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Abstract

The goal of semi-supervised object detection is to learn

a detection model using only a few labeled data and

large amounts of unlabeled data, thereby reducing the

cost of data labeling. Although a few studies have pro-

posed various self-training-based methods or consistency

regularization-based methods, they ignore the discrepan-

cies among the detection results in the same image that oc-

cur during different training iterations. Additionally, the

predicted detection results vary among different detection

models. In this paper, we propose an interactive form

of self-training using mean teachers for semi-supervised

object detection. Specifically, to alleviate the instability

among the detection results in different iterations, we pro-

pose using nonmaximum suppression to fuse the detection

results from different iterations. Simultaneously, we use

multiple detection heads that predict pseudo labels for each

other to provide complementary information. Furthermore,

to avoid different detection heads collapsing to each other,

we use a mean teacher model instead of the original detec-

tion model to predict the pseudo labels. Thus, the object de-

tection model can be trained on both labeled and unlabeled

data. Extensive experimental results verify the effectiveness

of our proposed method.

1. Introduction

Object detection has undergone substantial progress in

recent years since the successful application of deep con-

volutional neural network (CNN) models. These methods

generally fall into two categories: single-stage [25, 26, 20,

36] and two-stage methods [27, 9, 8, 10, 18]. However,

these methods require large amounts of training samples an-

notated with instance-level labels, which limits their scala-

bility. To reduce the cost of labeling, weakly supervised

learning and semi-supervised learning methods have grad-

ually attracted attention recently. Weakly supervised ob-

ject detection methods [47, 31, 14, 37] require image-level

annotations, while semi-supervised methods [38, 22, 29]

require large quantities of unlabeled data but only a few

(a) (b)
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Figure 1. Illustration of our motivation: (a) and (b) show detec-

tion results from different iterations. These changes in the de-

tection results hinder the convergence of self-training-based semi-

supervised learning models; (c) and (d) show the detection results

from different ROI heads.

instance-level labeled data. The weakly semi-supervised

object detection methods [34, 42] use both fully labeled data

and weakly labeled data. In this paper, we aim to leverage

unlabeled data to further improve the object detection per-

formance using semi-supervised learning.

Although semi-supervised learning has been widely ex-

plored in tasks such as image classification [1, 15, 30, 40,

44, 2, 35], only a few works [13, 32] have focused on how

to apply semi-supervised learning to object detection. The

challenges in applying semi-supervised learning to object

detection include the fact that each image may have mul-

tiple object instances and object detection methods must

regress the location for each object, as shown in Figure 1.

Currently, the semi-supervised object detection methods for

solving this problem can be divided into two categories:

self-training-based methods and consistency regularization-

based methods. The self-training-based methods [32] esti-

mates the pseudo labels for unlabeled images using a pre-

trained model and then jointly trains the model with both

labeled and unlabeled data. However, the pseudo labels are

generated only once, and they remain fixed during the semi-
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supervised training, (i.e., incorrect pseudo labels are not

corrected during the semi-supervised learning process; thus,

the improvements offered by such models is limited). In

contrast, the consistency-regularization-based methods [13]

regularize the consistency of the outputs for the same un-

labeled image under different forms of data augmentation.

However, this method ignores the discrepancies among the

outputs from different iterations.

To overcome the challenges mentioned above, we treat

the detection results from different iterations and models as

an ensemble rather than using fixed pseudo labels. This ap-

proach supports estimating up-to-date detection results for

the unlabeled images in the current batch to improve the

pseudo label quality during semi-supervised training. How-

ever, as illustrated in Figure 1 (a) and (b), the detection re-

sults from different iterations can be different. If we use

the results directly as pseudo labels for unlabeled data, the

training process would be difficult to converge. Addition-

ally, as shown in Figure 1 (c) and (d), the detection re-

sults from different detection models (or different region-of-

interest (ROI) heads) are also different, which means they

may contain complementary information. Thus, the detec-

tion results of one model have the potential to improve an-

other model.

