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Retrieval of color images has become an important application in recent years. We make
a concise analysis of methodologies for interactive retrieval of color images. Two issues
are of importance. First, the domain, which can be broad or narrow. Second, the search
method, which can be object search, target search, category search or associative search.
On the basis of these, we give complete guidelines for choosing and designing methods
for interactive color image retrieval based on the domain and search goal characteristics.
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1. Introduction

Today, with the growth and popularity of the World Wide Web, a new application

field is born through the tremendous amount of visual information, such as images

and videos, which has been made accessible publicly. Apart from this, companies are

starting to digitize all their images and videos. This growth is reflected in the many

conference series on this topic that have started in recent years like the content-

based workshops of the CVPR and ICCV, the SPIE storage and retrieval for image

and video databases conference, and the Visual Information Systems series.

Color plays an important role in all aspects of visual data on the web. Aside

from decorating and advertising potentials for web-design, color information has

become a powerful tool in content-based image and video retrieval.

Various color-based image search schemes have been proposed based on various

representation schemes such as color histograms, color moments, color edge orien-

tation, color texture and color correlograms. These image representation schemes

have been created on the basis of different color spaces. Which one to choose de-

pends on the dataset and the search goals of the user. There is a need to get a better

insight in the possibilities and limitations of the different representation schemes.
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Even with the best representation schemes, it is seldom possible to ignore the

important role of interaction with the user. The user should play an active role

in the retrieval process and the system should employ any information that can

be provided by the interacting user. This requires an intimate interplay between

the system and the user. Again, the proper choice of an interaction methodol-

ogy depends on the search goals of the user. Hence, these search goals should be

examined carefully.

The paper is organized as follows, in Sec. 2, the datasets and search goals of

users are categorized on the basis of the query space framework. A taxonomy of

color spaces based on the dataset and search goal categorization is put forward

in Sec. 3. In Sec. 4, the different methods for indexing are analyzed. Finally, in

Sec. 5, different interaction methodologies are described and put into the query

space framework.

2. Color Image Retrieval

2.1. Datasets and applications

Color image datasets arise in many different applications in varying domains. To

define methods for color image retrieval, it is important to consider carefully the

classes of datasets one can encounter. Furthermore, methods depend on the search

goals of the user.

From the dataset point of view, a distinction can be made between narrow do-

mains and broad domains. Examples of datasets in narrow domains are pictures of

20th century architecture, images of flowers in a catalogue or images of paintings

in a museum. In narrow domains, the images are typically derived under controlled

circumstances. Characteristics of the imaging device are known and lighting condi-

tions can be optimized, hence images are of high quality. This contrasts the variety

in quality and devices encountered in broad domains. The broadest domain clearly

being the world wide web.

When accessing a dataset, users can vary broadly in their goals of using the

color image retrieval system. In general, we distinguish four major categories of

search goals:

• object search: the search for a specific object

• target search: the search for a specific image

• category search: the search for one or more images from a specific category

• associative search: browsing through the collection with no other goal than

interesting findings

When the user is performing an object search, he is likely to have the object at

his disposal. The object can either be in its concrete form or it can be a picture

of the object. In both cases, the goal is to verify whether there is an image in the

database that contains the same object. The concern here is to find the object even

if it is only partly visible, or recorded under different circumstances, e.g., seen from
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a different viewpoint. When the image of the object is identified, the object should

be localized in the picture.

In target search, the individual objects are not of primary importance, but the

composition of the picture as a whole. The user has a mental model of the image,

which should be communicated to the system to find the image. For this purpose,

it is of great importance that the user can specify the colors he has in mind in an

intuitive way.

Category search focuses on the common characteristics of groups of images.

Especially those characteristics that distinguishes this group from other groups are

of great importance.

The final category to consider is associative search. As the system cannot predict

what is of interest to the user, it is important that the user takes the lead in the

search process. To that end, it is crucial that in the perception of the user, the effect

of his choices are reflected in the progress made in the search space. This can only

be the case if the image descriptions relate to the perception of the user.

2.2. Query space: definition

The search categories defined in the previous section require different retrieval

methods. We now present a formalism called Query Space as was first put for-

ward in Ref. 1. Here, it will be made specific for the goal of structuring different

interactive color retrieval methods.

The basis for image retrieval is of course the active set IQ of images in the

database. This can be the whole database, but also in some view the user is given

on the database.

Images are never retrieved on the basis of the full pixel array of color val-

ues. Therefore, all the images should be described in abstract way using a set of

color features FQ. The color features to select depend on the aim the user has. In

Sec. 3, guidelines for the selection will be derived. The set of features span a high-

dimensional space in which each image corresponds to a single point according to

the feature values derived for this particular image.

Based on the feature set, the system must be able to compare images. Which

images are similar and which are dissimilar? This is captured in a similarity function

S as will be described in Sec. 4. Often, the similarity function is Euclidean distance

in feature space. As similarity is context dependent, typically weighting coefficients

are used for the individual elements of the feature vector,2,3 which can be set by

the user or system.

Finally, with each image or group of images, an interpretation can be associated.

These could on the one hand be semantic labels. On the other hand, they can be

related to the search goal. Due to the fact that images are sensory observations of

the world, labels cannot be assigned with full certainty. Therefore, when a label is

attached to an image or image group, a probability is stored for the image-label

pair. The set of possible labels is denoted by Z.
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Fig. 1. Abstract representation of the query space. The image set I forms a true subset of the full
set of images in the database. The feature space F is composed of two color features. Similarity
S corresponds to Euclidean distance. Finally, with the images, two labels in Z are assigned with
their associated probabilities P .

Given the above, query space is defined as:

Definition 1. The query space Q is the goal dependent 4-tuple {IQ, FQ, SQ, ZQ}.

The query space forms the basis for specifying queries, display of query results

and for interaction, which will be described in Sec. 5. We now turn our attention

to the proper definition of color features and similarity functions. An overview of

the framework is presented in Fig. 1.

