicitly in global il-
[umination rendering systems. For example, traditional
ray tracing [16] samples a light field algorithmically for
only those directions required for the current view. At
the other extreme, Lucifer, the wavelet radiative trans-
port based renderer of Lewis et al. [12] builds explicit
representations of the light field at alarge number of cell
boundaries throughout the environment. A similar repre-
sentationisimplicitin Christensen et al.’swavelet radios-
ity system[4]. Their representation of radiance distribu-
tions uses a non-standard wavelet decomposition over a
unit patch and aradially stretched gnomoni ¢ projection of
the hemisphere of directions. They then solve two point
light transport equations by numerical sampling of there-
flectance funtionand of thetransportintegrals. These sys-
tems can both use light field objects as light sources as
well as generate light field objects representing incident
and emitted light on surfaces. Given that the informa-
tionisavailable as aby-product of the global illumination
computation it would be adventageous to be able to view
them directly.

One important area in the use of light field objects is
in using them as models in synthetic scenes. Since ob-
jectsaredescribed asaradiancefielditiseasy tointegrate
them into scenes by treating them aslight sources. Inaray
tracing applicationthismeans that we cantrivially include
emission toward the viewer. Emission into the rest of the
sceneismoredifficult, requiring either fine subdivisionor
Monte Carlo sampling to account for the light shed onto
other objectsinthe scene[9, 7]. One area of considerable
difficulty isin re-shading the objects to account for addi-
tional lightsin the scene. Thistopic is beyond the scope
of this paper.

2 Wavelets

The wavelet transform takes a signa and decomposes
it in terms of the wavelet basis functions. These basis
functions have the property that they can localize fea-
tures in the signal at different resolutions. Unlike the
Fourier transform non-stationary signals can be decom-
posed meaningfully.

Waveletsare built from scaling functions, whichwe de-
fine by dilationsand trangl ations of abase scaling function

¢(z) of theform:
Pim () = 27126272 —m)

each level [ corresponds to a function space 17, whichiis
part of anested sequence of subspaces... C V_; C Vp C
V1 C Va ... withthese properties:

o theunion of al V; spans L2
o feVisgeViwhereg(x) = f(x + k)
o feV & g€ Viy Whereg(z) = f(le)

e any f € V; has a unique representation as a linear
combination of ¢,,,'s

A wavelet function space 11; isdefined as composed of
those functionsthat need to be added to a given space V;
to span the next finer space Viy; = V; & W,. The ba
sisfunctionsfor W; are aso dilations and translations of
aparent wavelet ¢(z):

i (2) = 27227 e — m)

Since ¢(z) € Vp and Vy C Vi, wecanwrite ¢(z) asa
linear combination of the basis functions ¢ (22 — m) for
Vi

$(x) = V2> hmo (2w —m)

Thisalso holdsfor v:
P(x) = \/§ng¢(21‘ —m)

These are the dilation or refinement equations. They
are the essence of multi-resolution analysis. Wavelet
bases differ principaly in their choices of {A,,} (which
in the case of orthogonal bases determine { g, }).

3 Wavelet Light Fields
We propose awavel et based solution for anumber of rea-
sons:

1. The representation allows a good control of the ac-
curacy/space trade-off;

2. The point-wise reconstruction is logarithmic in the
number of origina light field samples;

3. A wavelet reconstruction can interpol ate the original
data;

4. Error metrics are easy to compute;
5. Incremental levels of accuracy can be used; and

6. Thewavelet transform exploitsthe spacial and angu-
lar coherence present in multiple views of an object.



3.1 Parameterization

There are a number of decisions to be made in chosing a
light field representation. The most basic is the parame-
terization. Whatever parameterization is chosen it should
support those operations we require in a natural and ef-
ficient way. We also require a parameterization that is
amenabl e to the wavel et transform and allows reasonable
exploitation of angular and spacia coherence.