In this paper, we propose interactive self-training

with mean teachers for semi-supervised object detection

(ISMT). Specifically, to improve the quality of pseudo la-

bels while ensuring the model convergence during semi-

supervised training, we store historical pseudo labels in

memory and use nonmaximum suppression (NMS) to fuse

the up-to-date detection result with the historical pseudo la-

bels. Then, we update the pseudo label memory bank; this

stored version serves as the final pseudo label for the unla-

beled data. Second, we use two ROI heads with different

structures to mine complementary information from the un-

labeled data. Furthermore, to avoid overfitting and prevent

the two ROI heads from reaching the same value, we use

the mean teacher approach for each student ROI head to es-

timate the detection results and provide pseudo labels for

the other student ROI head. Compared to the existing self-

training-based object detection methods [32], our method

performs interactive self-training using the mean teachers

as an ensemble to combine the knowledge from different

iterations and different ROI heads.

The main contributions of this work are summarized be-

low. (1) We propose using NMS to fuse the up-to-date de-

tection results with the history pseudo labels to improve the

quality of pseudo labels and stabilize the semi-supervised

training process. (2) We first propose interactive self-

training for semi-supervised object detection augmented by

the mean teacher approach, in which the ROI heads es-

timate pseudo labels for each other and learn from unla-

beled data. Our proposed method achieves the state-of-the-

art semi-supervised object detection performance across the

MS-COCO [19] and PASCAL-VOC [6] datasets. We also

provide an ablation study and a further analysis to verify the

effectiveness of each proposed component.

2. Related Works

Object detection. Object detection is a fundamental com-

puter vision task that has been extensively studied in the lit-

erature. Object detection can be divided into two categories

depending on whether the method uses a region proposal

network (RPN): two-stage methods [27, 9, 8, 10, 18] and

one-stage methods[25, 26, 20, 16, 36]. Many of the two-

stage object detection methods are based on determining a

region of interest (ROI). Ren et al. [27] proposed Faster-

RCNN, which achieved substantial improvements and pro-

vided a foundation for many subsequent research studies.

However, these types of methods require large quantities of

samples annotated with instance-level labels to train the de-

tection network, which limits their scalability.

Semi-supervised learning. Semi-supervised learning

(SSL) approaches have recently achieved progress in im-

age classification with the development of deep learning.

The SSL methods leverage large amounts of unlabeled data

to obtain decision boundaries that better fit the underlying

data structure. Consistency-regularization-based methods

[15, 35, 21] apply perturbations to an input image and then

minimize the differences between the output predictions.

This approach does not require labeled samples because

the loss is determined by the differences between the out-

puts. Consistency-regularization-based methods are known

to help smooth the manifold. Self-training-based meth-

ods [17, 41] first train a model using supervised learning

with some labeled data and then predict pseudo labels on

larger amounts of unlabeled data. However, the complexi-

ties in the architectural design and multitask learning pro-

cess of object detectors hinders simply transferring the ex-

isting semi-supervised techniques from the image classifi-

cation task to the object detection task.

Semi-supervised object detection. Self-training [29, 32]

improves model performance by utilizing high-confidence

samples with pseudo labels during the training process.

However, performing the data augmentations required by

these methods is time consuming, and the resulting perfor-

mances depend largely on the quality of the pseudo labels.

In particular, Sohn et al. [32] proposed a self-training-based

method that applied strong data augmentation to unlabeled

images to avoid overfitting during training. However, we ar-

gue that such augmentations are designed on a case-by-case

basis and one type may not be optimal for different scenar-

ios and would significantly increase the difficulty of training

an object detection model. On the other hand, Jeong et al.

[13] proposed a consistency regularization-based method

that regularized the consistency of the outputs from horizon-

tally symmetric views of the unlabeled data. Existing omni-

supervised learning methods [24, 28] are lower-bounded by

performance on existing labeled datasets and require nu-
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Figure 2. Illustration of our proposed method. First, we train a detection model using only labeled data; then, we use the supervised

pretrained model to estimate the detection result after NMS to obtain the initial pseudo labels and form the pseudo label memory. Finally,

during semi-supervised training, we use the pretrained parameters to initialize the model and then perform interactive self-training with the

mean teacher method. After semi-supervised training (during inference), the stored historical pseudo labels are no longer necessary and

we can empirically use only one of the ROI heads to predict the detection result.

merous labeled data and unlabeled internet-scale data.

