
Visual Comput (2005) 21: 279–288
DOI 10.1007/s00371-005-0282-6 O R I G I N A L A R T I C L E

Ye Duan
Jing Hua
Hong Qin

Interactive shape modeling
using Lagrangian surface flow

Published online: 24 May 2005
 Springer-Verlag 2005

Ye Duan (�)
Department of Computer Science
University of Missouri at Columbia
Columbia, MO 65203, U.S.A.
e-mail: duanye@missouri.edu

Jing Hua
Department of Computer Science
Wayne State University
Detroit, MI 48202, U.S.A.
e-mail: jinghua@cs.wayne.edu

Hong Qin
Department of Computer Science
State University of New York at Stony
Brook
Stony Brook, NY 11794, U.S.A.
e-mail: qin@cs.sunysb.edu

Abstract In this paper, we propose
a new shape-modeling paradigm
based on the concept of Lagrangian
surface flow. Given an input polyg-
onal model, the user interactively
defines a distance field around
regions of interest; the locally or
globally affected regions will then
automatically deform according
to the user-defined distance field.
During the deformation process,
the model can always maintain its
regularity and can properly modify its
topology by topology merging when
collisions between two different
parts of the model occur. Comparing
with level-set based methods, our
algorithm allows the user to work
directly on existing polygonal models

without any intermediate model
conversion. Besides closed polygonal
models, our algorithm also works for
mesh models with open boundaries.
Within our framework, we developed
a number of shape-modeling oper-
ators including blending, cutting,
drilling, free-hand sketching, and
mesh warping. We applied our
algorithm to a variety of examples
that demonstrate the usefulness and
efficacy of the new technique in
interactive shape design and surface
deformation.

Keywords Shape modeling · Partial
differential equations (PDEs) ·
Geometric surface flow · Distance
field

1 Introduction

Mesh models have been prevalently used in geometric
modeling, computer graphics, and visualization. Creat-
ing interesting and elegant mesh models is a very ac-
tive research area. The advancement of 3D laser range-
scanning technology has created a huge demand for ef-
ficient algorithms to handle meshes that consist of mil-
lions or even billions of vertices. To date, many algo-
rithms for editing polygonal meshes have been developed.
In general, they are either static, geometric algorithms,
or dynamic, physics-based algorithms. Static, geomet-
ric algorithms often require a lot of user interventions
that are tedious and laborious in general. Physics-based
algorithms are more intuitive for the user to manip-
ulate. However, conventional physics-based algorithms

are relatively slow and do not scale well to large-scale
models.

Recently, researchers have begun to apply the concept
of geometric surface flow for the purpose of mesh process-
ing – for example, in the work of Taubin [23], Desbrun et
al. [4], Kobbelt et al. [10, 19], and Ohtake et al. [15, 16].
Besides its strong mathematical foundations in areas such
as partial differential equations (PDEs) and calculus of
variation, the main appeal of a geometric surface-flow-
based algorithm is its simplicity: all of the computations
can be conducted by local iterative equations. Hence,
in principle, geometric surface-flow-based algorithms are
very suitable for the processing of very large-scale polyg-
onal meshes.

Nonetheless, most of the existing surface-flow-based
algorithms have mainly been focused on problems such
as mesh-fairing, mesh-smoothing and mesh optimization.
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To the authors’ best knowledge, the idea of applying sur-
face flow directly for mesh editing was first proposed
by Ohatake et al. [15]. They demonstrated some inter-
esting embossing and engraving results achieved by the
surface flow. However, in their work, no topology change
is allowed. Most recently, Museth et al. [14] proposed
the use of a level-set-based surface flow for implicit sur-
face editing. Instead of directly working on the meshes,
they first convert the polygonal meshes into a signed dis-
tance field. The shape is then implicitly manipulated by
applying certain level-set-based editing tools on the dis-
tance field. Finally, an isosurface extraction algorithm
such as the marching cube algorithm [12] is employed
to convert the implicitly edited shape back into polygo-
nal meshes. Implicit, level-set methods such as the one
proposed by Museth et al. [14] have become very popu-
lar recently, mainly because they easily handle topology
changes. However, the efficiency, user-interactivity, and
multiresolution capability of level-set models is usually
not as good as explicit models. Most importantly, open
manifolds with boundaries remain challenging for implicit
representations.