The topology of the light field’s function space is an
hemisphere crossed with a surface. The most common
wavelet formulations are applied on Cartesian spaces.
The surfaceisusually parameterized by two parameters, u
and v. Fortunately there are straightforward embeddings
of $? x R? into R*. For our experiments we chose to use
the Nusselt embedding, which is related to the direction
cosines[12]. Related work showsthat the Nusselt embed-
ding also has advantages when the light field objects are
used for shading, simplifying the local shading equation
[10, 8].

To expressadirection given by avector v"inalocal co-
ordinateframe given by thenormal N and surface tangent
T, welet yi, = 7T and i, = 7- (N x T') bethedirection
cosines. We normalize these to the range (0..1), and call
them x and A:

K = (e +1.0)/2.0

A= (uy +1.0)/2.0

x and A then index in the unit square. Directions then
cover only the circle at the center of the square. Figure
1 illustrates this mapping. We define the value of any
function of directions for which ;2 + uf/ > 1 as zero.
Although this might appear to be wasteful of storage the
wavelet transform, and our sparse representation of it, is
particularly efficient at compressing zero values — none
are stored.

To represent our light field object, L, we use 4 parame-
ters: « and v define the position on the surface, usually a
quadrilateral, and « and A are the Nusselt parameters for
the given viewer direction. We then write the light field
object as L(u, v, &, A).

3.2 Choice of Decomposition

Although wavelet transforms are easily defined in one
dimension, the extension to higher dimensions alows a
number of choices of decompositions. The two most
common are called the standard decomposition, and the
non-standard decomposition [5]. A third option that mer-
its a few words is the spherical wavelets proposed by
Schroder and Sweldens[14]

Schroder and Sweldens showed a method for encoding
the reflections from one incident direction using a spher-
ical wavelet representation. This restriction to one inci-
dent directionisa serious shortcoming. Thismethod does

Figure 1: The Nusselt embedding. The given directionis
mapped to a particular pair (x, A) by projecting the inter-
section with the hemisphere onto the unit square.

not easily extend to encoding the image information in
each direction, as their method is very dependant on the
underlyingtopol ogy of thefunction space, which does not
map to the topol ogy of the space our light field objectsare
embedded in. The more serious difficulty isthat even ex-
tending the method to higher dimensions, the basis func-
tionsof their transformsare built by subdivisionof thein-
put space. The basis functions are no longer self-similar,
and cannot be composed of sets of unidimensional func-
tions, which as we shall see is critical to efficient recon-
struction of the light field at a given point and direction.

We chose instead to use a multi-dimensional wavelet
transform, mapping the parameter space of thelight field
object (two positional and two directional) to a Cartesian
grid. The multi-dimensional wavelet decomposition al-
lows a choice in how the uni-dimensional decomposition
is extended to higher dimensions. In the standard case a
product of one-dimensional decompositionsis used. In
the non-standard case a product of the basis functions
is used, leading to a multi-dimensional multi-resolution
analysisthat isanalogousto the uni-dimensional case [5].
Wewill examine each in turn, and the al gorithmsthat fol -
low.

Standard Decomposition

The standard four-dimensional wavelet decomposition £
of alight field object L yields:

Lu, v, kp, Ap) =

Dy D, D; Dy

ST TS ey ninBy(w) Bal(v)Bs (k) Be(A) (D)

g=0 h=035=0k=0



where Dy, Dy, D;, and D;, arethedimensionsof each the
dimensions and B,, is defined as

6(x)
B(z) =< 274227 e — m)
{ forsomeland m > 0
2
and v is our mother wavelet and ¢ isour smoothing func-
tion.

Consider the coefficients and basis functions that must
be examined to reconstruct L at point (u, v, , A) in the
standard decomposition. Each coefficient ¢, ;. for
which any of B, (u), By(v), B;(x), Bx(A) is non-zero
needs to be examined. We say that a point = isin the sup-
portof Bif z < §; orx > 4, whered; isthesmallest value
for which B(é) # 0 and where 4, isthe largest value for
which B(5) # 0. Recdl that B, (z) = 27!/2¢(27'x —
m) if n = 2' + m forsomelandm > 0 whenn > 0.
We can then, for each [ and m, establish which functions
Y1.m (2) are non-zero. If the wavelet has a width of sup-
port w then there will be w basis functionsto examine at
each level [.

