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Abstract

We present a framework for the interactive simulation
of surgical cuts such as being practiced in surgical treat-
ment. Unlike most existing methods our framework is
based on tetrahedral volume meshes providing more topo-
logical flexibility. In order to keep the representation con-
sistent we apply adaptive subdivision schemes
dynamically during the simulation. The detection of colli-
sions between the surgical tool and the tissue is accom-
plished by using an axis aligned bounding box hierarchy
which was adapted for deformable objects. For haptic
rendering and feedback, we devised a mechanical scalpel
model which accounts for the most important interaction
forces between scalpel and tissue. The relaxation is com-
puted using a localized, semi-implicit ODE solver. The
achieved quality and performance of the presented frame-
work is demonstrated using a human soft tissue model.

1 Introduction and Related Work

Over the past years surgery simulation has emerged as
an fascinating field of research offering a rich repository of
challenges for computer graphics. We observe that the
worldwide activities in this field spawned various systems
for surgical training or planning, partly already being in
use as instrumental tools [9]. As a matter of fact, realistic
simulation of tissue cutting and deformation belongs to the
most important components of a surgical simulator. There-
fore research focus is mainly directed onto the design of
advanced computational models for the topological and
geometric representation, deformation, and rendering of
soft tissue structures. In most advanced surgery simulation
environments, the ultimate goal is to manipulate high reso-
lution 3D tissue models in real time and at a premium
quality visual feedback.

In order to approach this goal we are concerned with
the following important issues:

e Geometric and topological representation of soft tis-
sue: The mathematical concepts to efficiently represent
the underlying 3D geometry form an essential compo-
nent in any surgery simulation environment. It has to
tolerate topological changes of the tissue during
manipulation while keeping the computational burden
sufficiently low.

* Collision detection: The detection and handling of

contacts and collisions between the surgical tools and
the tissue as well as the inter-tissue collisions are criti-
cal to provide realistic visual feedback. While collision
detection algorithms have been extensively investi-
gated in robotics and CAD, relatively few concepts
exist for surgery simulation.

* Haptic modeling and rendering: Tissue and surgical
tools form a mechanical system and various interaction
forces arise during simulation. For correct mechanical
behavior we have to devise a mechanical model for
both external and internal forces. Especially the inter-
nal tissue forces caused by large deformations quickly
lead to nonlinear mechanics. Hence, powerful approxi-
mations have to be found.

e Fast computational schemes: The fast computation of
the underlying deformation and force model is essen-
tial. In most applications large deformations only
occur in the direct vicinity of the surgical tool. As a
consequence, the governing equations can be adapted
locally in terms of approximation quality and resolu-
tion.

In this paper we will present a framework for building
the core components of a surgical simulator which
addresses the points raised above.

Due to the importance of these issues considerable
related work has been done in the Graphics and Vision
communities. The computationally most accurate methods
for the modeling of elastic soft tissue mostly use Finite
Element procedures to solve the governing equations. Of
the rich literature on this subject, we confine our survey to
[13] and [14] who convey a FEM-based model for facial
surgery simulation and extend it for animating human
emotions [15]. Recently, Boundary Element Methods
(BEM), like [7] or [12] were proposed, condensing the
solution into the domain boundary. Condensation, how-
ever, has the disadvantage that the whole stiffness-matrix
has to be recomputed when cutting some surface elements.
This can be very expensive since BEM matrices are usu-
ally not sparse.

In order to make 3D soft tissue modeling real-time, dif-
ferent strategies have been proposed. [6], for instance,
develops surface-based snakes to represent human organs.
Furthermore, [17] developed a soft tissue model for facial
animation and [18] used mass-spring and particle systems
for the representation of human muscles.
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Another interesting approach is the 3D ChainMail, as
introduced by [8]. Rather than computing physical defor-
mations on the fly, the method uses a two-pass hybrid
scheme, where in a first pass, mere geometric deformation
fields are applied. In the second pass, the tissue is post-
relaxed by some iterative solvers. The topology of the dis-
cretization is restricted to tensor product grids. Others, like
[16] employ surface based mass-spring systems for their
real-time simulators. Similar Euler type methods on regu-
lar grids are reported in [26]. Pure geometric and topologi-
cal manipulations based on marching cubes techniques
can be found in the algorithms of [22] and [21]. In most
approaches, force feedback devices are utilized to imple-
ment the interface to the user.