3. Method

3.1. Preliminary

We first define some notations for the semi-supervised

object detection problem. Assume we are given sets of la-

beled X = {xi|
Nl

i=1
} and unlabeled data U = {ui|

Nu

i=1
},

where each labeled image has multiple objects {p∗, t∗},

and p∗ and t∗ represent the ground-truth box class labels

and coordinate labels, respectively. For simplicity, we build

our model based on the Faster-RCNN model [27] with fea-

ture pyramid networks (FPN) [18], which is composed of a

CNN backbone, an FPN, an RPN, and ROI heads. For su-

pervised object detection, the detection loss function can be

formulated as follows:

Ll(x,p
∗

, t
∗) =

∑

b

[

1

Nc

∑

j

Lcls(pj ,p
∗

j,b) +
λ

Nc

∑

j

Lreg(tj , t
∗

b)

]

,

(1)

where b is the index of the ground-truth bounding box and

j is the index of the anchor, λ denotes the weight of Lreg .

pi is the predictive probability of an anchor being positive,

and ti denotes the 4-dimensional coordinates of an anchor.

Lcls and Lreg are the classification loss and regression loss,

respectively.

In this paper, we propose an interactive self-training

method based on a mean teacher approach to improve the

quality of pseudo labels and avoid overfitting unlabeled

data. Specifically, as shown in Figure 2, we build our model

based on a Faster-RCNN with two ROI heads that have dif-

ferent structures. First, we use labeled data to pretrain the

model; then, we can estimate the detection result for unla-

beled data. We set a threshold η to filter out low-quality

detection results, and the remaining results form the initial

pseudo labels for the unlabeled data. Finally, during semi-

supervised training, two ROI heads provide pseudo labels

for each other. We employ DropBlock[7] to increase the

differences between the input feature maps of the different

ROI heads by forcing them to focus on different parts of

the feature map. To avoid the predictions of the two ROI

heads from converging to each other and to leverage the en-

semble of historical knowledge, we use the mean teachers

of the ROI heads to estimate the pseudo labels. In the fol-

lowing, we first introduce how to the predicted detection

results from different iterations; then, we introduce the in-

teractive self-training process without mean teachers and

subsequently describe how to apply the mean teachers to

interactive self-training.

3.2. Pseudo Labels Fusion

As shown in Figure 1, the predicted detection results

from different iterations are different; thus, if we were to

use such unstable results directly as the pseudo labels for

unlabeled data, the training process might be unstable and

have difficulty converging. However, the outputs from dif-

ferent iterations contain various knowledge; thus, an ensem-

ble constructed from these outputs would improve pseudo

label quality.

To smooth the detection results and leverage the discrep-

ancies among the outputs from different iterations during

semi-supervised training, we propose using NMS to fuse

these outputs. Specifically, we use the pretrained model to
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the quality and stability of pseudo labels, which is beneficial to

convergence during training.

estimate the detection results for each unlabeled case; then,

those results are stored in memory. Networks with mem-

ory were recently introduced that enable more powerful

learning and reasoning ability for deep learning because the

memory allows past knowledge to be remembered and can

model the data distribution of the entire dataset [5, 39, 43].

Previous methods [5, 39] stored a feature embedding for

each image and updated the feature embedding using an ex-

ponential moving average; in contrast, our method stores

the detection result and updates it by nonmaximum sup-

pression (NMS). Specifically, let {p̄, t̄} represent the stored

predicted detection result of an image in pseudo label mem-

ory, and let {p, t} be the up-to-date prediction result from

the network during semi-supervised training. Then, the up-

dating process can be formulated as follows:

{p̂, t̂} = NMS(CAT({p̄, t̄}, {p, t})), (2)

where NMS represents the nonmaximum suppression op-

eration and CAT represents the concatenation operation

between the up-to-date detection results and the historical

pseudo label. After updating, {p̂, t̂} will be stored in mem-

ory and later used as pseudo labels for unlabeled data.