3. Color Taxonomy for Image Retrieval

The choice of color features is of great importance for the purpose of proper im-

age retrieval. It induces the equivalence image classes to the actual retrieval al-

gorithm. However, no color system can be considered as universal because color

can be interpreted and modeled in different ways. Each color system has its own

set of color models, which are the parameters of the color system. Color systems

have been developed for different purposes: (a) display and printing processes:

RGB, CMY; (b) television and video transmission efficiency: YIQ, YUV; (c) color
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standardization: XYZ; (d) color uncorrelation: I1I2I3; (e) color normalization and

representation: rgb, xyz; (f) perceptual uniformity: U∗V ∗W ∗, L∗a∗b∗, L∗u∗v∗; and

(g) intuitive description: HSI, HSV . With this large variety of color systems, the

inevitable question arises, which color system to use for which kind of image re-

trieval application. To this end, criteria are put forward to classify the various color

systems for the purpose of content-based image retrieval.

In this section, the aim is to provide a taxonomy on color systems according to

the following criteria:

• is the color system device independent (broad/narrow domain)

• is the color system perceptual uniform (category/associate search)

• is the color system intuitive (query specification)

• is the color system robust against varying imaging conditions (object/target

search)

— invariant to a change in viewing direction

— invariant to a change in object geometry

— invariant to a change in the direction of the illumination

— invariant to a change in the intensity of the illumination

— invariant to a change in the spectral power distribution (SPD) of the illumi-

nation.

The first criterion is focussed on the independence of the color system on the

underlying imaging device. This is required when the images in the image database

arise from broad domains, where recordings are made by different imaging devices

such as scanners, cameras, digital videos and webcam-recorder (e.g., images on In-

ternet). In contrast, for narrow domains, images are usually recorded on controlled

circumstances by the same imaging device. The second criterion states that the

color system should exhibit perceptual uniformity, meaning that numerical dis-

tances within the color space can be related to human perceptual differences. This

is important when images are to be retrieved, which should be visually similar

such as stamp, trademark and painting databases. Perceptual uniformity is needed

for category and associate search. Thirdly, the color system should be composed

of color models, which are understandable and intuitive to the user. This is re-

quired for proper and easy query specification, where, for example, a color picker

is used to select the proper color range of interest. Moreover, to achieve robust

and discriminative image retrieval, color invariance is another important criterion.

Especially for object search, where the goal is to find images containing the same

object(s) as shown by the query image. In general, images and videos are taken

from objects from different viewpoints. Two recordings made of the same object

from different viewpoints will yield different shadowing, shading and highlighting

cues changing the intensity data fields considerably. Moreover, large differences in

the illumination color will drastically change the photometric content of images
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even when they are taken from the same object. Hence, a proper retrieval scheme

should be robust to the imaging conditions discounting the disturbing influences of

a change in viewpoint, object pose and illumination.

The color system taxonomy, proposed in this section, can be used to select

the proper color system for a specific application based on whether images come

from broad domains and which search goals are at hand (object/target/category/

associate search). For example, consider an image database of textile printing sam-

ples (e.g., curtains). The application is to search for samples with similar color

appearances. When the samples have been recorded under the same imaging con-

ditions (i.e., camera, illumination and sample pose), a perceptual uniform color

systems (e.g., L∗a∗b∗) is most suitable. When the lightning conditions are different

between the recordings, a color invariant system is most appropriate eliminating

the disturbing influences such as shading, shadows and highlights.

3.1. Color features F

The mostly used model is the grey-value or intensity-feature, which is obtained by

a standard grey-value camera or can be calculated from the original R, G and B

tristimulus values from the corresponding red, green and blue images provided by

a CCD color camera (e.g., NTSC):

grey(R, G, B) = 0.299R + 0.587G + 0.144B . (1)

Of course, grey-value images are dependent on the imaging device because

two different cameras (i.e., filters) will yield different grey-value images for the

same scene. Moreover, grey is heavily influenced by the viewing direction, object

geometry, direction of the illumination, intensity and color of the illumination.

The RGB color system represents the (R)ed, (G)reen and (B)lue color. In

general, the R, G and B color features correspond to the primary colors, where

R = 700 nm, G = 546.1 nm and B = 435.8 nm. Similar to grey-value, the RGB

color system is not perceptual uniform and is device-dependent. Therefore, RGB

should not be used for image retrieval for images from broad-domains. Further,

RGB depends on the imaging conditions such as viewing direction, object geom-

etry, direction of the illumination, intensity and color of the illumination. Hence,

using RGB values for image retrieval causes severe problems when the query and

target image are recorded under different imaging conditions. In conclusion, RGB

is only suitable for object or target search from narrow domains (i.e., the same

imaging device) under exactly the same imaging conditions.

The rgb color system is defined as follows:

r(R, G, B) =
R

(R + G + B)
, (2)

g(R, G, B) =
G

(R + G + B)
, (3)
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b(R, G, B) =
B

(R + G + B)
. (4)

These color models are called normalized colors or chromaticity coordinates, be-

cause each of them is calculated by dividing R, G and B by their total sum. Be-

cause the r, g and b chromaticity coordinates depend only on the ratio of R, G

and B (i.e., factoring luminance out), they have the important property that they

are not sensitive to shading, surface orientation, illumination direction and illumi-

nation intensity.4 However, normalized colors are still device dependent. Moreover,

rgb become unstable and meaningless when the intensity is small.5 In conclusion,

rgb is well suited for object search in broad-domains (i.e., under varying imaging

conditions but with the same SPD of the light source). However, images should be

recorded by the same camera.

For standardization of colorimetric measurements, in 1931, the international

lighting commission (CIE) recommended the XYZ-color system. Any perceived

color can be described mathematically by the amounts of these three color pri-

maries. The luminance is determined only by the Y value. Because the XYZ system

is a linear combination of R, G and B values, the XYZ color system inherits all the

dependencies on the imaging conditions from the RGB color system. Note that the

color system is device-independent as the X , Y and Z values are objective in their

interpretation. The following conversion matrix is based on the RGB NTSC color

coordinates system:

X(R, G, B) = 0.607R + 0.174G + 0.200B , (5)

Y (R, G, B) = 0.299R + 0.587G + 0.114B , (6)

Z(R, G, B) = 0.000R + 0.066G + 1.116B . (7)

Further, the corresponding chromaticity coordinates are given by:

x(X, Y, Z) =
X

(X + Y + Z)
, (8)

y(X, Y, Z) =
Y

(X + Y + Z)
, (9)

z(X, Y, Z) =
Z

(X + Y + Z)
. (10)

Similar to rgb, this system cancels intensity out yielding independence on sur-

face orientation, illumination direction and illumination intensity.4 In conclusion,

xyz is well suited for object search for broad domains with varying imaging

conditions (color invariant but not color constant) and different imaging devices

(device-independent).