Our work further expands the basic principle presented
by Ohatake et al. [15] with much more editing flexibil-
ity. In addition to local embossing and engraving effects,
our technique also supports operations such as blend-
ing, cutting, drilling as well as free-hand sketching, etc.
Starting with any polygonal model, the user interactively
defines a distance field around regions of interest in the
mesh model; the locally or globally affected regions of
the model will then automatically deform according to the
user-defined distance field. The deformation behavior of
the model is guided by a PDE-based surface flow. During
the deformation process, the model will always maintain
its regularity and can properly modify its topology by
topology merging when collisions between two different
parts of the model occur.

The rest of the paper is organized as follows: after re-
viewing the related works in Sect. 2, we will introduce
the PDE-based surface flow and its numerical simulation
in Sects. 3 and 4, respectively. Various kinds of surface-
flow-based mesh editing operations will be discussed in
Sect. 5. Our collision detection and topology modification
schemes are explained in Sects. 6 and 7, respectively. Fi-
nally, we conclude the paper and point out some future
research directions in Sect. 8.

2 Related work

2.1 Distance-field-based shape modeling

A distance field is a scalar function that specifies the min-
imum distance to a shape, where the distance may be as-
signed a sign to distinguish between the inside and outside
of the shape. The distance field is an effective represen-

tation of shape. It has been used to generate swept vol-
umes [20], shape deformation [3, 22], offset surfaces [17],
and to morph between surface models [2, 17]. Regularly
sampled distance fields have drawbacks because of their
size and limited resolution. Frisken et al. [5] overcame this
limitation by proposing adaptively sampled distance fields
(ADF). ADFs consists of adaptively sampled distance
values organized in a spatial hierarchy of data structures.
Octree-based ADFs were later incorporated into a proto-
type sculpting system called “Kizamu” [18] developed by
Perry and Frisken. Recently, Shapiro et al. [21] proposed
the use of R-functions to construct distance fields with
guaranteed differential properties.

Since the shapes in these distance-field-based tech-
niques are all implicitly defined, an isosurface extraction
algorithm, such as the marching-cube algorithm [12], is
always needed to convert the implicit shape to explicit
polygonal representations. Hence, the quality of the model
is always limited by the resolution of the underlying grid.
In this paper, we propose a new algorithm that can cre-
ate meshes of much higher quality (through the use of
mesh optimization and Laplacian smoothing). More im-
portantly, the new algorithm takes advantages of both the
distance field representation and the explicit polygonal
representation and allows the user to directly work on ex-
plicit polygonal models (both closed and open) without
any intermediate model conversion.

Recently, Hua et al. proposed a scalar-field-based free-
form deformation (FFD) technique [7], which shares some
similarities with the mesh-warping operation we propose
in this paper. However, the underlying mathematical foun-
dations of these two works are quite different. We treat the
mesh warping as an initial value problem that fits into the
Lagrangian surface flow framework naturally. In contrast,
Hua et al. elaborate on a free-form deformation technique
based on the idea of “optical-flow” from computer vision
and implement it as a constraints-based optimization prob-
lem. More importantly, unlike our approach, their work
can not handle topology modifications.

2.2 Interactive mesh generation

Extensive literature exists in interactive mesh-generation.
Welch and Witkin [24] proposed a free-form surface de-
sign paradigm, where they used a triangle mesh to ap-
proximate the underlying smooth variational surface.
Markosian et al. [13] presented a particle-based surface
representation with which a user can interactively sculpt
free-form surfaces. It resembled blobby modeling in its
constructive approach. Igarashi et al. [8] developed a more
general, free-form modeling system, receiving much of
its power from its “inflation" operation and from an ele-
gant collection of gestures for attaching additional parts to
a shape, cutting a shape, etc. Nevertheless, most of these
mesh-generation techniques are intended for “start-from-
scratch” shape-sketching. Our approach, on the other
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hand, allows users to start from existing, complicated
mesh models and create new models via the available,
easy-to-use operations in our system.