Features vs. labels. As mentioned above, some previous

methods [5, 39, 43] use memory to track the feature em-

bedding for each image. However, each image has mul-

tiple proposals or objects in object detection which makes

the feature embeddings quite large. Moreover, the indexes

of the proposals might change during the semi-supervised

training process. Therefore, tracking the feature embedding

of each object in images for object detection purposes is dif-

ficult. Instead, using NMS to fuse the detection results from

different iterations saves memory and is more efficient.

3.3. Interactive SelfTraining

Self-training has been widely used in semi-supervised

learning [32, 17, 41]. However, using the pseudo labels es-

timated by a single ROI head to train itself tends to result in

overfitting. The noisy student approach [32, 41] is a self-

training extension that randomly augments the unlabeled

samples and transforms its pseudo labels correspondingly;

then, it uses the noisy unlabeled data and noisy pseudo la-

bels to train a student network. This noisy student approach

avoids overfitting to some extent. In this paper, we propose

using two ROI heads with different structures to estimate

pseudo labels for each other to further avoid overfitting dur-

ing interactive self-training. Specifically, we first train a de-

tection model with the two ROI heads of different structures

using labeled data; then, we use trained model to estimate

pseudo labels for the unlabeled data. Let {p̂, t̂} represent a

pseudo label from one of the ROI heads. For the other head,

the loss function of the unlabeled data can be formulated as

follows:

Lu(u, p̂, t̂) =
∑

b

[

1

Nc

∑

j

Lcls(pj , p̂j,b) +
λ

Nc

∑

j

Lreg(tj , t̂b)

]

,

(3)

where {p, t} are the outputs of the other ROI head. To in-

crease the discrepancies among the detection results from

two ROI heads, we introduce the DropBlock [7] module to

each ROI head, which randomly drops a contiguous region

of a feature map. In this way, the different ROI heads ob-

serve the feature map from different views, allowing these

heads to capture different key information to improve the

detection results.

Our proposed method is related to deep cotraining [46]

or deep mutual learning [45]. Cotraining and mutual learn-

ing refer to the output of a network as the goal by which a

network wins a competition , thereby avoiding problems en-

countered in self-training. Deep mutual learning [45] starts

with a pool of untrained students who simultaneously learn

to solve the task together by training with a conventional

supervised learning loss and a mimicry loss. Our method

is more similar to cotraining [46, 3, 23]. Deep cotraining

[23] trains multiple deep neural networks to learn different

views and exploits adversarial examples to encourage these

view differences to prevent the networks from collapsing

into each other. In our proposed method, the two ROI heads

have different structures and use DropBlock modules, en-

abling them to take different view feature maps as inputs.

Furthermore, our model could flexibly use more ROI heads

to enable interactive self-training.

3.4. Mean Teacher

In interactive self-training, each ROI head provides

pseudo labels for the other ROI head. However, such a set-

ting will eventually result in the heads collapsing into to

each other because they attempt to mimic each other. Sec-

ond, to ensure the stability of the estimated pseudo labels
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Figure 4. Illustration of interactive self-training with mean teach-

ers. In figure, “D” means DropBlock [7]. The parameters of the

teacher modules are the exponential moving averages of the pa-

rameters of their corresponding student modules.

during the training process and facilitate the optimization of

the network, we introduce the concept of the mean teacher

[35]. The teacher parameter is the moving average of its

corresponding student parameter. That is, even for each un-

labeled image, the estimated pseudo labels should have a

certain consistency throughout the different epochs:

θ
′t = αθ′t−1 + (1− α)θt, (4)

where α is a smoothing coefficient hyperparameter and t is

the iteration, and θ and θ
′ are the parameters of the student

model and teacher model, respectively. SWA [12] and MEA

both ensemble different stages of the model to improve the

performance. However, SWA is the average of the selected

models, while EMA is the exponential moving average. As

shown in Figure 4, the “Teacher ROI Head 1” is the ex-

ponential moving average of “Student ROI Head 1” and it

estimates the up-to-date detection results for “Student ROI

Head 2”. Then, the up-to-date detection results are fused

with the history pseudo labels, as introduced in Section 3.2.