Further, the CIE introduced the U∗V ∗W ∗ color system to obtain perceptual

uniformity. The color model W ∗ is based on the scaling of luminance. The lumi-

nance of a color is determined only by its Y value. To scale luminance between 0
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(black) and 100 (white), the scaling method starts with black and selects a just no-

ticeable brighter grey-value. Taking this just noticeable brighter grey-value, the next

just noticeable brighter grey-value is selected. This process continues until white is

reached. The other two color features solve the problem of large difference of the

axis-diameters of the ellipses in the chromaticity diagram. Colors, which are not no-

ticeable different for a particular color are lying on the ellipses, and all colors, which

are (just) noticeable different are lying outside the ellipses. The system is visual uni-

form, because a luminance difference corresponds with the same noticed luminance

difference and the ellipses in the adjusted chromaticity diagram have constant axis-

diameters. However, the U∗ and V ∗ color models become unstable and meaningless

when intensity is small.6 Further, the U∗V ∗W ∗ color system depends on viewing

direction, object geometry, highlights, direction of the illumination, intensity and

color of the illumination. Another perceptual uniform system, proposed by CIE,

is the L∗a∗b∗ color system. The color feature L∗ correlates with the perceived lu-

minance and corresponds to W ∗ of the U∗V ∗W ∗ color system. Color feature a∗

correlates with the red–green content of a color and b∗ reflects the yellow–blue

content. The color system is device-independent and perceptual uniform. However,

similar to U∗V ∗W ∗, the L∗a∗b∗ color system is still dependent on viewing direc-

tion, object geometry, highlights, direction of the illumination, intensity and color

of the illumination. In conclusion, color systems U∗V ∗W ∗ and L∗a∗b∗ are particu-

larly suited for category and associate search from broad-domains. Further, these

color systems are also suited for object and target search for image coming from

narrow-domains (i.e., under controlled imaging circumstances) possibly recorded by

different imaging devices (i.e., device-independent).

The National Television Systems Committee (NTSC) developed the following

three color attributes:

Y (R, G, B) = 0.299R + 0.587G + 0.114B , (11)

I(R, G, B) = 0.596R− 0.274G− 0.312B , (12)

Q(R, G, B) = 0.211R− 0.523G + 0.312B , (13)

for transmission efficiency. The tristimulus value Y corresponds to the luminance of

a color. I and Q correspond closely the hue and saturation of a color. By reducing

the spatial bandwidth of I and Q without noticeable image degradation, efficient

color transmission is obtained. For the PAL and SECAM standards used in Europe,

the Y , U and V tristimulus values are used. The I and Q color attributes are related

to U and V by a simple rotation of the color coordinates in color space.

The human color perception is conveniently represented by the following set of

color features: I(ntensity), S(aturation) and H(ue):

I(R, G, B) =
(R + G + B)

3
, (14)
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H(R, G, B) = arctan

( √
3(G − B)

(R − G) + (R − B)

)

, (15)

S(R, G, B) = 1 − min(R, G, B)

R + G + B
. (16)

I is an attribute in terms of which a light or surface color may be ordered on a

scale from dim to bright. S denotes the relative white content of a color and H

is the color aspect of a visual impression. The problem of hue is that it becomes

unstable when S and I are near zero due to the nonremovable singularities in the

nonlinear transformation, where a small perturbation of the input RGB-values can

cause a large jump in the transformed values.6 Saturation becomes unstable when

intensity is near zero. Intensity I depends on viewing direction, object geometry,

direction of the illumination, intensity and color of the illumination. Saturation S

depends on highlights and a change in the color of the illumination. Hue H depends

only on the color of the illumination. In conclusion, the IHS system is well suited

for proper color query specification such as the use of a color picker to specify colors

ranges. Further, for narrow-domains, it could be used for category and associate

search. Finally, hue is a good candidate for object search (color invariance but not

color constant) of colorful objects (stability), when the recordings have been made

by the same imaging device.

3.2. Color constancy

As stated before, the color (or rather, the apparent color) of an object varies with

changes in illuminant color, illumination geometry (i.e., angle of incidence), view-

ing geometry (angle of reflectance) and miscellaneous sensor parameters. In outdoor

images, the color of the illuminant (i.e., daylight) varies with the time-of-day, cloud

cover and other atmospheric conditions. The illuminant and viewing geometry vary

with changes in object and camera position and orientation. In addition, certain sen-

sor response parameters, shadows and interreflection, may also affect the apparent

color of objects. Consequently, at different times of the day, under different weather

conditions and at various positions and orientations of the object and camera, the

apparent color of an object can be different. Color invariance aims to discount

the illumination geometry, viewing geometry and miscellaneous sensor parameters

to obtain object reflectance color (i.e., surface albedo). Further, the goal of color

constancy is to discount the illumination color to obtain the object reflectance color.

The problem of color constancy has been the topic of much research in psycho-

logy and computer vision. Existing color constancy methods require specific a priori

information about the observed scene (e.g., the placement of calibration patches of

known spectral reflectance in the scene), which will not be feasible in practical

situations.7–9 In contrast, without any a priori information, Healey and Slater10

and Finlayson et al.11 use illumination-invariant moments of color distributions for

object recognition. However, these methods are sensitive to object occlusion and
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cluttering as the moments are defined as an integral property on the object as

one. In global methods in general, occluded parts will disturb recognition. Slater

and Healey12 circumvent this problem by computing the color features from small

object regions instead of the entire object. Further, to avoid sensitivity on object

occlusion and cluttering, simple and effective illumination-independent color ratio’s

have been proposed by Funt and Finlayson,13 Nayar and Bolle,14 and Gevers and

Smeulders.4 These color constant models are based on the ratio of surface albedos

rather than the recovering of the actual surface albedo itself. However, these color

models assume that the variation in spectral power distribution of the illumination

can be modeled by the coefficient rule or von Kries model, where the change in the

illumination color is approximated by a 3 × 3 diagonal matrix among the sensor

bands and is equal to the multiplication of each RGB-color band by an independent

scalar factor. The diagonal model of illumination change holds exactly in the case

of narrow-band sensors. Although standard video cameras are not equipped with

narrow-band filters, spectral sharpening could be applied15 to achieve this to a

large extend.