3 PDE-based surface flow

The general formulation of geometric surface flow is
a nonlinear initial-value partial differential equation:

∂S(p)

∂t
= F(t, k, k′, f · · · )N(p, t), (1)

S(p, 0) = S0(p),

where F is the velocity function, t is the time parame-
ter, k and k′ are the surface curvature and its derivative
at the point p, respectively, and f is the external force.
S0(p) is the initial shape of the model. N is the unit direc-
tion vector, and oftentimes, it is the surface normal vector.
The velocity function F in Eq. 1 is application-dependent
– it can be either directly provided by the user, or more
generally obtained as a gradient descent flow by the Euler-
Lagrange equation of some underlying energy functionals
based on the calculus of variation. One of the important
PDEs we used for shape-editing (Sects. 5.1 and 5.2) is the
mean curvature flow:
∂S
∂t

= (gv+ g‖H‖)N, (2)

where H is the mean curvature of the surface and is acting
as a smoothing constraint. v is the constant velocity, which
will enable the convex initial shape to capture non-convex,
arbitrarily complicated shapes and prevent the model from
getting stuck in local minima during the evolution pro-
cess. In addition, the smoothing effect of the mean cur-
vature term H is inversely proportional to the magnitude
of v, i.e., the smaller the v is, the smoother the mean
curvature flow of Eq. 2 will be and vice versa. N is the
unit normal of the surface. g is a data-dependent, mono-
tone, non-increasing, non-negative weight function that is
used for interacting the model with the data, and will stop
the deformation of the model when it reaches the shape
boundary. For volumetric data, the weight function g can
be defined as the commonly used 3D edge detector:

g(S) = 1

1+‖∇(I(S))‖2 , (3)

where I is the volumetric density function, and ∇ is the
gradient function. If the density function I(S) is in fact
a distance field, then g(S) can be directly defined as:

g(S) = I(S). (4)

There are, in general, two approaches to numerically
simulate PDEs such as Eqs. 1 and 2: an explicit La-
grangian approach or an implicit level-set approach. In
this paper, we take the Lagrangian approach, i.e., the

geometry and topology of the model are always explicitly
represented throughout the simulation process. The advan-
tage of explicit simulation of surface flow is that the user
can directly interact with the polygonal models without
any intermediate conversion steps, while the challenge is
that we need to explicitly maintain the model regularity
and to be able to handle collision detection and topology
modification accurately during the deformation process.
We will discuss issues related to the explicit simulating
of surface flow such as mesh regularity in the next sec-
tion. Our approaches of handling collision detection and
topology modifications are described in Sects. 6 and 7, re-
spectively.

4 Surface flow simulation

4.1 Model regularity

To ensure that the numerical simulation of the surface flow
proceed smoothly, we must maintain the regularity of the
model such that the model has a good node distribution,
a proper node density, and a good aspect ratio of the trian-
gles. This is achieved by the incorporation of the following
three techniques: mesh optimization, Laplacian smooth-
ing, and local refinement. Note that these techniques are
applied only to regions of the polygonal model that are
activated (i.e., that are deforming) at the current time step.

4.1.1 Mesh optimization

There are three commonly used mesh optimization op-
erations [6]: edge-splitting, edge-collapsing, and edge-
swapping. Edge-splitting and edge-collapsing are used to
keep an appropriate node density. An edge split is trig-
gered if the edge length is bigger than the maximum
edge-length threshold. Similarly, an edge will be col-
lapsed if its length is smaller than the minimum edge
length threshold. Edge swapping is used to ensure a good
aspect ratio of the triangles. This can be achieved by
forcing the average valence to be as close to 6 as pos-
sible [9]. An edge is swapped if and only if the quantity∑

p∈∆ (valence(p)−6)2 is minimized after the swapping,
where ∆ represents the four vertices in the two adjacent
triangles of the current edge.