Observethen that each term in the summations of equa-
tion 1 can reference basis functions ) ,,, at different lev-
els. This interaction means that a reconstruction costs
O(w*l*); if thereare n* original samplesinthesignal the
cost isO(w* logs n). Thiscostistoo highto usethe stan-
dard decompositionto evaluate the value of thelight field
at apoint.

ifn=0
ifn=2+m

3.3 Non-Standard Decomposition

Consider instead the non-standard decomposition. Ex-
press the object L asitsprojection onto amulti-resolution
wavelet space. For a univariate wavelet basis, the basis
functionsare all derived from two functionsby scaling by
afactor! (wewill us! = 0 asthecoarsest level of thepyra-
mid, that isalarger [ in the discrete case correspondsto a
larger number of elements) and trandations by m, which
can rangefrom 0 to 2. One group comes from the scaling
function ¢:

S (p) = 276 (2'p — m)
and the other from the mother wavelet function «:
Yim (p) = 279(2'p — m)

To manage the notation for multidimensional wavelet
bases, we will use a four-variable vector q:

q = (U, U, Kja A)
and a multi-resolutionindex j:

j: (Valamuamvamnam)\)

Here v isthe selector index for the wavelet functions, ! is
the level in the wavelet subspaces, 0 being the coarsest,
and m,, the offset at that level for parameter p. With the
non-standard decomposition the level is the same for al
variables because the bases themselves are multidimen-
sional [5, 15]. Sincethebasisfunctionsall have an hyper-
cube support (same extent for al variables at a given
level) the data structure is simpler, as are many geomet-
ric operations. The selector v determines the product of
one dimensional wavelet and smooth basis functions that
together define B; (q). Weintroduce a special notation to
indicate the selection, where v[h] isinterpreted as the hth

bit of v:
Sim(p) ifv[A]=0
Fimo(p) = { AR A }

Then we then write the basis function B; (q) as:

F?,mu,u(u) X Fll,mv,y(v) X I‘lz,m,c,l/( ) X I‘l NP 1/(/\) (3)

Then the projection of the light field object L onto the
multi-resolution space is given by:

IZC]'B]'(U,U,K?,/\) 4

J

L(u,v,k,A)
where B; are the appropriate basis functions. The ¢; are
given by

<L(U,v’/{,A)|éj(/fi,Ai,/fr;A7‘)>
1111

//// u,v, Kk, A)B (u,v,n,/\)dudvdﬁd/\

0000

Cj =

where B; isthe dual of B;.

Since our functions are defined as zero when 2 +
ﬂf, >= 1 we can safely narrow the bounds of integration
from (—oo..c0) t0 (0..1).

If we now examine the time-complexity of the recon-
struction at a point we find that since the basis functions
B; usedintheanalysis are multi-dimensional, each of the
terms of the summation in equation 4 has a unique level
[ for al combinations of ¢ and ¢ required to assemble
B;. Therearethen 16 basisfunctionswith w* translations
at each level that support the point q a which we are re-
constructing, where w is the width of the basis functions.
This means we have only O(w*log, n) terms to exam-
ine during our traversal to evaluate at a point if the initial
dataset had n* samples. Figure 2illustratesthe difference
in which terms must be examined in the standard vs non-
standand decompositions for a 2-D example. In view of
these results, we use the non-standard decomposition for
our representation.
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Figure 2: Coefficients examined for a point reconstruc-
tion using the standard decomposition (left) and the non-
standard decomposition (right).

3.4 Choiceof Bases

Our choice of wavelet basis functions is determined by
two properties: the width of support of the basis, and the
amount of compression a basis can provide. Since one
of our goalsin using the wavelet representation is to re-
duce the memory requirements we see immediately why
greater compression isa goal. It is not so obvious why
the width of support of the basis is important, or how it
relates to compression rates. The narrower the width of
support of a wavelet, the less computational work is re-
quired in the reconstruction, since the scaled and trans-
lated waveletswill cover fewer terms. When extending to
higher dimensions the amount of work required by wider
bases increases with the power of the dimension. The
number of terms examined then becomes a dominant fac-
tor in the cost of the reconstruction. In the case of bi-
orthogonal wavelets all we care about is the width of the
reconstruction wavelet. The analysis wavelet can be as
wide as necessary, since the wavelet transform is per-
formed off-line using the fast wavelet transform.