Recently, first concepts were presented to dynamically
update volume meshes to keep track of topological
changes in the representation. For instance, [19] presents a
dynamic splitting procedure of tetrahedra for the modeling
of brittle fracture. [3] uses a strategy to determine and
duplicate the vertices of the polyhedron that are close to
the collision points along the line of cut. A dynamic subdi-
vision algorithm using an operator framework is intro-
duced by some of the authors of this paper in [5].
Eventually, [28] used the concept of Intelligent Scissors
for volume cutting along with interactive definitions of a
cut contour onto the object’s surface.

Related work on collision detection can be found in
[27] where an efficient collision detection method for cloth
simulation is devised. Lately, [2] optimizes implicit
numerical solution strategies for efficient use in cloth
modeling.

We will first describe the conceptual framework of our
approach. Section 3 addresses an improved subdivision
scheme used for tissue representation. Our methods for
collision detection are explained in section 4. In section 5
we will elaborate on the algorithms used for relaxation and
multiprocessor implementation. Finally, we introduce our
concept for force and haptic modeling and present some
examples using a human soft tissue model.

2 Conceptual Overview

Our framework is based on an unstructured tetrahedral
mesh which can be generated in a preprocess. As an
option, the mesh can be aligned to some 3D texture data,
such as provided by CT, MRI or other medical imaging
devices. Fig. 1 depicts the major components of the simu-
lation framework. The collision detection procedures
detect any interaction between the surgical tools, such as
scalpel or hooks, and the tissue structures. At this point,
tissue-tool intersections have to be computed. Topology
and geometry update procedures carry out the modifica-
tions of the tetrahedral mesh enabling one to model inci-
sions. To compute the resulting tissue deformations, a
multi-threaded relaxation procedure traverses the sim-
plices of the mesh and calculates their positional move-
ments according to the laws of deformation. When it

comes to haptics, a separate haptic server manages a phys-
ical model of the scalpel and determines the resulting
force output. Due to the elaborate haptic perception of the
human hand, update rates of at least 1 kHz have to be
maintained for haptic rendering. Our framework is
designed to enable these tasks to work in parallel. In our
current implementation, geometry update and collision
detection form a single process, all other computational
tasks are programmed as threads. Hence, the operating
system distributes them automatically to the available
number of processors thus balancing the load. We achieve
real-time response for the visual and haptic rendering by
actively controlling the processes’ priority queue. Hence,
the frame-rate is decoupled from other computational
tasks and rendering speed depends on the performance of
the allocated processor and on the graphics subsystem. A
similar concept holds for the force feedback, which con-
nects via TPC/IP in order to make it running on a separate
haptic server.
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Figure 1: Parallel tasks of the simulation and their
real-time requirements

Since different algorithms are working on the same
data structure, it is necessary to avoid concurrent interac-
tions. This is solved by defining exclusively atomic opera-
tions on the shared data segments.

3 Crack-free Tetrahedral Subdivision

To our knowledge [5] were the first to present a repre-
sentation to cut arbitrary tetrahedral meshes. The general-
ized subdivision scheme presented in this work divides a
tetrahedron into a fixed number of 17 smaller simplices
that are independent of the topology of the cut. While this
scheme works well in practice, it may lead to a rapidly
increasing number of tetrahedra for large cuts. In addition,
cracks may arise in the physical representation of the tis-
sue.

One possibility for solving the problem of inconsistent
internal representations would be to remesh the adjacent
tetrahedra, as is done in some other remeshing techniques
[4]. Subsequently, we will present an improved subdivi-
sion method that solves the above problem without having
to update adjacent tetrahedra. Our method confines the
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newly created simplices to the actual tetrahedron by intro-
ducing cut-specific subdivision patterns.

The basic idea of our procedure is to subdivide only
those edges and faces that are part of the cut surface. We
achieve a consistent subdivision by restricting the permit-
ted subdivisions of a tetrahedral face to the following three
cases.

Figure 2: The three permitted face subdivisions

The first case of Fig. 2 represents the trivial situation of
an undivided face when no intersection with the cut sur-
face is detected. The second image depicts an intersection
of a face affecting one of its edges. This subdivision
scheme will be applied whenever a face is partially cut or
notched in. The last case represents a face having two
edges affected by the cut. It will be used for completely
split faces.

As in [5] the cut algorithm is simplified by distinguish-
ing only five topologically different cases. Two of these
cases represent a complete split of a tetrahedron, while the
other three stand for partially cut tetrahedra. By restricting
our subdivision patterns of these five cases to the three
face subdivision patterns from above, we obtain the final
pattern as presented in Fig. 3.