4.1.2 Laplacian smoothing

Laplacian operator, in its simplest form, moves repeatedly
at each mesh vertex by a displacement equal to a positive
scale factor times the average of the neighboring vertices.
Consider a mesh vertex p and its neighbors Q1, · · · , Qn;
the Laplacian operator L is

L(p) = 1

n

n∑

i=1

(Qi − p). (5)
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The tangential Laplacian operator is used to maintain
a good node distribution and is defined as:

T(p) = c[L − (L · N)N], (6)

where N is the surface normal vector at vertex p, and c
is a positive constant between 0 and 1, set to 0.1 in our
experiment.

4.1.3 Local refinement

In order to control the smoothness of the model as well
as the size of each triangle during the model deformation
phase, we must allow the model to be able to dynamically
increase its degrees of freedom during the deformation.
This is achieved by using local refinement. If the area of
a triangle is larger than a certain user-defined threshold,
then this triangle will be subdivided into four smaller tri-
angles by splitting the triangle at the midpoints of its three
edges.

4.2 Step size estimation

The surface evolution process of Eq. 1 can be numerically
approximated using a simple, explicit iterative equation:

S(p, t +∆t) = S(p, t)+ F(p, t)N(p, t)∆t. (7)

When advancing the model, we must enforce a con-
straint on the size of the time step ∆t. In particular, the
time step ∆t must satisfy the CFL condition, also known
as the Courant-Friedrichs-Lewy stability criterion; i.e., the
velocity of change must be strictly restrained by the min-
imum detail in the system. In our system, this condition
is

∆t ≤ me

MF
, (8)

where me is the minimum edge length of the mesh, and
Mf is the maximum magnitude of the velocity F obtained
by Eq. 1. Before each deformation step, we will calculate
the velocity F at each vertex point and determine the max-
imum magnitude of the velocity MF . A proper time step
can then be estimated from Eq. 8.

4.3 Mean curvature approximation

The mean curvature vector H of Eq. 2 is approximated by
the discrete curvature estimator proposed by Desbrun et
al. [4]:

H = 1

4A

∑

j∈N1(i)

(cot αj + cot βj)(xi − xj), (9)

where xj is one of the vertices at the one-neighborhood
N1(i) of xi . αj and βj are the two angles opposite the

edge connecting the two vertices xi and xj , and A is the
sum of the areas of the triangles having xi as a common
vertex.

5 Surface-flow-based shape modeling

Based on the explicit surface flow introduced in the pre-
vious section (Eqs. 1 and 2, and 3), we have developed
a number of surface-editing operators, including blend-
ing, drilling, sketching, etc. In general, there are five main
steps during a typical interactive shape-editing process:
1. First, the user selects a polygonal model to be modified

and loaded in. The system then automatically creates
an embedding distance field (such as an implicit cube
or sphere) that encloses the selected polygonal model.

2. The user interactively defines a local distance field at
regions of interest; the corresponding regions of the
model that are affected by the user-defined distance
field are activated by the system.

3. The user selects the desired type of surface editing
operators (e.g., blending, drilling, sketching, etc.), the
system then automatically conducts the correspond-
ing Boolean operations such as union or difference
between the user-defined distance field and the embed-
ding distance field.

4. The activated regions of the model start to deform
according to the user-defined distance field. The de-
formation is governed by the Lagrangian surface flow
introduced in the previous sections (Sects. 3 and 4).

5. During the deformation process, the system automati-
cally detects the potential collisions between different
parts of the model and changes the topology if neces-
sary (Sects. 6 and 7).
Figure 1 illustrates the whole shape-editing process.

Here, the user wants to add a handle to a goblet. Fig-
ure 1(a) shows the original mesh model of the goblet,
along with the user-defined local distance field (shown
in red color) of the handle. The affected regions of the
goblet model are then activated and start to grow. Fig-
ures 1(b)–1(d) are the three snapshots of the growing pro-
cess. To maintain the mesh quality, model relaxation tech-
niques such as mesh optimization, Laplacian smoothing
and local refinement (Sect. 4.1) are conducted on-the-fly.
Figure 1(e) is the final shape of the goblet with an added
handle after a topology merge operation is conducted. Fig-
ure 1(f) is the close-up view of the newly added handle
to highlight the good mesh quality. In the following sub-
sections, we will explain each surface editing operators in
more detail.