As far as our application is concerned, our principal
goal isspeed. Assuchwe chooseto usetheHaar basis[5],
which isthe narrowest wavelet, having a support of only
2 samples, in contrast to the linear spline wavelet with a
support of 4, or the Daubechies 4 basis, with a width of
support of 8. Figure 3 showsthe Haar smooth and wavel et
functions. It should aso be noted that the Haar wavelet
is not a bad choice for compression results either. Com-
pression ratios of 20:1 frequently result in less than 10%
relative RM S error. These results will be expanded upon
in section 4.

3.5 Storage

The remaining difficulty is in representing the coeffi-
cients. The major advantage of usingawavel et based rep-
resentation is that the representation is sparse, with many
of the wavelet coefficients being zero or small. To in-
Crease our compression rate at the cost of accuracy we
threshold small coefficients to zero. A property of the
wavelet transformisthat the sum of these thresholded co-
efficients gives us the root mean sguare of the error in-
duced in the reconstruction by ignoring the thresholded

1 1
¢ v
0 0
-1
0 1 0 1

Figure 3: The Haar smooth and wavel et functions.

terms. If the original light field object is f, the coeffi-
cients of its wavelet transformed representation are w;,
and fa represents the light field object reconstructed by
using only the coefficients in the set A then the error is
given by:

1= fall = (D Jwal” )72 ©)
()¢ A

The difficulty is that there are as many wavelet coeffi-
cients as original data points, even though alarge number
of them may be zero. Thuswe want to find a representa-
tion that stores only the non-zero coefficients, allowingus
considerable economies in storage.

In aone dimensional transform it is possible to use a
binary tree structure that at each node records the value
of the coefficient and mimics the structure of the wavelet
analysis. Then it is possible to prune any subtrees that
contain only zero coefficients. There may remain nodes
in the tree that record zero values (if any of its descen-
dants are non-zero) but these add no more than a small
linear factor to the size of the stored tree. For reconstruc-
tionitissufficient to traverse apath down thetree, follow-
ing achild pointer if the child’' sbasisfunction supportsthe
point being evaluated. We let this structure inspire usin
higher dimensions.

An efficient option for the representationisasaWavel et
Coefficient Tree. This tree is a sparse hexa-decary tree
(16 ordered children), where the depth of the nodes in-
dicates the depth of the coefficients in the representation,
and where each node stores the non-zero coefficients with
the same offset m, indexed by v, the wavelet basis selec-
tor.

We use a structure called a wavelet node that stores
all non-zero wavelet coefficients with the same indices
(l, mo, My, Msa, m3), and different basis selector v. The
wavelet node also maintains a list of non-empty sub-
trees rooted at a wavelet node withindices! + 1, 2mg +
b{0}, 2my + b{1}, 2ms + b{2}, 2ms + b{3} where b =
0..15 and b{{} selects thevalue of theith bit of the binary
representation of 4. The addition of 2 16-bit masks indi-
cating which coefficients (the val ue mask) and which chil-



function Eval(WCTree If, vector d)

result = 0O;
for b=10 .. 15
if (If—>valueMask & (0x01>>b))
i = (bIf—>level,If —>m[0. .3]);
result += If —>valueglb] * B_j(d);
if (If—>childMask & (0x01>>b))

j = (b, If —>level+1,
If—>m[0] * 2 + ((b>>0)&0x01),
If—>m[1] * 2 + ((b>>1)&0x01),
If—>m2] * 2 + ((b>>2)&0x01),
If—>m[3] * 2 + ((b>>3)&0x01));

// Check the support of Bj()
if (InSupportOf_B_j(d))
result += Eval(If —>child[b], d);
return result;

Figure 4: Reconstruction of a 4-variable Wavelet com-
pressed function at point g

dren (the child mask) are present allow very compact stor-
age of thetree. By storing the child nodesin acontiguous
block only a pointer to thefirst child isrequired, reducing
the overhead of the data structure to one pointer and two
16 bit masks per node. The child pointer and child masks
need not be stored for leaf nodes, leading to an amortized
cost of half a pointer plus 24 bits per node.