The slowly progressing teacher model can be regarded as

an ensemble of student models across different training it-

erations. The mean teacher aggregates the information after

every step instead of only after every epoch. In addition, be-

cause the weight averages improve all the layer outputs, not

just the output of the top layer, the target model achieves

better intermediate representations. Thus, the quality of

the pseudo labels produced by the teacher models is much

higher than those produced by the student models.

3.5. Overview of Our Model

As shown in Figure 2, we first train a supervised detec-

tion model using only labeled data, and then we use this

initial trained model to estimate the pseudo labels for all

the unlabeled data to initialize the pseudo label memory.

In the semi-supervised learning stage, the model takes both

labeled and unlabeled data as input. For the labeled data,

the loss function is the same as during the supervised learn-

ing. For the unlabeled data, the teacher ROI head is the

exponential moving average of the student ROI head, and

it estimates the up-to-date detection result for the unlabeled

data of the current batch; then, the up-to-date detection re-

sult is fused by NMS with the corresponding history pseudo

label for the same image in the pseudo label memory to ob-

tain the final pseudo labels. For each student ROI head, the

pseudo labels are fused from those of the other teacher head

to leverage the complementary information and to avoid bi-

asing each other. The final loss function of our proposed

method is as follows:

L = Ll + γLu, (5)

where γ is the weight of the loss of unlabeled data.

During semi-supervised learning, the quality of the

pseudo labels significantly improves the model. In this pa-

per, we use pseudo label fusion and mean teachers to im-

prove the pseudo label quality. Pseudo label fusion is sim-

ilar to that in the temporal ensemble [15], which maintains

an exponential moving average prediction for each training

example. However, in object detection, we cannot accu-

mulate the network output directly because each image has

multiple objects. Thus, we use NMS to construct a temporal

ensemble of network output. However, because each target

is updated only once per epoch, the learned information is

incorporated into the training process at a relatively slow

pace. In contrast, the mean teacher aggregates information

after every step instead of after every epoch. In addition,

since the weight averages improve all the layer outputs, not

just the output of the top layer, the target model obtains bet-

ter intermediate representations.

4. Experiments

4.1. Datasets and Evaluation

We validated the effectiveness of our proposed method

on two popular public benchmarks for object detection:

MS-COCO and PASCAL-VOC(07, 12) [6]. MS-COCO

contains more than 118K labeled images that include ap-

proximately 850k labeled instances from 80 classes. Ad-

ditionally, there are 123K unlabeled images that can be

used for semi-supervised learning. PASCAL-VOC07 con-

tains 5,011 images from 20 categories for training, while

PASCAL-VOC12 contains 11,540 images . For the experi-

ments on MS-COCO, following the example of STAC [32],

we randomly sampled 1%, 2%, 5% and 10% of the labeled

training data as labeled data and treated the remainder as un-

labeled data. For these experiments, we created 3 data folds.

Following [33], we also used all the labeled training data as

labeled data and used additional unlabeled data as unlabeled

data. We adopted mean average precision AP50:95 (denoted

by mAP) as the evaluation metric. For the PASCAL-VOC

dataset, we used the PASCAL-VOC07 dataset as the labeled

data and the PASCAL-VOC12 dataset or 20 classes of MS-

COCO as the unlabeled data. We evaluated the detection

performances on the VOC07 test set.
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Methods 1% COCO 2% COCO 5% COCO 10% COCO 100% COCO

Supervised [32] 9.05 ± 0.16 12.70 ± 0.15 18.47 ± 0.22 23.86 ± 0.81 37.63

STAC [32] 13.97 ± 0.35 18.25 ± 0.25 24.38 ± 0.12 28.64 ± 0.21 39.21

Our baseline 9.49 ±0.32 12.86 ± 0.26 16.66 ± 0.31 24.44 ± 0.72 37.81

ISMT (Ours) 18.88 ± 0.74 22.43 ± 0.56 26.37 ± 0.24 30.53 ± 0.52 39.64

Table 1. The performance (%) of our proposed method compared with others on the COCO dataset. Here, “1% COCO” means we used 1%

data of the COCO dataset as labeled data and the remaining data as unlabeled data; the notation is similar for the other datasets. “100%”

means we used the entire COCO dataset as labeled data and all additional data was unlabeled data.