5.1 Blending, drilling and cutting

The blending operation is conducted by doing a Boolean-
like union operation between the embedding distance field
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Fig. 1. Adding a handle to the goblet

of the mesh model and the user-defined distance field. The
distance field can be created by implicit primitives such as
cylinders, spheres, etc., or it can be defined by volumet-
ric datasets. For example, the input of Fig. 2 is a polygonal
model of a mannequin head. The user placed an implicit
torus (shown in cyan) on the top of the head (Fig. 2(a)),
and a union operation is selected to create the base of the
crown. The locally affected regions of the head will be ac-
tivated (shown in red in Fig. 2(a)), start to grow (Fig. 2(b)),
and finally stop (Fig. 2(c)). To create the top part of the
crown, another three primitives (two half-tori and an el-
lipsoid) are added in iteratively (shown in cyan) and are
recovered by the surface flow one at a time. Figure 2(e)
shows the final shape of the model. Note that the non-
trivial topology has been correctly represented by three
topology merge operations (one merge operation to create
the first half-torus, another two merge operations to create
the second half-torus).

Figure 3(e) shows another example. Here, a volumetric
dataset of a spring is placed on the back of the mannequin
head model. The affected region of the model is activated
and starts to deform according to the volumetric spring
dataset. Figure 3(f) shows the modified shape. The man-
nequin head model is not a closed model (it has a big
opening in the neck); level-set methods cannot directly
work on such kinds of models.

The drilling operation is implemented in a simi-
lar fashion as the blending operation. Here, instead

Fig. 2. The crowned man-
nequin

of a union operation, a subtraction is conducted be-
tween the embedding distance field of the mesh model
and the user-defined distance field. For example, in
Fig. 3, the user wants to subtract an implicitly defined
cylinder (shown in cyan in Fig. 3(a)) from the top of
the head. The locally affected regions of the head are
then activated and start to shrink (shown in red in
Fig. 3(b)). Later on, a collision is detected between the
two shrinking regions of the model, and a topology merge
operation is conducted, creating a hole in the model
(Fig. 3(c)).

Because of the convenient inside/outside properties,
distance fields can also be used to conduct mesh-cutting
operations very easily. The user first creates a distance
field among regions of interest of the mesh model, and
decides whether to cut regions of the model that are in-
side or outside of the distance field. The system will then
automatically remove the corresponding region from the
model. For example, in Fig. 6, an implicit cube is placed
on the back of the bunny. Vertices that are inside the im-
plicit cube are removed, and a coin slot is created. In order
to ensure that the newly created openings align well with
the boundary of the distance field after a mesh-cutting
operation, all the vertices around the new openings are
projected to the boundary of the distance field using the
following operator:

p = p− I(p)∇ I(p), (10)
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Fig. 3. The mannequin holed
and wired

where p is the current vertex position, I is the distance
field function, and ∇ is the gradient function.

5.2 Free-hand sketching

Our system also supports interactive free-hand sketching
for mesh manipulation. The user can draw some free-hand
strokes either directly on the mesh or on the stem away
from the mesh, using a mouse or a 3D pointing device.
Strokes are then densely sampled by the system to create
a local distance field d(x, y, z) as a combination of Gaus-
sian blobs ωi that are assigned evenly at each point pi :

d(x, y, z) =
N∑

i=1

ωi(x, y, z). (11)

The affected regions of the underlying mesh model will
then be activated and start to deform according to the cor-
responding distance field generated by the strokes.

Figure 4 shows an example. The input is a polygonal
model of a goblet (Fig. 4(a)). Now, the user wants to add
two handles on both sides of the goblet. So he or she sim-
ply draws two curved strokes on both sides of the goblet.
A distance field is then created by summing up the Gaus-
sian functions that are assigned at each point (shown as
red dots and green dots in Fig. 4(a)) on the two strokes.
The original goblet mesh will grow along the track of the
strokes to form a champion trophy as show in Fig. 4(b).
A detailed growing process of the right handle of the tro-
phy is shown in Fig. 1.