The color ratio’s proposed by Nayar and Bolle are given by14:

N(Cx1 , Cx2) =
Cx1 − Cx2

Cx2 + Cx1

, (17)

and those proposed by Funt and Finlayson13 are defined by:

F (Cx1 , Cx2) =
Cx1

Cx2

, (18)

expressing color ratio’s between two neighboring image locations, for C ∈ {R, G, B},
where x1 and x2 denote the image locations of the two neighboring pixels.

The color ratio’s of Gevers and Smeulders are given by4:

M(Cx1

1 , Cx2

1 , Cx1

2 , Cx2

2 ) =
Cx1

1 Cx2

2

Cx2

1 Cx1

2

, (19)

expressing the color ratio between two neighboring image locations, for C1, C2 ∈
{R, G, B}, where x1 and x2 denote the image locations of the two neighboring

pixels. All these color ratio’s are device-dependent, not perceptual uniform and

they become unstable when intensity is near zero. Further, N and F are dependent

on the object geometry. M has no viewing and lighting dependencies.

3.3. Discussion

It has been shown that each color system has its own characteristics: a number of

systems are linear combinations of the RGB values, such as the XY Z color sys-

tem, or normalized with respect to intensity, such as the rgb and the xyz color

system. The U∗V ∗W ∗ and the L∗a∗b∗ color systems have distances, which reflect

the perceived similarity. As each image retrieval application demands a specific

color system, in Fig. 2, a color taxonomy is given. In conclusion, xyz is well suited
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Fig. 2. Overview of the dependencies differentiated for the various color systems. + denotes that
the condition is satisfied, − denotes that the condition is not satisfied.

for object and target search for broad domains (device-independent) recorded un-

der varying imaging conditions under the constraint of a specific light source (color

invariant but not color constant). Color systems U∗V ∗W ∗ and L∗a∗b∗ are particu-

larly suited for category and associate search from broad-domains. The IHS system

is well suited for color query specification. Further, the hue color feature H is a good

candidate for object search (color invariance but not color constant) of colorful ob-

jects. For broad scale image datasets such the Internet, where no constraints can

be applied on the imaging conditions, a color constant space should be used such

as the N, F and M .

The various color systems and their performance can be experienced within the

Pic2Seek systems on-line at: http://www.science.uva.nl/research/isis/zomax/.

4. Color Indexing

Various color based image search schemes have been proposed based on various rep-

resentation schemes such as color histograms, color moments, color edge orientation,

color texture and color correlograms.16,17

In this section, an overview will be given on color histograms in Sec. 4.1. Then, in

Sec. 4.2, standard similarity measures are discussed to compute similarity between

color histograms. As color histograms do not incorporate spatial information, we

will give an overview of spatial color distribution schemes in Sec. 4.3.
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4.1. Color histograms

The goal of histogram construction is the reduction of the number of colors

representing the content of an image. The (one-dimensional) histogram is defined

as:

f̂(x) =
1

nh
(number of Xi in the same bin as x) , (20)

where n is the number of pixels Xi in the image, h is the bin width and x the range

of the data. Two choices have to be made when constructing a histogram. First,

the bin-width parameter needs to be chosen. Secondly, the position of the bin edges

needs to be established. Both choices affect the resulting estimation.

One of the earlier approaches to color-based image matching, using the color at

pixels directly as indices, has been proposed by Swain and Ballard.18 If the opponent

color (a linear transformation of RGB) distributions of two images are globally

similar, the matching rate is high. The work by Swain and Ballard had an enormous

impact on color-based histogram matching resulting in many histogram variations.

For example, the QBIC system16 allows for a user-defined computation of the

histogram by the introduction of variable k denoting the number of bins of the

histogram. Then, for each 3 × k cells, the average modified Munsell color is com-

puted together with the five most frequently occurring colors. Using a standard

clustering algorithm, they obtain k super cells resulting in the partitioning of the

color system.

In Gevers,19 various color invariant features are selected to construct color

pattern-cards. First, histograms are created in a standard way. Because the color

distributions of histograms depend on the scale of the recorded object (e.g., distance

object-camera), they define color pattern-cards as thresholded histograms. In this

way, color pattern-cards are scale-independent by indicating whether a particular

color model value is substantially present in an image or not. Matching measures are

defined, expressing similarity between color pattern-cards, robust to a substantial

amount of object occlusion and cluttering. Based on the color pattern-cards and

matching functions, a hashing scheme is presented offering run-time image retrieval

independent of the number of images in the image database.

In the ImageRover system, proposed by Sclaroff,20 the L∗u∗v∗ color space is

used, where each color axis has been split into four equally sized bins resulting in a

total of 64 bins. Further, Dimai21 uses the L∗a∗b∗ system to compute the average

color and covariance matrix of each of the color channels. Smith and Chang22 use

the HSV color space to obtain a partition into 144 bins giving more emphasis on

hue then value and saturation. Further, Androutsos23 also focuses on the HSV color

space to extract regions of dominant colors. To obtain colors, which are perceptu-

ally the same but still being distinctive, Syeda-Mahmood24 proposes to partition

the RGB color space into 220 subspaces. Di Sciascio25 computes the average color

describing a cell of 4 × 4 grid, which is superimposed on the image. The MARS26

uses the L∗a∗b∗ color space because the color space consists of perceptually uni-

form colors, which better matches the human perception of color. Gong,27 roughly
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partitions the Munsell color space into eleven color zones. Similar partitioning have

been proposed by Cox28 and Ciocca.29

Another approach, proposed by Stricker and Orengo,30 is the introduction of

the cumulative color histogram, which generate more dense vectors. This enables

us to cope with coarsely quantized color spaces. Zhang31 proposes a variation of

the cumulative histograms by applying cumulative histograms to each sub-space.

Other approaches are based on the computation of moments of each color chan-

nel. For example, Appas32 represents color regions by the first three moments of

the color models in the HSV -space. Instead of constructing histograms from color

invariants, Healey and Slater10 and Finlayson et al.11 propose the computation

of illumination-invariant moments from color histograms. In a similar way, Slater

and Healey12 computes the color features from small object regions instead of the

entire object.