3.6 Reconstruction

Using the Wavelet Coefficient Tree the reconstruction of
the light field for a given position and direction becomes
atraversal of the wavelet coefficient tree. From the root,
the basi s functionscorresponding to each non-zero coeffi-
cient isevaluated and summed, and then each childisvis-
ited whose corresponding basis function extents intersect
the given point. The most important optimization is that
if the a wavelet or smooth basis function at a given level
and offset does not support our sample point then neither
will any of that basis's children.

Thetraversal theniscomprised of anumber of bit-mask
operations and tests for coverage by the relevant child's
basisfunction. This coverage operation can frequently be
implemented much more efficiently than a basis function
evaluation. For efficiency the non-Haar wavel et and scal-
ing functionsT'(z) are tabulated off line, and basis func-
tion evaluation becomes a table |lookup after scaling and
translating the parameter z. Haar bases are coded algo-
rithmically because of their smplicity.

Fig. 4 shows the traversal pseudo-code for a point-
evaluation.

3.7 Leve of Detail and Partial Rendering

The above agorithmis suitable for reconstructing a light
field at one point. This could be used to generate each
pixel inaview of an object, but much of the computation
would be redundant. Consider that the many of the basis
functions evaluated have wide support, and that the Haar
basis is piecewise constant over this support. This means
that for a given view direction we could re-use many of
the basi s function evaluations for neighbouring pixels. At
the extreme the level 0 basis function need only be evalu-
ated once for the entire patch. The finest level leaf nodes
are the only ones that need to be seperately evaluated at
every pixe.

We can modify our implicit pixel at atime depth first
traversal into abreadth-first traversal that generates an en-
tire view each pass. By halting the computation at each
level partial results can be made available for display, a-
though the breadth-first traversal is fast enough to dis-
play 64 by 64 pixel imagesin real time. The modified al-
gorithm is showin in Figure 5. A quick analysis shows
that thisalgorithmis O(n), where n isthe number of |eaf
nodes that contribute to the image seen from one direc-
tion. In the extreme this can be one leaf for each pixel in
the reconstruction. There is one quarter less work at the
next level up, onesixteenth above, and so on, leadingtoan
overall cost of O(n), in contrast with the O(logn) work
required at each pixel in the pixel-by pixel reconstruction.

Thisagorithm also allows usto perform level-of detail
culling, when the method is used to generate texture maps
inan interactive application. By truncatingthe evaluation
at adepthinthetree at which thewidth of abasisfunction
spans a single pixel we can realize considerable compu-
tational savings. In addition the resultingimageis appro-
priately filtered by the smoothing function used in our de-
composition. In the case of the Haar basisthis smoothing
is equivalent to the mip-map averaging scheme that isin
wide circulation. The resulting visual artifactsfall inline
with the artifacts caused by using mip-maps.

4 Results

4.1 SamplingLight Field Objects

Ashdown has shown a system based on CCD video cam-
eras and a moving gantry for measuring the emissivity of
a luminaire over an encircling sphere [1]. His method
records video images from a number of directions, and
these then need to be transformed into positional and di-
rectional samples. The camera registration and lens dis-
tortion effects can cause serious artifacts. These problems
may also appear in the Gortler et al.’s Lumigraph [6] as
their data are collected with a hand-held video camera.
Levoy and Hanrahan [11] useamodified Cyberware scan-
ner to aquiretheir data. Thisoptionis not feasible on our



// We use a queue to implement the breadth-first search.
// The queue stores the wavelet tree node

// and the u,v position at that level

// The TextureMap structure is indexed by level and u,v.
function Eval(float kappa, float lambda, WCTree xIf)