Figure 3: Subdivision patterns for the five cases

The localization of the subdivision is clearly visible.
All faces and edges that are not intersected by the cut sur-

face are kept intact - as desired. Note that the additional
node which is inserted into every completely cut face (see
Fig. 2c) is not necessarily needed. However we found that
this scheme provides two advantages: Firstly, it leads to
more symmetry in the subdivision patterns, and secondly,
it creates additional degrees of freedom for the cut surface
improving the results of the subsequent numerical relax-
ation.

Elastic tissue behavior forces the cut surface to open
during the relaxation. In order to provide the necessary
degrees of freedom all newly inserted mass nodes, edges
and faces of the cut surface that do not belong to the
boundary are inserted twice. We extended the look-up-
table based approach described in [5] by adding the subdi-
vision rules from above.

As described, the geometrical representation results
from replacing new vertices (mass nodes) according to the
previously calculated intersections (see also chapter 4).
Utilizing the described setup we observed potential self-
intersections of the newly inserted tetrahedra which
deserves further discussion. To illustrate these possible
intersections we show in Fig. 4 two slightly different tetra-
hedralizations of case c) of Fig. 3.

Figure 4: Potential self-intersection of newly inserted
tetrahedra

In Fig. 4a the edge which connect the nodes D and
ABC intersects the triangle (A, ABD, ACD). As a conse-
quence all tetrahedra containing this edge penetrate the
two tetrahedra containing this face. Fig. 4b depicts the
same case, however, we inserted edge (B, ACD) instead of
(D, ABC) - and thus solved the problem. To this end, for
the patterns of Fig. 3b and Fig. 3c the edges (B, ACD), (D,
ABC), and (C, ABD) have to be tested against the corre-
sponding faces. This requires two additional intersection
tests per tetrahedron in the worst case.

4 Collision Detection

In order to achieve realistic and physically correct
visual feedback, collisions between the surgical tool and
the tetrahedral mesh have to be detected. The detection of
these collisions basically consists of two tasks. The first
one is to find the surface (boundary) elements interacting
with the surgical tool. The second one deals with finding
all tetrahedra inside the tissue that are cut or notched-in by
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the scalpel. We call the first problem surface collision
detection and the second one volume collision detection.

4.1 Surface Collision Detection

Our earlier work in [5] showed that the calculation of
the first interaction of the tool with the object’s surface
may become a substantial computational burden. As an
extension of this approach, we constructed a bounding
volume hierarchy over the surface triangles. As opposed to
rigid body motion, where the bounding volumes are fixed
relative to the objects, the shapes of our bounding volumes
follow the deformation of the object. We observe that
recently proposed collision detection methods tend to
apply more and more sophisticated bounding volumes
[11] [1]. Since most of these algorithms are designed for
rigid objects the bounding volumes can be calculated in a
preprocess. As this is not possible for deformable objects,
we decided to use most simple bounding volumes to keep
the update overhead as small as possible. We eventually
found that axis aligned bounding boxes serve best for
building a hierarchy over the surface elements of a
deformable object.

In case of a deformation the bounding box tree has to
be updated. This is done locally by bottom up traversal of
the tree starting from each affected surface element. For
further decreasing the computational cost for these
updates, we added a small tolerance to the size of each
bounding box of the surface triangles. This gives the algo-
rithm a certain “grace period” that allows it to skip updat-
ing for small positional changes of a child element. In
particular a tolerance-box is constructed around every
node of a surface triangle with a given size s,,,. That is, all
bounding boxes around the surface triangles are scaled
correspondingly (Fig. 5a). After each positional update of
a mesh node, the node is compared to the tolerance box
boundaries. Note that this test can be computed very effi-
ciently due to the axis-alignment of the bounding boxes. If
the node leaves the tolerance box, the bounding volumes
of the adjacent surface triangle have to be updated.

a) b)
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Figure 5: Top view: a) tolerances added to each node
within the bounding box,
b) determination of the best suited box

Special effort has been put into the construction of the
best matching bounding box tree. After computing the
bounding boxes on the leaf level of the tree, we use a
greedy bottom-up traversal to group pairs of bounding
boxes and assign parent boxes to them. The algorithm
traverses the direct neighborhood of the surface triangle in
breadth first order. This avoids combinations of faces not
belonging to the same surface component. We combined
two criteria in order to find the best pairs. The first one is
the minimal volume of the parent box and the second one
accounts for the maximal overlapping volume. We employ
the difference of these two volume measures as illustrated
in Fig. 5b. Thus, having these two values equal would pro-
vide an optimal pair. At run-time new bounding boxes
must be computed for groups of new faces. This is opti-
mized by generating predefined box structures.