Jacobs33 proposes to use integrated wavelet decomposition. In fact, the color

features generate wavelet coefficients together with their energy distribution among

channels and quantization layers. Similar approaches based on wavelets have been

proposed by Vellaikel and Kuo34 and Liang and Kuo.35

4.2. Similarity measures for histograms

As stated before, histograms are created by counting the number of times a discrete

color feature occurs in the image. The histogram from the query image is created

in a similar way. Then, image retrieval is reduced to the problem to what extent

histogram k derived from the query image Q is similar to a histogram l constructed

for each image in the image database. A similarity function D(k, l) is required

returning a numerical measure of similarity.

Before the query can be submitted, a choice has to be made for the desired

classes of similarity robustness. For each image retrieval query, a proper definition

of the desired robustness is in order. Does the applicant wish to search for the object

in real-world cluttered environments containing occlusion? Therefore, depending

on the domain (broad/narrow), the following criteria are defined on the similarity

measure:

(1) robustness against object fragmentation

(2) robustness against (self) occlusion

(3) robustness against clutter by the presence of other objects in the scene.

Various distance functions have been proposed. Some of these are general func-

tions such as Euclidean distance and cosine distance. Others are specially designed

for image retrieval such as histogram intersection.18

The Minkowski-form distance for two vectors or histograms k and l with dimen-

sion n is given by:

Dk
M (k, l) =

√

√

√

√

n
∑

i=1

|ki − li|k . (21)
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The Eulidean distance between two vectors k and l is defined as follows:

DE(k, l) =

√

√

√

√

n
∑

i=1

(ki − li)2 . (22)

The Euclidean distance is an instance of the Minkowski distance with k = 2.

The cosine distance compares the feature vectors of two images and returns the

cosine of the angle between the two vectors:

DC(k, l) = 1 − cosφ , (23)

where φ is the angle between the vectors k and l. When the two vectors have

equal directions, the cosine will add to one. The angle φ can also be described as a

function of k and l:

cosφ =
k · l

‖k‖ ‖l‖ . (24)

The cosine distance is well suited for features that are real vectors and not a

collection of independent scalar features.

The histogram intersection distance compares two histograms k and l of n bins

by taking the intersection of both histograms:

DH(k, l) = 1 −
∑n

i=1 min(ki, li)
∑n

i=1 ki

. (25)

When considering images of different sizes, this distance function is not a metric

due to DH(k, l) 6= DH(l,k). In order to become a valid distance metric, histograms

need to be normalized first:

kn =
k

∑n

i ki

. (26)

For normalized histograms (total sum of 1), the histogram intersection is given by:

Dn
H(kn, ln) = 1 −

n
∑

i

|kn
i − lni | . (27)

This is again the Minkowski-form distance metric with k = 1. Histogram intersec-

tion has the property that it allows for occlusion, i.e., when an object in one image

is partly occluded, the visible part still contributes to the similarity.4,36

Alternative, histogram matching is defined by normalized cross correlation:

Dx(k, l) =

∑n

i=1 kili
∑n

i=1 k2
i

. (28)

The normalized cross correlation has a maximum of unity that occurs if and only

if k matches exactly l.

In the QBIC system,16 the weighted Euclidean distance has been used for the

similarity of color histograms. In fact, the distance measure is based on the corre-

lation between histograms k and l:

DQ(k, l) = (ki − li)
tA(ki − lj) . (29)



Interactive Retrieval of Color Images 401

Further, A is a weight matrix with term aij expressing the perceptual distance

between bin i and j.

The average color distance has been proposed by Ref. 37 to obtain a simpler

low-dimensional distance measure:

DHaf(k, l) = (kavg − lavg)
t(kavg − lavg) , (30)

where kavg and lavg are 3 × 1 average color vectors of k and l.

As stated before, for broad domains, a proper similarity measure should be ro-

bust to object fragmentation, occlusion and clutter by the presence of other objects

in the view. In Gevers and Smeulders,19 various similarity function were compared

for color-based histogram matching. From these results, it is concluded that re-

trieval accuracy of similarity functions depend on the presence of object clutter in

the scene. The histogram cross correlation provide best retrieval accuracy without

any object clutter (narrow domain). This is due to the fact that this similarity

function is symmetric and can be interpreted as the number of pixels with the

same values in the query image, which can be found present in the retrieved image

and vice versa. This is a desirable property, when one object per image is recorded

without any object clutter. In the presence of object clutter (broad domain), high-

est image retrieval accuracy is provided by the quadratic similarity function (e.g.,

histogram intersection). This is because this similarity measure counts number of

similar hits and hence is insensitive to false positives.

In conclusion, for a search in broad domains, the quadratic similarity function

(e.g., histogram intersection) is most appropriate. For narrow domains, without

any object cluttering and occlusion, the cross correlation or Euclidean distance is

most useful.

4.3. Spatial color distributions

In the previous section, all representation schemes do not include spatial or shape

information. The lack of spatial information may yield lower retrieval accuracy. As

for general image databases, a manual segmentation is not feasible due to the large

amount of images, a simple approach is to divide images into smaller sub-images and

then index them. This is known as fixed partitioning, which is discussed in Sec. 4.3.1.

Other systems use a segmentation scheme, prior to the actual image search, to

partition each image into regions. These region-based partitioning schemes will be

discussed in Sec. 4.3.2. Nearly all region-based partitioning schemes use some kind

of weak segmentation decomposing the image into coherent regions rather than

objects (strong segmentation).

4.3.1. Fixed partitioning

The simplest way is to use fixed decomposition in which an image is partitioned into

equally sized segments. The disadvantage of a fixed partitioning is that blocks usu-

ally do not correspond with the visual content of an image. For example, Gong,27
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splits an image into nine equally sized sub-images, where each sub-region is rep-

resented by a color histogram. Guibas38 segments the image by a quadtree, and

Leung39 uses a multi-resolution representation of each image. Sciascio25 also uses a

4 × 4 grid to segment the image. Sebe40 partitions images into three layers, where

the first layer is the whole image, the second layer is a 3 × 3 grid and the third

layer a 5 × 5 grid. A similar approach is proposed by Malki,41 where three levels

of a quadtree is used to decompose the images. Dimai21 proposes the use of inter-

hierarchical distances measuring the difference between color vectors of a region and

its sub-segments. Chen and Wong42 use an augmented color histogram capturing

the spatial information between pixels together with the color distribution.

In Gevers,36 the aim is to combine color and shape invariants for indexing

and retrieving images. Color invariant edges are derived from which shape invari-

ant features are computed. Then, computational methods are described to com-

bine the color and shape invariants into a unified high-dimensional histogram for

discriminatory object retrieval.