TextureMap[] = 0; // initialize the results
AddToQueue( If, 0, 0 );
while (QueueNotEmpty)

Current = DeQueue();

EvalNode( kappa, lambda, Current—>If)

¥
function EvalNode( float kappa, float lambda, WCTree xIf)

resul= 0;
for ¢ = 0..3 // for each quadrant
u = If—>m0] + (g&0x01);
v = If—>m1] + ((g>>1)&0x01);
result = 0;
for b = 0..15
// only evaluate if we have a non-zero value
if (If—>valueMask & (0x01 >> b))
i = (b If—=>level, If—>m[0..3] );
resultfq] += If—>valuegb] = B_j(u,v,kappa,lambda);
Sum result into texture map at u,v corresponding to j
// Add any necessary children to the evaluation queue
for b = 0..15
// check the child supports
i = (b, If—>level+1,If >m0] * 2 + ((b>>0)&0x01),
If—>m[1] = 2 + ((b>>1)&0x01),
If—>m2] = 2 + ((b>>2)&0x01),
If—>m[3] = 2 + ((b>>3)&0x01));
uc = ux2 + ((b>>0)&0x01);
vee = w2 + ((b>>1)&0x01);
if (InSupportOf (B4, u,v,kappa,lambda))
AddToQueue( If —>child[b] );

Figure 5: Reconstruction of a 4-variable Wavelet
compressed function over the unit square in direction
(kappa,lambda)

budget.

Instead of building a physical instrument we have cho-
sen toinstrument our test-bed ray tracer to sample detailed
geometries. Similar measurements can be made with Lu-
cifer, a global illumination software package that uses a
wavel et representation of light, with the added benefit of
obtaining our data aready in the wavelet domain [12].
Both these methods make measurements completely re-
peatable and lets us ignore calibration issues allowing us
to concentrate on representational issues.

Using our system we sampled 3 light field objects at a
resolution of 32 samplesin each of u, v, x, and A:

o A set of spheres, illuminated from within;

¢ A celling mounted fluorescent lamp with sharp baf-
fles; and

Figure 6: The three objects used in our experiments.

e A simple room environment with a red wall, a blue
wall, agreen floor, reflective white walls and ceiling
and a blue sphere.

A view of each isshow in Figure 6.

Table 1 sumarizes the performance of the agorithm.
The timings are for the breadth-first version of the re-
construction, as presented in Section 3.7, running on an
R10000 SGI workstation. The most recent implementa-
tionisincluded on the acompanying CD, and runson any
PC running Windows. Its run time typically improve on
the SGI timings by a factor of 5 times. The most impor-
tant observations is that thresholding the data set can, as
expected, reduce the running times, although not as much
as might have been originally expected. The other obser-
vation isthat the data sets are reduced in size by approxi-
mately half during the wavel et transform, without thresh-
olding. Thresholding can then drop the size considerably
more for most data sets without unduly affecting drawing
quality up to about ratios of 20:1, as seen in thelamp and
room examples.

5 Conclusionsand Future Work

We have shown that the non-standard wavelet decompo-
sition provides a powerful tool for compressing lightfield
data. Using sparse trees to store the data leads to effi-
cient reconstruction algorithmsthat provide real-time re-
construction of viewsof anabject. Inparticularitispossi-
bleto reconstruct 2-D dlicesfrom a4-D volumein O(n?)
time, where there are n? samples in the dice. The recon-



struction is sensitive to level-of-detail considerationsand
can be builtincrementally.

This paper has only examined compression by thresh-
olding. Another important techniqueis that should be ex-
amined is quantization. By quantizing the wavelet co-
efficients to an 8 or 12 hit representation we should be
able to cut the storage requirements by another factor of
8. Likewise, we currently storered, green, and blue chan-
nels seperately. Instead of usingthe RGB colour space we
should use a luminance based space, such as Y1Q, to ap-
portion more of our precision to the luminance channel,
which could lead to visually better reconstructions.