In order to compute the intersection of a surgical tool
with the tissue surface, we perform the bounding box tests
hierarchically by top-down traversal of the tree.

4.2 Volume Collision Detection

After detection of the entry points of the surgical tool
into the tissue, the tetrahedra affected by the scalpel have
to be found for each time step of the simulation. When
designing the collision detection algorithms, our goal was
to exploit spatial coherency and to confine the search to a
local traversal of adjacent tetrahedra. For this reason we
have to store the list of tetrahedra currently penetrated by
the scalpel at each time step. Following the notation of [5]
the tetrahedra at time 7, are named active tetrahedra
whereas the tetrahedra penetrated at time 7,_, are the pre-
vious active tetrahedra.

Assuming the scalpel being represented by a thin line
whose length corresponds to the scalpel's blade, the fol-
lowing situations may occur. The tip of the scalpel P, can
be either inside or outside the tissue. In addition, one or
more segments of the scalpel blade may penetrate the tis-
sue, such as is shown in Fig. 6.

Figure 6: Example of tissue penetration: Scalpel tip
P, inside tissue, and one segment of
penetrated tissue (P,,, P,;)

Analyzing the topology of these penetrations for two
consecutive scalpel positions, we obtain 9 different situa-
tions depicted in Fig. 7, which have to be handled by the
collision detection algorithm.

The rows in Fig. 7 show different possible positions of
the scalpel at ¢, whereas the scalpel positions at ¢, _, are
altered in every column. To find all possible intersections
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with the tetrahedral mesh the trajectory of the scalpel tip
has to be checked for face intersections. Furthermore, we
have to intersect all tetrahedral edges lying between the
two consecutive scalpel positions with the swept surface
spanned by the scalpel blade and its previous position
respectively. Note that this is a significant improvement to
[5], which, as a limitation, could only detect directly adja-
cent tetrahedra.

la) 1b) 19
o wy N
L ‘\0\ \\o\
2a) 2b) 2¢) .
S | #-=" "7 \k cemmrt 7T
4
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3a) 3b) 30)
[ T -

o- - - previous scalpel position (at time ¢, _, ) inside

o scalpel position (at time 7,, ) | | part of tissue
==p  build active tetrahedra list outside

==p traverse trajectory tetrahedra beginning with active tip tetrahedron

==9 the same, beginning with previous active tip tetrahedron
f traverse swept surface beginning with active tetrahedra list
’/ traverse swept surface beginning with previous active tetrahedra list

Figure 7: Cases of different volume collision
topologies

The following algorithm manages all the depicted situ-
ations. Starting with an entry face, it initially searches all
active tetrahedra. The algorithm continues by traversing
the trajectory of the scalpel tip, and computes all face
intersections of tetrahedra lying between the active tip tet-
rahedron and the previous active tip tetrahedron. The
pseudo code fragment below describes the recursive algo-
rithm. findTrajectoryTetra() is called once with the
active tip tetrahedron as the argument. If necessary, (see
Fig. 7, 1b) and 3b) it can be executed once again taking the
previous active tip tetrahedron as an input.

findTrajectoryTetra (previous_tetra, tetra)
if tetra has a valid entry

for every face [ tetra
if face [ previous_tetra

findTrajectoryTetra (tetra,
face.neighbor_tetra)

Note that in the two cases 1c) and 3c) of Fig. 7 there
exists no valid active tip tetrahedron. Therefore, we use

the face intersection algorithm from above to determine a
first intersection between the trajectory of the scalpel tip
and the object's surface. The tetrahedron belonging to this
entry face will then serve as a starting point for the £ind-
TrajectoryTetra routine.

In a second step, all the tetrahedra being intersected by
the swept surface have to be traversed and their edge inter-
sections must be calculated. We approximate this swept
surface using two triangles and, again, propose a recursive
procedure to compute this. In order to handle all cases of
Fig. 7 we have to call this procedure both for the active fet-
rahedra list, and for the previous active tetrahedra list. It
recursively traverses adjacent tetrahedra as long as inter-
sections are detected. To avoid cycles, we tag each visited
and intersected tetrahedron and return on the first tetrahe-
dron providing no intersection. The following pseudo code
gives an overview of the algorithm.