Huang et al.43 propose the use of color correlograms for image retrieval. Color

correlograms integrate the spatial information of colors by expressing the proba-

bility that a pixel of color ci lies at a certain distance from a pixel of color cj . It

is shown that color correlograms are robust to a change in background, occlusion

and scale (camera zoom). Cinque44 introduces the spatial chromatic histograms,

where for every pixel, the percentage of pixels having the same color is computed.

Further, the spatial information is encoded by baricenter of the spatial distribution

and the corresponding deviation.

4.3.2. Region-based partitioning

Segmentation is a computational method to assess the set of points in an image,

which represent one object in the scene. Many different computational techniques

exist, none of which is capable of handling any reasonable set of real world images.

Segmentation is complicated as objects may be partially occluded from sight by the

presence of other objects, or hard to distinguish in a surrounding of other objects.

Segmentation is also complicated by the scene depending illumination conditions.

However, in all cases, weak segmentation may be sufficient to recognize objects in

a scene. Weak segmentation is to assess that a point set or a patch all correspond

to one object but not reverse: not all points of the object are in the segmented

set. Weak segmentation starts from the assumption that any point in the picture

of an object may be invisible due to occlusion. In general, weak segmentation is

based on finding connected regions with similar color feature distributions as the

query object image. After segmentation, these regions are then used for the purpose

of image retrieval.

In Ref. 45, a new image representation is proposed providing a transforma-

tion from the raw pixel data to a small set of image regions, which are coherent

in color and texture space. This so-called Blobworld representation is based on
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segmentation using the Expectation-Maximization algorithm on combined color

and texture features.

In the Picasso system,46 a competitive learning clustering algorithm is used

to obtain a multiresolution representation of color regions. In this way, colors are

represented in the l∗u∗v∗ space through a set of 128 reference colors as obtained by

the clustering algorithm.

Gevers47 proposes a method based on matching feature distributions derived

from color ratio gradients. To cope with object cluttering, region-based texture seg-

mentation is applied on the target images prior to the actual image retrieval process.

Colombo et al.48 segment the image first into homogeneous regions by split and

merge using a color distribution homogeneity condition. Then, histogram intersec-

tion is used to express the degree of similarity between pairs of image regions.

5. Color Image Retrieval

Having defined the features and representations of color images, we now turn our

attention to the color retrieval process itself. This process can be decomposed into

three major steps. In the initialization phase, the query space is instantiated and

properly initialized. This is followed by a specification phase in which the user poses

a certain query to the system. Finally, there is an output phase, where the system, in

the ideal case, presents the user the expected result. For interactive color retrieval,

there are two additional steps. After query specification, the effect of the query on

query space is presented to the user in the display phase. At this moment, the true

interaction takes place, when the user gives feedback on what is displayed on the

screen. The feedback leads to an update of the display and the display/feedback

loop continues till the user is satisfied and the final output can be generated. An

overview of the whole process of (interactive) color retrieval can be seen in Fig. 3.

Each of the steps will now be considered in further detail.

5.1. Query space initialization

When starting a query session, the system should initialize all elements of the query

space Q = {IQ, FQ, SQ, ZQ}.
To initialize the initial set of active images, a selection from the full set of

database images has to be made. This is based on auxiliary information like the

name of the archive, creation data of images and owner.

At that point, the set of color features and corresponding similarity function

should be selected. The taxonomy of color spaces defined in Sec. 3 forms the basis

for all features in the database. From the taxonomy, we can derive that the user

has to specify:

• whether a narrow or broad domain is considered (to know if the device used can

be assumed the same for all images)

• what kind of search is performed (object, target, category or associative)
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Fig. 3. Overview of the steps in interactive color retrieval and the role of interaction therein.

• which invariances are required (viewing direction, object geometry, illumination

direction, illumination intensity)

• whether occlusion is expected to occur (to choose the appropriate color represen-

tation)

• whether there is an interest in the content of dark or white color regions (to see

whether a linear color space is needed).

The initial query space Q0 should not be biased towards specific images or

make some image pairs a priori more similar than others. Therefore, most methods

normalize the features of FQ based on the distribution of the feature values over

IQ, e.g., Refs. 2 and 49. To make SQ unbiased over FQ, the parameters should be

tuned, arriving at a natural distance measure. Such a measure can be obtained by

normalization of the similarity between individual features to a fixed range.49,50

Recall that ZQ is a set of labels, which can be assigned to the images. Due

to uncertainties in interpretation, none of these labels can be assigned with full

certainty. Therefore, each image to which a label is assigned should also store the

probability associated with that particular label. Which labels to select depend on

the user’s goal. For target search, it is sufficient to have ZQ = {target}. Indicating

for each image how likely this image is indeed the target the user is looking for.
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For category search, we have ZQ = {category− member} indicating whether this

image is part of the category the user is looking for. Finally, for associative search,

the proper label is ZQ = {interesting}. However, as the user can be interested in

any category, the set of labels can also be a set of semantic category names like car,

house, romantic or beachscene, which in some context are of relevance to the user.

If the user is allowed to annotate images with semantic labels while browsing, the

probability of that label for the associated image can be set to 1.

5.2. Query specification

For specifying a query in Q, many different interaction methodologies have been

proposed. They fall in one of two major categories:

• exact queries : a request for all images in IQ satisfying a set of criteria

• approximate queries: a request for a ranking of the images in IQ with respect to

the query, based on SQ.

Within each of the two categories, three subclasses can be defined depending

on whether the queries relate to the

• spatial content of the image

• the global image information

• groups of images.

The queries based on spatial content require segmentation of the image. As

described in Sec. 4, this requires strong segmentation, weak segmentation or fixed

partioning.

For exact queries, the three subclasses are based on different predicates the

result should satisfy:

• exact query by spatial predicate is based on the absolute or relative location of

color regions.

Query on color region location is suited for the goal of finding an object. It

assumes that the user knows what color the object has and where they are located.

Implicit spatial relations between regions sketched by the user in Ref. 51 yield a

pictorial predicate. This can be used to do target search. Other systems let the user

explicitly define the predicate on relations between homogeneous regions.52 In both

cases, to be added to the query result, the homogeneous regions as extracted from

the image must comply with the predicate.

• exact query by image predicate is a specification of predicates on global image

descriptions, often in the form of range predicates.