6 References

[1] lan Ashdown. Near-field photometry: The helios
approach. In Graphics Interface *92 Workshop on
Local lllumination, pages 1-14, May 1992.

[2] Shenchang Eric Chen. Quicktime VR - an image-
based approach to virtual environment navigation.
In SGGRAPH 95 Conference Proceedings, pages
29-38, August 1995.

[3] Shenchang Eric Chen and Lance Williams. View
interpolation for image synthesis.  In Computer
Graphics (SGGRAPH '93 Proceedings), vol-
ume 27, pages 279-288, August 1993.

[4] Per H. Christensen, Eric J. Stollnitz, David H.
Salesin, and Tony D. DeRose. Globa illumination
of glossy environments using wavelets and impor-
tance. ACM Transactions on Graphics, 15(1):37—
71, January 1996. ISSN 0730-0301.

[5] Ingrid Daubechies. Ten Lectures on Wavelets, vol-
ume 61 of CBMSNSF Regional Conference Series
in Applied Mathematics. SIAM, Philadelphia, PA,
1992.

[6] Steven J. Gortler, Radek Grzeszczuk, Richard
Szeliski, and Michael F. Cohen. The lumigraph.
In SGGRAPH 96 Conference Proceedings, pages
43-54. August 1996.

[7] Wolfgang Heidrich, Jan Kautz, Philipp Slusallek,
and Hans-Peter Seidel. Canned lightsources. In Ren-
dering Techniques’ 98 (Proc. of EurographicsWork-
shop on Rendering, pages 293-300, June 1998.

[8] P Laondeand A. Fournier. Generating reflected di-
rectionsfrom BRDF data. Computer Graphics Fo-
rum, 16(3):293-300, August 1997. Proceedings of
Eurographics’97. ISSN 1067-7055.

[9] Paul Laonde. Representations and Uses of Light
Distribution Functions. Ph.d. thesis, Department of
Computer Science, University of Brisith Columbia,
July 1997.

[10] Paul Lalonde and Alain Fournier. Filtered local
shading in the wavelet domain.  In Eurograph-
ics Rendering Workshop 1997, pages 163-174, June
1997.

Marc Levoy and Pat Hanrahan. Light field render-
ing. In SGGRAPH 96 Conference Proceedings,
pages 31-42. August 1996.

Robert R. Lewis and Alain Fournier. Light-driven
global illuminationwith awavel et representation of
light transport. In Eurographics Rendering Work-
shop 1996, pages 11-20, June 1996.

Leonard McMillan and Gary Bishop. Plenoptic
modeling: An image-based rendering system. In
S GGRAPH 95 Conference Proceedings, pages 39—
46, August 1995.

Peter Schroder and Wim Sweldens.  Spherical
wavelets: Efficiently representing functions on the
sphere. In SGGRAPH 95 Conference Proceedings,
pages 161172, August 1995.

Eric J. Stollnitz, Tony D. DeRose, and David H.
Salesin. Wavelets for computer graphics: A primer.
|IEEE Computer Graphics and Applications, 15(3),
1995.

[16] Turner Whitted. An improved illumination model
for shaded display. Communications of the ACM,
23(6):343-349, June 1980.

[11]

[12]

[13]

[14]

[15]

# Coef. %Size | RMSErr. | %Er. | Time
Lamp
Initial Size 1048756
89476 0.085 0.0 0.0 129
26841 0.025 17.59 0.15 9.8
17894 0.017 24.96 021
8946 | 0.0085 37.37 0.32 31
Dataset RMS 116.62
Spheres
# Coefs. 1048756
488833 0.47 0.0 0.0
97764 0.093 83.36 0.24
47276 0.045 120.87 0.35
4887 | 0.0046 205.42 0.59
RMS 342,57
Room
# Coefs. 1048756
541234 0.51 0.0 0.0 22
54122 0.051 24.82 0.09 9.5
27060 0.026 40.06 0.14
5411 | 0.0051 75.54 0.27 37
RMS 281.34

Table 1: Performance figures. The timings (in millisec-
onds) are for the algorithm presented in Section 3.7.