findSwapFaceTetra ()

for all tetra
tetra.state = not visited

for every tetra [l pevious active tetra list
markSwapFace (tetra)

for every tetra [l active-tetra list

markSwapFace (tetra)

markSwapFace (tetra)
if tetra.state # wvisited
tetra.state = visited
for every edge [ tetra
checkFacelIntersection (edge)
for every face [ tetra

if face contains intersected edge
tetra.state = intersected
markSwapFace (face.neighbor_tetra)

5 Relaxation

For the computation of the physics of soft tissue, we
use a conventional mass-spring system, assigning springs to
the edges and masses to the nodes of the tetrahedralization.
These relatively simple ordinary differential equations
(ODE) have been very well studied in the numerical analy-
sis literature [10]. It is, however, well known, that mass
spring systems may lead to stiff ODEs [2] imposing com-
putational constraints onto the solution strategies. In order
to better explain our semi-implicit solver, we start with the
underlying ODE of type

’x(t)
dt

The steady state solution of the above system can be
computed either by assembling the stiffness matrix K and
calculating the solution vector of the system, or by travers-
ing the different mass nodes and iteratively processing
each individual equation. In a simulation environment, one
typically wants to achieve a relaxation which is as smooth

M +D ’;(tt)+K k(1) = F,,, 0
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as possible. Consequently such procedures should have a
dense output while still reflecting the dynamics of the sys-
tem to some extent. Hence, iterative methods are useful
even in cases of implicit integration.

5.1 A Semi-Implicit Integration Method

It has been shown that implicit integration methods are
superior to explicit ones in cases of stiff equation systems
[10][2]. Although a sophisticated implicit solver enables
one to use very large time-steps, we have to focus on a
simple method to guarantee high update rates for the ani-
mation. Interestingly, as we will show subsequently, equa-
tion (1) allows us to find a compromise between the
stability of an implicit method and the simplicity and den-
sity of an explicit iteration.

To simplify notation, we will only consider the govern-
ing equation for a single mass m, . In order to derive the
method, we divide the second order differential equation
for m, into a system of two first order differential equa-
tions by introducing the velocity function v,(z) .

dx;(t
50 = v
()
de(l‘) _ fexl_D |:Wk(t) _Fxpring(x(t)v K)
dt my

The resulting spring force is expressed by an operator
F,,..(x(2), K) which incorporates the spring forces from
the adjacent mass nodes. It depends on the position of all
affected mass nodes x(z) and on the stiffness matrix K. It
yields as the sum of the spring forces invoked by masses
m; being connected to m, . The position of a mass node
m; is denoted by x;.

Fspring(x([)l K) =

Zkkjk Ly = |x;(1) =% (1)]) (x;(1) - x,(1)) @

‘Xj(t)_xk(t)‘

The spring forces are computed by multiplying the
elongation from the rest length [/, of the spring with its
spring-stiffnessk ;.

Let’s assume that at time #, the equation has the initial
values x, = x(#,) and v, = v(z,) . We introduce the nota-
tion x,, and v,, for the position and velocity of the
mass node m, at time ¢, respectively. Using an implicit
method we describe the calculation of x, ,,, and v, ., at
the time r,,, = t,+Ar depending on the given states
X, ,-and v, , and the new, unknown states x, ., and
V. .+1- Note that, in general, one has to solve a nonlinear
system of equations for the variables x and v, ., at
every time-step.

n+1

Xpnal = X DDV 0

form D o1 = F (X s K)| D
Vk,,H_[ — Vn+AtDeM kn+1 Aprmg( k,n+1 )

ny

with

Fspring(xk,n+ 1 K) =

=X, 01=X b 5)
k~,|:('/k Jon+1 k,n+1 X. —x
/; Jjk ‘Xj,n+1_xk,;1+l‘ E( jin+1 k,n+l)

To bypass the computation of this system, we partially
substitute x, ,,; in equation (5) by insertion of the upper
equation of (4) and solve the lower equation for the vari-
able v, ,.,. In this case, the solution of the initially
implicit approach can be expressed explicitly. With some
algebra the equations (4) and (5) are transformed into the
following system:

Xk,n+l = Xk,n+At Evk,n+l

my Ewk,n + At D.ext - EZ(E E(Xj,nJr l_Xk,n)E
VES

Vk.n+l =
my+ At CED + A DZEE ©)
VE3

L—|x:,,1—X )
E = kjkE‘( Jk ‘ jon+1 k,n+1‘
‘Xj,n+l_xk,n+l‘

The first equation only depends on the variable v, .,
and can therefore be computed after evaluating the second
equation. This equation, unfortunately, still depends on
X, .41 Since the magnitude operator is a nonlinear func-
tion, it turns out to be too expensive to extract x; ., at
every update step. To this end, we estimate x, , ., using an
explicit Euler step

Xpna1 = X A1 0V, @)

This leads to a semi-implicit method that solves for the
direction of the mass’ motion implicitly and for its magni-
tude explicitly.