4.2. Implementation Details

Following STAC [32] and CSD [32], we built our model

based on Faster-RCNN [27] using an FPN [18] as our object

detector and a ResNet-50 [11] model as the backbone CNN.

The backbone is initialized by a model pretrained on Ima-

geNet. During the semi-supervised learning process, the

confidence threshold for pseudo labels is set to 0.9 to fil-

ter out noisy detection results, and then NMS is applied to

the history pseudo label, for which the IOU threshold is 0.5.

The smoothing coefficient hyperparameter α and the weight

of the loss for unlabeled images γ were empirically set to

0.99 and 2, respectively. In our experiments, the number

of ROI heads is 2. The dropout rate and the kernel size of

DropBlock are 0.3 and 3, respectively. Compared to STAC,

we only use color jittering on the unlabeled data to train the

student network, while the detection results are estimated by

the teacher model without any augmentation. During test-

ing, we empirically used one of the teacher ROI heads to

estimate the detection results. Our implementation is based

on MMDetection [4].

4.3. Comparison to the stateoftheart

We compared our model with the state-of-the-art semi-

supervised object detection method. Because only a few

semi-supervised object detection methods have been pro-

posed in recent years, we compared our method with STAC

[32] on the MS-COCO dataset and PASCAL VOC dataset,

and for CSD [13], we made comparisons on the PASCAL

VOC dataset. The results are shown in Table 1 and Ta-

ble 2. As shown in Table 1, our method significantly out-

performs the baseline model that only uses the labeled data,

and it achieves better scores than STAC by a large margin.

Specifically, our proposed method achieves 18.95% when

using only 1% of labeled data, while the supervised learn-

ing method requires 5 times that volume of labeled data

(i.e., 5%) to achieve a comparable performance. This re-

sult indicates that our proposed method can effectively re-

duce the cost of data labeling. Even when the entire MS-

COCO dataset is treated as labeled data and the additional

MS-COCO unlabeled images form the unlabeled data, our

method still outperforms the compared methods. Compared

with existing omni-supervised learning methods [24, 28],

our proposed method improves more when additional unla-

Labeled Unlabeled Methods AP50 AP50:95

VOC07 None Supervised 72.75 42.04

VOC07 VOC12

CSD [13] 74.70 -

STAC [32] 77.45 44.64

Ours 77.23 46.23

VOC07
VOC12

+ COCO (20 classes)

CSD [13] 75.10 -

STAC [32] 79.08 46.01

Ours 77.75 49.59

Table 2. Experimental results on the PASCAL-VOC dataset

beled data are used (i.e., improve by 1.83 (ours), 0.9 [24],

and 1.2 [28], respectively). From Table 2, we can see that

the performance of our proposed method is higher than the

compared methods on AP50:95 but slightly lower on AP50.

Our proposed method uses NMS to update pseudo labels

during training. Thus, some low-quality pseudo labels with

low IOU scores are suppressed. Additionally, the perfor-

mance of the baseline model of STAC is higher than ours

(i.e. 76.30 and 72.75, respectively). These experimental re-

sults verify the effectiveness of our proposed method. Our

method not only leverages the complementary information

from the different ROI heads but also ensembles the pseudo

labels through multiple iterations, ensuring that our method

improves the quality of pseudo labels and mines more in-

formation from the images. In contrast, STAC [32] fixed

the pseudo labels, which means that it cannot improve the

pseudo label quality during training. Compared to CSD

[13], our method performs consistency regularization by

regularizing the consistency between the output from the

student ROI heads and the pseudo labels from the other

teacher ROI head.

4.4. Ablation Study

We conducted an ablation study to demonstrate the effec-

tiveness of each component (interactive self-training, mean

teachers, and pseudo label fusion) of our method on the MS-

COCO dataset. The experimental results are shown in Ta-

ble 3.