The starfish in Fig. 5 is also created using free-hand
sketching. Starting from a simple sphere-like polygonal
model in the center, the user iteratively draws five curved
strokes away from the original mesh. In the same fash-
ion as the in previous example, the curved strokes are first

Fig. 4. The champion trophy

Fig. 5. The starfish

converted to distance fields. The original mesh will then
grow along the newly defined distance fields and create the
five legs of the starfish.

The user can also directly draw strokes on the top of
an existing mesh. For example, a $ sign is embossed on
the bunny-bank model (Fig. 6) by directly sketching two
strokes on the mesh. The Gaussian blobs are assigned
evenly at each sampling point. Engraving effect can also
be achieved by simply setting the deformation direction
as the opposite of the normal vector of each vertex in the
affected region.

5.3 Mesh-warping

In addition to local Boolean operations, our algorithm
can be used to create some free-form deformations using
a new surface flow called mesh-warping. The basic idea
of mesh warping is as follows: (1) first embed (partially
or globally) the input mesh model into an underlying dis-
tance field; (2) the user interactively changes the under-
lying distance field (e.g., by strokes); (3) the mesh model
will then deform its shape according to the change in its
embedding distance field.

Suppose that the embedding distance field is φ : Re3 →
Re. For each vertex p, the isovalue of the current vertex
p is kp. Assuming that the isovalues of all the vertices re-
main the same before and after the deformation, i.e., in the
level-set notation, the vertex with position x(t) remains on
the same level-set of the embedding distance field φ, we
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Fig. 6. The bunny-bank

have

φ(x(t), t) = kp. (12)

Differentiating both sides of Eq. 12 with respect to time t,
we have

∂φ(x, t)

∂t
+∇φ(x, t) · dx

dt
= 0. (13)

If we assume the deformation of the model is along the
normal direction of the isocontour, then

dx
dt

= F(x)N, (14)

where

N = − ∇φ(x)

‖∇φ(x)‖ . (15)

Note that this assumption is very natural for the modeling
of the deformation behavior of changing from one shape
to another. For a more detailed explanation on this pro-
cess, please refer to the work published by Breen et al. [1].
The negative sign of the normal is obtained by the com-
mon assumption that the scalar value of the distance field
is positive inside and negative outside.

Replacing dx
dt with Eq. 14, Eq. 13 becomes

∂φ(x, t)

∂t
+∇φ(x, t) · F(x) · N = 0. (16)

Plugging Eq. 15 into Eq. 16, we obtain

∂φ(x, t)

∂t
= F(x) · ‖∇φ(x, t)‖.

Hence,

F(x) = ∂φ(x, t)

∂t
· 1

‖∇φ(x, t)‖ . (17)

Finally,





dx
dt = ∂φ(x,t)

∂t · 1
‖∇φ(x,t)‖ · N

N = − ∇φ(x)
‖∇φ(x)‖

(18)

Equation 18 is the PDE used in the new mesh-warping
flow, which is used to guide the deformation of the model
during the mesh-warping process. Note that the derivative
and the gradient of the scalar function φ can be numer-
ically approximated by finite difference methods. The de-
formation of the vertex will stop when the scalar value
of the distance field at the current vertex position is very
close to its original scalar value.

Figure 7 shows an example: an initial mesh model of
an engine is embedded in a distance field (Fig. 7(a), where
the mesh shows a single level set of the embedding dis-
tance field). Now the embedding distance field is partially
inflated (Fig. 7(b)), this causes the engine model to be lo-
cally inflated as well. Finally, Fig. 7(c) shows a further
deformed engineering model, where the front part of the
model shrinks.