Sometimes iterative solutions are preferable to achieve
a smoother relaxation. Note that in those cases only the
values from x, , ., to x,_, ., are available for the com-
putation of the new position x, ,,, of a mass m, while
Xii1.n+1 1O X, ., have to be estimated by use of equa-
tion (7), as well.

5.2 A Parallel Node Traversal Algorithm

From the analysis of various tissue manipulation proce-
dures using different surgical instruments we learned that
the major part of the tissue deformation occurs in the
direct vicinity of the instrument. In other words, mass
nodes further away from this region take a smaller influ-
ence on the nodal displacement. This observation suggests
an adaptive step size control. For an efficient implementa-
tion of this feature, we quantize the possible time steps
into values At;, allocate lists to them and store in each list
the mass nodes with this time step.

During the relaxation the individual lists are handed
over to a scheduler to process the nodes. Lists assigned to
smaller time steps are passed over more often than those
with larger ones. The scheduler is multithreaded enabling
us to handle the mass nodes in parallel.
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Figure 8: Scheduling data structure and algorithm

A dedicated thread controls reassignments of individual
nodes to the different nodelists as well as the distribution
of the nodelists to the different threads. For dynamic adap-
tation of the node’s time-step and in order to guarantee a
meaningful distribution over the different nodelists, the
commands insertNewNode, moveNodeUp, and moveNode-
pown were implemented. We suggest to use the averaged
acceleration of the node over a fixed number of previous
time steps as an assignment criterion. Thus, nodes with a
higher acceleration will be updated more often than slower
ones.

For fair assignment of the nodelists to available threads,
we stamp each list ; with the time of the last relaxation ¢, .
After processing the list i, 7, will be incremented by Ay, .
The scheduler eventually picks the list leading to the
smallest increment to the actual time 7,., according to the
following relation:

act,

acr,,, = min 1+ A ®)
i=0..n
nodelists T i)t
H 1 1
list 2 At, || A, || Arn |

it (TR A B

listo [ Bt |[B2, [ Bt |[Bty [27,]

tot t

act, Cact,

Figure 9: Scheduling of node-lists with different time-
steps

Fig. 9 illustrates the scheduling algorithm. The grey
boxes stand for the passed relaxation time of each nodelist,
whereas the white boxes indicate an estimation of the time
required for the next relaxation step. In this example, list 1
will be scheduled next, since it will lead to the smallest
increment of the simulation time.

Note that storing the time for each node is an essential
prerequisite for moving individual nodes up and down the
lists. For computing the next positional update of the same
node in a different list j the difference between the actual
time ¢; and the node’s time-stamp serves as the new time-
step for the integration.

6 A Haptic Scalpel Model

The haptic interaction with surfaces of arbitrary objects
is an essential ingredient of a surgical simulator and has
already been treated in several publications [23]. In our
work the GHOST API of the PHANToM force-feedback
device [24] is applied to model the rigid bone structures.
However, we are not aware of any model for describing
the haptic behavior of a scalpel cutting through 3D
deformable tissue.

In this section, we will present a novel haptics model
for a scalpel and its interaction with 3D soft tissue. Due to
the high update rates being necessary for realistic haptic
rendering our goal was to start with a force model that is
independent of the actual tissue representation. In a second
step, we account for the interaction with the mesh by com-
municating entry positions, material parameters, and
external forces to and from the haptics server.

6.1 Force Decomposition

Since a scalpel usually cuts only along the direction of
its blade, it is admissible to restrict the scalpel’s motion to
the plane spanned by the blade. To model this behavior we
project the external force vector F,,, into this plane. As
illustrated in Fig. 10 this is accomplished by decomposi-
tion into a force F| lying in the plane and a force F per-
pendicular to it. F) is responsible for the incision whereas
F has to be constrained to avoid movements perpendicu-
lar to the cut plane. To simplify the calculation of the
forces we further decompose F| into a component F,
aligned to the blade and into a component F;, perpendicu-
lar to it.

F,, =F+Fy= F”a+FHn+FD )

Figure 10: Decomposition of scalpel forces

All further force computations, such as the ones that
describe the scalpel’s friction during a cut, are carried out
separately for F, and F|, and added up again to obtain
the resulting forces.