Effectiveness of interactive self-training. Interactive self-

training aims to avoid overfitting and provide complemen-

tary information during semi-supervised learning. To ver-

ify the effectiveness of interactive self-training, the ablated

model has only one ROI head and it fuses the detection re-

sults from its teacher ROI head with the historical pseudo
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Methods 1% COCO 10% COCO

baseline 9.49 24.44

without IST 15.94 26.75

without MT 15.23 28.33

without PLF 14.74 26.65

ISMT (Ours) 18.88 30.53

Table 3. Ablation study of out proposed method on MS-COCO

dataset. Here, “IST”, “MT”, and “PLF” are the abbreviations for

the interactive self-training, mean teacher, and pseudo label fusion,

respectively.

ROI head structures 1% COCO 10% COCO

without DropBlock 17.32 29.48

One ROI head 15.64 26.47

Two ROI heads (ours) 18.88 30.53

Three ROI heads 18.53 30.74

Table 4. Analysis of the ROI head structures on the MS-COCO

dataset

labels. We can see that the performance drops significantly

(from 30.42 to 26.43) when training with 10% labeled data

and 90% unlabeled data; nevertheless, this model is still bet-

ter than the baseline model, verifying the indispensability of

interactive self-training. Without interactive self-training,

the model is more likely to overfit.

Effectiveness of the mean teachers T0o validate the effec-

tiveness of the mean teachers, we removed the teacher mod-

ules from our model and directly fused the detection results

from the student ROI heads with the historical pseudo la-

bels. The results of this experiment are shown in Table 3.

The performance drops by 2.20 when using 10% of the MS-

COCO dataset as labeled data and the remainder as unla-

beled data. Thus, the mean teacher not only effectively

avoids biases from the different ROI heads but also treats

the weights of different model iterations as an ensemble.

Thus, the pseudo labels from the teacher models are better

than those from the student models.

Effectiveness of pseudo label fusion. The detection re-

sults for the same image vary among different epochs, es-

pecially when the size of the dataset is large. Thus, if we

were to use the detection result of the current epoch directly

as the pseudo labels, the target would change significantly

and increase the difficulty of training. As shown in Table 3,

without the pseudo label fusion operation, the performance

drops from 30.42% to 25.32%. In addition, the pseudo la-

bel fusion process helps filter out low-quality pseudo labels

and gradually increases the number of label instances in the

unlabeled images during training.

4.5. Further Analysis

Architecture with multiple ROI heads. We analyze the

architecture with multiple ROI heads on the MS-COCO

γ 0.5 1 2 4 8

10% COCO 24.82 29.42 30.53 28.94 18.10

Table 5. Analysis of the loss weight for unlabeled data on the MS-

COCO dataset

α 0.5 0.9 0.99 0.999 0.9999

10% COCO 27.82 28.42 30.53 29.94 26.10

Table 6. Analysis of the EMA rate α on the MS-COCO dataset.

dataset to further mine the potential of our model. To this

end, we either removed the DropBlock [7] from each ROI

head or increased the number of ROI heads. As shown in

Table 4, the performance improvement becomes consider-

ably smaller as the number of ROI heads increases. Specif-

ically, the performance drops by 1.26 when we remove the

DropBlocks. The DropBlock further increases the discrep-

ancies between the different ROI heads, causing them to

mine different information from the feature map. Thus,

two ROI heads are complementary to each other. Although

increasing the number of ROI heads can further improve

the performance, doing so would also increase the training

time.

The loss weight for unlabeled samples. We varied the un-

supervised loss weight γ to analyze the effect of the loss

for the unlabeled data. The results are reported in Table 6.

The model reaches its best performance (i.e., 30.53) when

the weight of Lu is 2. When γ is too large, the model pays

more attention to unlabeled data with noisy pseudo labels;

thus, the performance falls as γ increases. On the other

hand, when γ is too small, the model gains less from the

unlabeled data, but still performs better than the baseline.