Due to the semantic gap, range predicates on features are seldomly used in

a direct way. In Ref. 53, ranges on color values are pre-defined in predicates like

“MostlyBlue” and “SomeYellow”. Learning from user annotations of a partioning
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of the image allows for feature range queries like: “amount of skycolor > 50%

and amount of sandcolor > 30%”.54 An alternative is to use a color picker and

select in the color space visualized the color range of interest.2,3 This requires an

intuitive color space as otherwise specification is cumbersome and will always lead

to unexpected results.

• exact query by group predicate is a query using an element z ∈ ZQ, where ZQ is

a set of categories that partitions IQ.

In both Refs. 55 and 56, the user queries on a hierarchical taxonomy of cate-

gories. The difference is that the categories are based on contextual information in

Ref. 55 while they are interpretations of the content in Ref. 56.

In the following types of query specifications, the user specifies a single feature

vector or one particular spatial configuration in FQ. As a consequence, they are all

approximate queries as no image will satisfy the query exactly.

• approximate query by spatial example results in an image or spatial structure

corresponding to literal image values and their spatial relationships.

Pictorial specification of a spatial example requires a feature space such that

feature values can be selected or sketched by the user. Color pickers2,3 have been

used with limited success, as users find it difficult to specify their needs in low-level

features. A color display explicitly based on invariance might improve on this as

only relevant color differences are shown. When weak segmentation of the query

image and all images in IQ is performed, the user can specify the query by indi-

cating example regions.5,52 Kato was the first to give the user the opportunity to

make a sketch of the global composition of the image.57 His method could easily be

combined with a floodfill method to color the regions in the sketch. As a spatial ex-

ample allows to specify the composition of the image searched for, the specification

method is suited best for target search.

• approximate query by image example feeds the system a complete array of pixels

and queries for images most similar to the example.

Most of the current systems have relied upon this form of querying2,3 for all

classes of search goals. The use of a single query image is, however, basically suited

for object search only. Even then, it can only be successful if the systems explicitly

considers the relevant invariance classes.58 For other search goals, the use of one

image cannot provide sufficient context for the query to select one of its many

interpretations.59 Query by example queries are in Ref. 50 subclassified into query

by external image example, if the query image is an image, which is not in the

database, versus query by internal image example. The difference in external and

internal example is minor for the user, but affects the computational support as for

internal examples, all relations between images can be pre-computed. For search

goals other than object search, but based on image examples, one should use:
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• approximate query by group example specification through a selection of images,

which ensemble defines the goal.

As a set of images is used in query specification, this technique is particularly

suited for category search. If the specification can be made specific enough, the

method can also be used in target search. The rationale is to put the image in

its proper semantic context to make one of the possible interpretations z ∈ ZQ

preponderant. One option is that the user selects m > 1 images from a palette of

images presented to find images best matching the common characteristics of the

m images.28 Such a query set is capable of more precisely defining the target and

the admissible feature value variations therein. At the same time, a large query set

nullifies the irrelevant variance in the query. This can be specified further by neg-

ative examples.60,61 If for each group in the database, a small set of representative

images can be found, it can be stored in a visual dictionary from which the user

can create its query.59

Of course, the above queries can always be combined into more complex queries.

For example, both Refs. 52 and 51 compare the similarity of regions using features

and in addition they encode spatial relations between the regions in predicates.

Even with such complex queries, a single query is rarely sufficient to reach the

goal except for object search. For most image queries, the user must engage in an

active interaction with the system on the basis of the query results as displayed.

5.3. Query space display

The result of a query is a set of images, but in fact the query yields a new query

space with a possibly new set of active images, new feature and similarity values, and

new probabilities for the interpretations. Therefore, when considering the display,

we do not restrict ourselves to the display of the set of images, but the display of

all elements of query space.

Definition 2. The display space D is a space with perceived dimension d for

visualization of query results.

Note that d is the intrinsic dimensionality of the query result or d is induced by

the projection function if the query result is of too high a dimension to visualize

directly. In both cases, d is not necessarily equal to the two dimensions of the screen.

When the query is exact, the result of the query is a set of images fulfilling the

predicate. As an image either fulfills the predicate or not, there is no intrinsic order

in the query result and d = 0 is sufficient. All images should be presented to the

user as the system cannot decide by itself, which ones are appropriate for display.

For approximate queries, the images in IQ are given a similarity ranking based

on SQ with respect to the query. As the size of IQ is usually large, only the top

most relevant images are selected for display. In spite of the 2D rectangular grid

for presenting images that many systems2,55 use, we should have d = 1. Although
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developers are usually not aware of this, we do implicitly assume that reading

order is part of the order of the images displayed. If the user refines its query, the

images displayed do not have to be the images closest to the query. In Ref. 50,

images are selected that together provide a representative overview of the whole

active database. An alternative display model displays the image set minimizing

the expected number of total iterations.28

As noted earlier, images are described by feature vectors. Backprojection18,62

provides the user with an understanding of the associated color space and how the

feature is located in the image. Every image has an associated position in feature

space FQ. The space spanned by the features is high dimensional. To give a view

on query space, this high dimensional space should be mapped to a space suited

for display. In both Refs. 59 and 63, FQ is projected onto a display space with

d = 3. Images are placed in such a way that distances between images in D reflect

SQ. To improve the user’s comprehension of the query space,63 provides the user

with a dynamic view on FQ through continuous variation of the 3D viewpoint. As

an alternative to visualizing similarity through projection of the high dimensional

feature space, the display can also be done directly on the similarity function. For

this purpose the similarity of two images is viewed as the weight of a weighted

graph on all image pairs with sufficient similarity. The problem is then reduced to

visualizing the resulting graph.64,65 For complexity reasons, only image pairs with

sufficient similarity are taken into account.

The display in Ref. 66 allows for visualization of ZQ. First, the images in IQ are

organized in 2D layers according to labels in ZQ. Then, in each layer, images are

positioned based on SQ. Similar to the techniques described above.

5.4. Interacting with query space

In early systems, the above process of query specification and display of query result

would be iterated, where in each step, the user would revise its query. For the user,

it is far more convenient to give feedback on the results visualized, than going back

to the query specification phase. Thus, in the course of the session, the system

updates the query space, attempting to learn from the feedback the user gives on

the relevance of the query result presented. The query specification is used only for

initializing the display.

Definition 3. An interactive query session is a sequence of query spaces {Q0,

Q1, . . . , Qn−1, Qn} such that Qn bounds as close as possible what the user was

searching for.