Fig. 7. Mesh-warping of an engineering model

6 Particle-based collision detection

One key challenge in simulating continuous surface evo-
lution of an explicit deformable model is in performing
collision detection such that surface interpenetrations can
be detected and handled properly. There has been con-
siderable research on the problem of collision detection;
in general, existing methods employ either an object-
oriented bounding volume method or a domain-oriented
spatial decomposition method. The idea behind these ap-
proaches is to approximate the objects (with bounding
volumes) or to decompose the space they occupy (using
decomposition) in order to reduce the number of pairs of
objects or primitives that need to be checked for contact.
We propose a hybrid approach that can detect potential
collisions between different parts of the surface both ac-
curately and efficiently by combining the advantages of
both the spatial decomposition method and the bounding
volume method. A spatial decomposition method (a uni-
form occupancy grid) is used for fast collision-rejection
between vertices that are located at non-neighboring grid
cells. A bounding volume method (bounding spheres)
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is used to detect potential collisions between vertices
that are located within the same or neighboring grid
cells.

We consider the object as a particle system (connected
by edges) that is bounded by partially overlapping spheres
of radius r centered at each particle (i.e., vertices of the
object). Potential collisions between different regions of
the object are then detected by potential collisions be-
tween particles. Since our model always maintains ex-
plicit maximum/minimum thresholds for the edge length,
the radius r can be pre-calculated. A potential collision
is detected if the distance between any two non-adjacent
vertices is smaller than r. To further speed up the per-
formance, a uniform occupancy grid is superimposed on
the domain space for fast collision-rejection. Each ver-
tex of the object will belong to a grid cell, and each grid
cell will store the index/pointer of the vertices that be-
long to the current grid cell. The size of the grid cell is
decided by the radius r of the bounding sphere so that
collisions can only occur between vertices in the same
cells or between neighboring cells. At the beginning of
each deformation step, the occupancy grid needs to up-
date its vertex information. This process can be done
locally, since only a few vertices will move at each de-
formation step, and it usually takes constant time, or at
most O(n).

Figure 8 shows a 2D illustration of the collision-
detection scheme. Here, the two moving curves are
bounded by partially overlapping circles of radius r
(shown as dark circles in Fig. 8(a)) centered on each par-
ticle. Several time-steps later, the distance ||P − Q|| be-
tween particle P and Q becomes smaller than r (Fig. 8(b))
and a collision is detected. These two vertices (P and Q)
are deactivated and sent to the following topology modifi-
cation step.

7 Topology modification

There are two types of topology modifications: top-
ology merging (i.e., axial melting) and topology splitting
(i.e. axial constriction). In our current system, only top-
ology merging is implemented, and it is conducted in
a sequential fashion, i.e., at most one topology merge
operation can occur at any time. Moreover, to ensure
the correctness of the algorithm, a topology merge op-
eration can occur only after all of the vertices of the
model become deactivated (i.e., do not move anymore).
There are three steps in the topology-merging opera-
tion:

1. Find a pair of merging vertices and align their one-
neighborhoods to face each other.

2. Put the two one-neighborhoods into correspondence.
3. Reconnect the two one-neighborhoods.

Fig. 8. Particle-based colli-
sion detection

7.1 Find a pair of center vertices and align their
one-neighborhoods

The first step of the algorithm is to pick the best pair of
merging vertices to serve as the center vertices. Specif-
ically, we will calculate the inner products of the normal
vectors of all pairs of merging vertices and choose the pair
with the smallest inner product. If the angular deviation of
the normal vectors of this pair of vertices is smaller than
a certain threshold (e.g., 30 degrees), they will be picked
as the two center vertices. In the rare case that the angular
deviations of the normal vectors of all pairs of vertices are
larger than the threshold, to ensure the robustness of the al-
gorithm, no topology merge operation will be allowed to
happen. Instead, the merging regions of the model (i.e., re-
gions of the model that contain merging vertices) will be
locally refined one or more times by Loop’s subdivision
scheme [11] until one pair of merging vertices is selected
as the two center vertices (i.e., the angular deviation of
the normal vectors of these two vertices is smaller than
the threshold). Because of the well-known smoothing ef-
fect of Loop’s scheme, one level of refinement is usually
sufficient.