Nevertheless, we can see that our proposed method is uni-

versally effective when γ ∈ [0.5, 4].
The effect of the smoothing coefficient. We varied the

smoothing coefficient α to evaluate the effect of the mean

teacher. We introduced mean teachers to smooth the pseudo

labels and avoid two ROI heads collapsing to each other.

As shown in Table 6, we can see that the performance

reaches its best value of 30.53 when α is 0.99. When α
is too small, the parameters of the teacher model change

too rapidly. Thus, the estimated detection results depend

more on the student models of the several most recent it-

erations, and the performance is similar to that “without

MT”, as shown in Table 3. When the teacher model changes

rapidly, the teacher model becomes similar to the student

model. Thus, the two ROI heads might collapse to each

other. However, when the smoothing coefficient is too large

(e.g., α = 0.9999), the weight of the teacher model depends

largely on the previous teacher model. Thus, the pseudo la-

bels change in an overly smooth fashion, and the student

also learns slowly .

The confidence threshold of pseudo labels. The confi-
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η 0.5 0.6 0.7 0.8 0.9

10% COCO 23.42 25.32 31.23 30.76 30.53

Table 7. Analysis of the smoothing coefficient α on the MS-COCO

dataset
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(c) confidence threshold η = 0.5

Figure 5. The number of boxes per image of unlabeled data under

different confidence thresholds η

dence threshold η determines the number of boxes for unla-

beled data. A lower confidence threshold means that more

boxes are considered, which allows the model to mine more

information and detect more objects. However, a lower

threshold also introduces additional noisy pseudo labels,

which are detrimental to the detection performance. There-

fore, we varied the confidence threshold η from 0.5 to 0.9

to evaluate its effect. As shown in Figure 5 (a), the num-

ber of boxes increases as the threshold η decreases. The

corresponding performances are reported in Table 7. When

η = 0.5, the number of boxes per image is highest and

increases rapidly, but the model does not perform signif-

icantly better than does the baseline model. The pseudo

labels are substantially noisier when the threshold is very

low. On the other hand, although the pseudo label quality is

better when η = 0.9, the number of pseudo labels also be-

comes smaller, meaning that more the model ignores more

objects during the semi-supervised learning process. The

model achieves its best performances when η is 0.7. As

shown in Figure 5, the number of boxes per image is unsta-

ble when we train the model without pseudo label fusion.

When η = 0.9, the number of boxes decreases gradually,

which means that the model is inclined to miss more targets

during training. However, when η is 0.5 and pseudo label

Iteration=0 Iteration=90000 Ground truth

Iteration=0 Iteration=90000 Ground truth

(b)

(a)

Figure 6. Visualization of the change in pseudo labels for the same

image during training. The confidence threshold is 0.9.

fusion is removed, the number of boxes increases rapidly.

When we train the model with pseudo label fusion, the num-

ber of boxes will increase smoothly, and their confidence

scores will be higher, signifying an improved pseudo label

quality.

Pseudo label visualizations. We visualized some of the

detection results of the unlabeled data during the semi-

supervised learning process to observe the pseudo label im-

provements. Figure 6 shows that the unlabeled images ini-

tially contain fewer boxes. As training progresses; however,

the number of boxes in the unlabeled image increases. Fur-

thermore, low-quality boxes are suppressed, and new targets

are discovered.

5. Conclusion

In this paper, we proposed an interactive self-training
framework with mean teachers. The proposed framework
avoids overfitting and improves the quality of pseudo labels
for semi-supervised object detection. To improve pseudo
label quality, we proposed a pseudo label fusion method
based on nonmaximum suppression that fuses the up-to-
date detection result with historical pseudo label results.
Thus, the high-quality pseudo labels are preserved, while
the low-quality pseudo labels are filtered out. To overcome
overfitting and leverage the discrepancies among pseudo la-
bel predictions, we introduced the mean teacher concept
to estimate the detection result instead of the student ROI
head. Then, we used the pseudo labels from one of the mean
teacher heads as the target for unlabeled data to compute the
loss of the other student head. The experimental results on
MS-COCO and PASCAL-VOC validate the effectiveness of
our method.
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