For each of the different search classes identified earlier, various ways of user

feedback have been used. All are balancing between obtaining as much informa-

tion from the user as possible and keeping the burden on the user minimal. The

simplest form is to indicate, which images are relevant,28 assuming “don’t care”

values for the others. In Refs. 60 and 61, the user in addition indicates nonrelevant
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images. The system in Ref. 49 considers five levels of significance, which gives more

information to the system, but makes the process more difficult for the user. When

d ≥ 2, the user can manipulate the projected distances between images, putting

away nonrelevant images and bringing relevant images closer to each other.59 The

user can also explicitly bring in semantic information by annotating individual

images, groups of images,59 or regions inside images54 with a semantic label.

The interaction of the user with the display thus yields a relevance feedback

RFi in every iteration i of the session. Combining this with Definitions 1 and 3,

we have:

{Ii
Q, F i

Q, Si
Q, Zi

Q}
RFi

✲ {Ii+1
Q , F i+1

Q , Si+1
Q , Zi+1

Q } . (31)

Different ways of updating Q are possible as described now.

In Ref. 50, the displayed images correspond to a partitioning of IQ. By selecting

an image, one of the sets in the partition is selected and the set IQ is reduced. Thus,

the user zooms in on a target or category. The method follows the pattern:

Ii
Q

RFi
✲ Ii+1

Q . (32)

In many systems, the feature vectors in FQ, corresponding to images in IQ

are fixed. When features are parameterized, and system feedback in the form of

backprojection is given, feedback from the user could lead to optimization of the

parameters. It corresponds to the pattern:

F i
Q

RFi
✲ F i+1

Q . (33)

For associative search, users typically need to interact to learn the system the

right associations. Hence, the system should update the similarity function:

Si
Q

RFi
✲ Si+1

Q . (34)

In Refs. 49 and 60, SQ is parameterized by a weight vector on the distances

between individual features. The weights in Ref. 60 are updated by comparing the

variance of a feature in the set of positive examples, to the variance in the union of

positive and negative examples. If the variance for the positive examples is signifi-

cantly smaller, it is likely that the feature is important to the user. The system in

Ref. 49 first updates the weight of different feature classes. The ranking of images

according to the overall similarity function is compared to the rankings correspond-

ing to each individual feature class. Both positive and negative examples are used

to compute the final weight. The weights for the different features in the feature

class are taken as the inverse of the variance of the feature over positive examples.

The feedback RFi in Ref. 59 leads to new user desired distances between some

of the pairs of images in IQ. The parameters of the continuous similarity function

should be updated to match in optimal way the new distances. The optimization

problem is ill-posed usually. A regularization term is introduced, which limits the

departure from the natural distance function.
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All of the methods below follow the pattern:

Zi
Q

RFi
✲ Zi+1

Q . (35)

For category and target search, a system can also refine the likelihood of par-

ticular interpretations. Either updating the label based on the features of images

or on the similarity between images. The method in Ref. 61 falls in this class and

considers category search. Images indicated by the user as relevant or nonrelevant in

the current or previous iterations are collected. A Parzen estimator is incrementally

constructed to find an optimal separation of the two classes.

In Ref. 28, an elaborate Bayesian framework is derived to compute the likelihood

of any image in the database to be the target, given the history of actions RFi.

In each iteration, the user selects an image from the set of images displayed. The

crucial step then is the update of the probability for each image in IQ of being

the target, given that among the displayed images, the user decided to make this

explicit selection. In the reference, a sigmoidal shaped update function is used,

expressed in the similarity between the selected image and the remaining images

on display.

The system in Ref. 54 pre-computes a hierarchical grouping of imagesa based on

the similarity for each individual feature. The feedback from the user is employed to

create compound groupings corresponding to a user given z ∈ ZQ. The compound

groupings are such that they include all of the positive and none of the negative

examples. Images that were not yet annotated falling in the compound group receive

the label z. The update of probabilities P is based on different partionings of IQ.

5.5. Query output

The final stage of the retrieval process is the output of the final result. This stage

is reached whenever the user indicates that he has reached the goal, or is bored of

trying to find it. When the search has been successful and depending on the search

goal, the following outputs should be generated:

• object search: the localized object in the images that contain the object.

• target search: the image in the active image set for which p(target) is highest.

• category search: the image in the active image set for which p(category-member)

is highest and all its images, which have high similarity to this image.

• associative search: the set of images in the active image set for which p(interest)

is highest and all images, which have high similarity to these images.

In addition, the system can display all contextual information gathered in the

search process, e.g., statistics on the search process.

aIn fact, Ref. 54 is based on a fixed partitioning rather than on images. It does, however, equally
apply to whole images.
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6. Conclusion

We have made a concise analysis of methodologies for interactive retrieval of color

images. Two issues are of importance. First, the domain, which can be broad or nar-

row. Second, the search method, which can be object search, target search, category

search or associative search.

To choose the proper color space based on the domain and search method cate-

gorization, we conclude that xyz is well suited for object and target search for broad

domains (device-independent) recorded under varying imaging conditions under the

constraint of a specific light source (color invariant but not color constant). Color

systems U∗V ∗W ∗ and L∗a∗b∗ are particularly suited for category and associative

search in broad-domains. The IHS system is well suited for color query specifica-

tion. Further, the hue color feature H is a good candidate for object search (color

invariance but not color constant) of colorful objects. For broad domain image

datasets such the Internet, where no constraints can be applied on the imaging

conditions, a color constant space should be used such as the N, F and M .

To choose the proper similarity function using histogram based methods, it is

concluded that for a search in broad domains, the quadratic similarity function

(e.g., histogram intersection) is most appropriate. For narrow domains, without

any object cluttering and occlusion, the cross correlation or Euclidean distance is

most useful.

The full search process is an interactive refinement of query space based on

user interaction. To that end, the visualization of the query result based on the six

categories of query specification needs great attention as otherwise it is difficult for

the user to interactively proceed the search. As query space is composed of images,

features, similarity and interpretations, the system must select which ones to update

in the query process. We conclude that the appropriate query specification method

has an immediate relation with the search goal of the user. The same holds for the

different feedback and query update paradigms.

In conclusion, we have given complete guidelines for choosing and designing

methods for interactive color image retrieval based on the domain and search goal

characteristics.
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