Next, all of the one-neighborhood vertices of these
two center vertices are projected onto the plane pass-
ing the center vertex and are perpendicular to the vector
connecting these two center vertices. This way, the two
one-neighborhoods will face towards each other exactly
(Fig. 9(a)–(b)).
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7.2 Put the two one-neighborhoods into correspondence

After the two one-neighborhoods are aligned to face each
other, they will be put into correspondence by the fol-
lowing procedure: iteratively refine the one-neighborhood
that has fewer vertices by splitting its longest edge until
both of the two one-neighborhoods have the same number
of vertices, then choose an alignment that minimizes the
sum of squared distances between corresponding vertices
of the two one-neighborhoods. For example, in Fig. 9(b),
originally, the one-neighborhood of vertex A has five
nodes ({A1, A2, A3, A4, A5}), and the one-neighborhood
of vertex B has six nodes ({B1, B2, B3, B4, B5, B6}). To
make these two one-neighborhoods have the same num-
ber of nodes, we first find the longest edge of the one-
neighborhood of vertex A, which is the edge between
nodes A1 and A2, and then split this edge into two edges
and insert a new node in between. Finally, we put these
two sets of vertices into correspondence by finding the
alignment that minimizes the sum of squared distances be-
tween nodes. In Fig. 9(c), vertices {A1, A2, · · · , A6} cor-
respond to {B1, B2, · · · , B6}, respectively.

7.3 Reconnect the two one-neighborhoods

After the two sets of one-neighborhood vertices are put
into correspondence, each vertex is connected with its

Fig. 9. Topology merge

corresponding vertex in the opposite one-neighborhood.
The two center vertices and all of their incident edges
are removed (Fig. 9(d)). The newly created quadrilat-
erals are further triangulated by splitting each quadri-
lateral into two triangles along one of its diagonals
(Fig. 9(e)). The aforementioned model-relaxation oper-
ations (Sect. 4.1) can quickly smooth out any artifacts
that may result from the matching procedure once the
topology-merging operation has been completed. In par-
ticular, if the merging regions of the model had been
locally refined (Sect. 7.1), after the topology merge, the
edge collapse operation (Sect. 4.1) will automatically col-
lapse all of the edges in the merging regions whose
lengths are smaller than the user-defined minimum edge
length.

8 Discussion

In this paper, we propose a new shape modeling algo-
rithm that integrates the PDE-based geometric surface
flow commonly used in implicit, level-set methods with
explicit polygonal models. Given an input polygonal
model, the user can directly manipulate the mesh
with the help of an implicit distance field. Unlike
the level-set approaches, no intermediate conversion
stage is necessary. In addition, our algorithm can work
with both closed and open meshes. During the surface
evolution process, our algorithm will always ensure
model regularity and can properly modify the model
topology by a topology-merging operation whenever
necessary.
Several further improvements are possible: although it
works well in our experiments, the topology-modification
algorithm still has some limitations (e.g., it cannot han-
dle topology-splitting, and only one topology merge can
occur at any time). In the future, we would like to de-
velop a more general topology modification algorithm that
does not have these constraints. Second, we would like
to incorporate level-of-detail (LOD), multi-resolution ca-
pability into our free-hand sketching operator (Sect. 5.2)
so that more refined and more precise models can be cre-
ated. Besides the currently used Gaussian blobs, other
types of distance field functions might also be used to re-
cover sharp features. Third, since all of the computations
are conducted locally, our algorithm is actually quite effi-
cient – all of the examples shown in this paper are done
in a few seconds on a Pentium 4 Notebook PC with a
1.6 GHZ CPU with 512 MB of RAM. Nonetheless, our
current code is not optimized; we would like to further
improve our code and take advantage of the recent ad-
vancements in graphics-oriented high-end workstations to
achieve real-time performance. This, in turn, will make
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our system more suitable in a semi-immersive virtual real-
ity environment such as a workbench and would definitely
help users gain a much better understanding of the 3D
shape geometry and perform the direct geometric defor-
mation through user-immersion.
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