To compute an external force F,,, from the positional
data of the force-feedback device, we think of the scalpel
tip as being connected via a spring with a so-called proxy
storing the tip’s previous position. This turns out to be a
meaningful approach which was already used in several
related works [23].
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6.2 Modeling the Tissue Forces

When the blade of a scalpel enters a piece of tissue, the
following two important interactions occur. Firstly, the
scalpel separates the tissue and penetrates into the interior.
Secondly, the forces imposed by the scalpel deform the tis-
sue. The relation of these two phenomena is established by
the friction of the scalpel blade.

The friction occurring during a cut can be separated
into two different forces:

* As long as the force applied to the scalpel is smaller
than a given tissue-dependent threshold F,,,,,, the
scalpel will not open the tissue. We call the force
responsible for this effect the static cut friction.

o If the magnitude of the force F; exceeds F,,,, the
scalpel will start cutting. Note that the friction imposed
in this case, the dynamic cut friction, is usually smaller
than the static cut friction.

We observe two physical effects describing the cut fric-
tion. The force which cuts open the molecular structure of
the tissue is called F,,,,. It is constant in time, however
differs in the coefficient p for the static and dynamic case.
Due to the inertia of the displaced tissue the force F ;..
causing its displacement around the blade to be dependent
on the blade’s velocity v. We model this process in our
setting in terms of a of viscosity force.

In addition, there exists a surface friction F;.,,, aris-
ing from the friction of the scalpel blade on the tissue.
This friction is dependent on the magnitude of the force
F perpendicular to the cut surface.

All in all, the entire phenomenon of cut friction is for-
mulated as the sum of the two forces projected onto the
unity vectors of a and n pointing into the opposite direc-
tion than F, and F|, (see Fig. 11).

F., =F.,.+F.,,. (10)

cut

cut a

tissue

Figure 11: Calculating the resulting force

Since F,,,, and F_,,, are computed using similar rela-
tions, we write the corresponding equation using a generic
placeholder x.

Fcut x = (Fopen X + Fdixp/ace X + Ffriczion x) Lk (1 1)

withx = norx = a

6.3 Static Cut-Friction

For the following considerations we neglect the tissue
displacement. As a result, the resulting static cut friction
force F will compensate the force F,

Cut\/(ul(

F = —F” until Fenmr =

F

Cut\lul(c

(12)

Cut\lul(c

In the static case the velocity of the scalpel will be zero,
the displacement force F ;.. vanishes, and the static cut
friction is modeled with

Fapcn x = usm/ic D] I:bedge mx (13)

Ffriction x = Osraric E]FD‘ (14)

Myasic © Static tissue opening coefficient
N : stiffness of the material
Ceage - Sharpness of the blade’s edge.

(small c,;,, U sharp edge)

edge

static - static friction coefficient

a
d , : penetration depth of the scalpel blade
d , : breadth of the scalpel blade

The values that change during the simulation are in par-
ticular d, and possibly the material stiffness n . The pene-
tration depth of the scalpel d, is calculated as the distance
between the scalpel tip P, and the entry point of the scal-
pel P,. The breadth of the scalpel blade d, can be
described as some function depending on d , .

6.4 Dynamic Cut-Friction

As already mentioned the dynamic cut friction F
applies as soon as |F | exceeds the value of F,,,,, . Dur-
ing cutting the cut friction F, ~ does not necessarily
point exactly into the opposite direction than F. The dif-
ference between the applied force F) and the reacting cut
friction force F., ~  results eventually in the accelera-
tion force F,, of the scalpel.

Fm = F”—F

CUl gypamic

m

15)

CUtl gynamic

In the case of dynamic cut friction all of the three
forces described earlier must be considered. Note that

Fopenx and Fp....,  differ from the static case only in

terms of smaller coefficients whereas F ;... x 1S new.
Fopenx = Maynamic N L 40, L (16)
Fiisplacex = Paynamic Dfshape 0, (17)
Frrictionx = Qaynamic gF (18)

Puaynamic - dynamic tissue opening coefficient
: shape of the scalpel’s blade

Cshape
d 4 : depth of the scalpel blade
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6.5 Constraints on the Blade Movement

In order to model a correct interaction between the scal-
pel and the tissue, the movement of the scalpel’s blade
must be constrained along the direction of its edge. In fact,
we will have to impose two separate constraints.

Firstly, the motion into the direction perpendicular to
the blade is penalized through a force pushing the scalpel
tip back to the plane. This force is proportional to the dis-
tance of the scalpel tip from the plane. We establish this
force by restricting the proxy’s movement to the plane.
The same proxy is used for modeling the static cut fric-
tion. To this end, the proxy’s position is fixed until F
is reached.

enter

Secondly, we exploit the fact that a scalpel usually has
only one sharp edge. Therefore it is assumed to cut only
into the direction of forward motion. All backward
motions are hence interpreted as pulling the tool back and,
as a consequence, no force will be applied. The distinction
between cutting and withdrawing can be obtained from the
scalar product between F| and a.

7 Results

To obtain models that are both realistic and efficient to
compute we generated adaptive tetrahedral meshes. The
material properties of the physics-based system as well as
the boundary conditions were integrated into the model
and the visual quality of the cuts was improved by making
use of volume texture mapping.

7.1 Mesh Generation

The Visual Human cryosection data set [20] served us
as a data source. In our example, the limp was segmented
from the blue color by computing and thresholding each
voxel. Subsequently, we applied subsampling and filtering
to the initially high resolution data. To obtain the model,
we subdivided each volume cell into six tetrahedra. The
volume was then extracted and tetrahedralized by a march-
ing tetrahedron-type isovolume algorithm. To achieve a
consistent mesh representation, tetrahedra intersected by a
surface were subdivided using a scheme that allows for a
symmetrical subdivision of a quadrilateral, such as the one
shown in Fig. 2c.

To achieve adaptive mesh representations of different
resolutions, the initial mesh was further processed with a
progressive mesh algorithm [25]. The weighting function
was tuned to collapse all the small edges of the interior
mesh while preserving the details on the mesh surface.
The resulting mesh structure can be seen in Fig. 13 and
Fig. 14.

7.2 3D Texturing

We believe that with increasing texture memory on
graphics boards 3D textures will become manageable at
adequate resolutions. Therefore, we applied 3D texture

mapping to enhance the realism and the visual quality of
the simulation. Initially, each node has canonic texture
coordinates being associated with its spatial position in the
3D data set. Since filtering and isosurface mesh construc-
tion generate positional drifts of the nodes, we have to reg-
ister the 3D texture dataset explicitly after the mesh
construction. This step has to be performed only once and
during preprocessing. Then, correctly aligned 3D textures
can be displayed throughout the simulation.

7.3 Material Properties and Boundary Conditions

Besides the texture volume, our framework supports
volumetric material properties and boundary conditions.
The material volume is generated by segmenting the tex-
ture volume and by assignment of different stiffness values
to individual tissue types. The detailed description of this
nontrivial problem is beyond the scope of this paper, how-
ever, some instrumental tools were proposed by some of
the authors in [13]. The rigid bone structures as well as the
left and right boundaries of our knee model (red nodes in
Fig. 14) are defined interactively as displacement bound-
ary conditions. The tissue between the boundaries is aniso-
tropically prestressed accounting for the fact that the leg
muscles have a strong longitudinal orientation.

7.4 Examples

Fig. 12 shows 4 frames of a sequence representing an
interactive surgical cut into the knee model which was per-
formed using the PHANToM force-feedback device. The
relaxation thread ran in parallel to the computations of the
geometric updates. We observe that the tissue separates
immediately after the scalpel force exceeds the described
thresholds. This is due to the prestressing and the bound-
ary conditions. To illustrate the performance of the simula-
tion the elapsed time is displayed in every frame. The
example was simulated on a Silicon Graphics Onyx2 Infi-
nite Reality with eight R10000, 200 MHz processors. With
the initial model consisting of 1381 tetrahedra we
achieved 30 frames per second rendering speed.

To further elucidate the geometric processing and
updates Fig. 13 illustrates the initial surface triangulation
of our model and Fig. 14 depicts the underlying mesh of
the last image of Fig. 12.

In order to demonstrate the performance of the pre-
sented methods Fig. 15 illustrates the capabilities concern-
ing topological modifications and Fig. 16 the geometrical
accuracy. Both examples initially consitst of 2980 tetrahe-
dra.

8 Conclusions and Future Work

We have presented a system for interactively cutting
soft tissue models that efficiently represents and tracks
arbitrary cut trajectories with a high degree of detail.
Besides collision detection and fast and stable relaxation
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methods our system features a haptical model of the inter-
action between the scalpel and the tissue.

Future work will comprise further improvements of the
physical model including the representation of incom-
pressibility and refinements of the intersected tetrahedra
without insertion of additional simplices.
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Figure 12: 4 frames of a sequence representing an interactive surgical cut
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