
Interactive Spacetime Control of Deformable Objects

Klaus Hildebrandt Christian Schulz Christoph von Tycowicz Konrad Polthier

Freie Universität Berlin

Abstract

Creating motions of objects or characters that are physically plau-
sible and follow an animator’s intent is a key task in computer ani-
mation. The spacetime constraints paradigm is a valuable approach
to this problem, but it suffers from high computational costs. Based
on spacetime constraints, we propose a framework for controlling
the motion of deformable objects that offers interactive response
times. This is achieved by a model reduction of the underlying vari-
ational problem, which combines dimension reduction, multipoint
linearization, and decoupling of ODEs. After a preprocess, the cost
for creating or editing a motion is reduced to solving a number of
one-dimensional spacetime problems, whose solutions are the wig-
gly splines introduced by Kass and Anderson [2008]. We achieve
interactive response times through a new fast and robust numerical
scheme for solving the one-dimensional problems that is based on
a closed-form representation of the wiggly splines.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling—Physically based
modeling;

Keywords: computer animation, spacetime constraints, physical-
based animation, model reduction, control, wiggly splines

Links: DL PDF

1 Introduction

In traditional computer animation, the motions of objects or char-
acters are typically generated from keyframes that specify values
for all of the object’s or character’s degrees of freedom at a sparse
set of points in time. A continuous motion is obtained by fitting
splines through the keyframes. This technique is attractive since it
offers an adequate amount of control over the motion at a low com-
putational cost. One drawback for this technique is that it offers
little help to an animator who wants to create physically plausi-
ble motions. Moreover, splines are designed to produce functions
with high fairness (e.g. functions with few extrema and inflection
points), whereas the motion of objects or characters is often oscil-
latory.

Physical simulation can produce realistic motions, but it is a deli-
cate task to explicitly determine forces and physical quantities that
produce a motion that matches an animator’s intentions. This is
aggravated by the fact that physical simulations are integrated for-
ward in time, which means that small changes at some point in

time can have a large impact on the state of the system at a later
time. Control over a simulation can be achieved by computing op-
timal physical trajectories that are solutions of a variational space-
time problem. Such techniques calculate acting forces that mini-
mize an objective functional while guaranteeing that the resulting
motion satisfies prescribed spacetime constraints, e.g. interpolates a
set of keyframes. Resulting forces are optimally distributed over the
whole animation and show effects like squash-and-stretch, timing,
or anticipation that are desired in animation. However, the compu-
tational cost for obtaining these results is that of solving a spacetime
optimization problem. To date, recent methods, even those that use
dimension reduction techniques, still require at least several min-
utes to solve the optimization problem for an interesting motion of
an object or a character.

Figure 1: A cloth animation that exhibits physical behavior but is
controlled by keyframes is shown. (See also the attached video.)

In this paper, we propose a technique for generating motions of
deformable objects that can be controlled by spacetime constraints
like keyframes, velocities, and forces. The main features of our
scheme are that it achieves interactive response times and pro-
duces explicit time-continuous parametrizations of the motion. The
scheme is based on a variational problem that determines optimal
trajectories through the minimization of an acting force with respect
to a spacetime L2-norm. To lower the cost of the optimization, we
combine different model reduction techniques and shift computa-
tional effort to a preprocess. First, we propose a simple yet effective
way to construct a reduced space to which we restrict the variational
problem. Secondly, we develop a multipoint linearization technique
for the equations of motion. Using the fact that the desired trajec-
tory interpolates the keyframes at specified points in time, we lin-
earize the equations of motion around every keyframe and use each
of the linear equations for a time interval around the corresponding
point in time. Thirdly, we fully decouple the linearized spacetime
constraint problems in the reduced space.

After decoupling the equations, only one-dimensional variational
problems need to be solved. Such one-dimensional problems were
considered by Kass and Anderson [2008]. Their structure is similar
to the variational problem satisfied by cubic B-splines; it even in-
cludes B-splines as a special case. Thus the solutions can be seen
as an extension of B-splines that in addition to smooth interpolants
can also produce oscillating functions. Kass and Anderson named
them wiggly splines. For computation they use a finite difference
scheme.

http://doi.acm.org/10.1145/2185520.2185567
http://portal.acm.org/ft_gateway.cfm?id=2185567&type=pdf

At the heart of our technique is an efficient algorithm for the com-
putation of wiggly splines based on a closed-form representation
of the wiggly splines. We show that, as B-splines are composed
of polynomials, wiggly splines can be assembled from functions
that describe damped and driven oscillations. The explicit form of
the functions depends on physical parameters. We distinguish six
cases listed in the appendix. To compute the explicit representa-
tion of a wiggly spline, our algorithm solves a linear system with a
band structure and of small size, which depends on the number of
keyframes. As a result, the computation is robust (even for extreme
parameter values) and produces ∼ 10 k wiggly splines per second
on a custom laptop (with an i7 quad-core 2.2 GHz CPU) even with-
out using parallelization.

2 Related Work

Variational problems with spacetime constraints were intro-
duced to computer animation by Witkin and Kass [1988].
Their example of a jump of the lamp Luxo nicely demon-
strates the benefits of this approach. Since then the space-
time constraints paradigm has stimulated much research, see
[Fang and Pollard 2003; Safonova et al. 2004] for a detailed sum-
mary. Based on spacetime constraints, techniques for con-
trolling simulations of various types of physical systems in-
cluding human motions [Gleicher 1997; Fang and Pollard 2003;
Safonova et al. 2004; Chai and Hodgins 2007], ropes and strings
[Barzel 1997], rigid body motions [Popović et al. 2003], flu-
ids [Treuille et al. 2003; McNamara et al. 2004], particle systems
[Wojtan et al. 2006], and elastic solids [Barbič et al. 2009] have
been proposed. The resulting optimization problems are typ-
ically solved with gradient-based approaches or Newton meth-
ods. Local-to-global strategies, called spacetime windowing,
were developed to speed up the solvers by Cohen [1992] and
by Treuille et al. [2003]. A particular problem is the cal-
culation of the derivatives of the objective functional. Au-
tomatic and symbolic differentiation has been used by many
researchers, e.g. [Witkin and Kass 1988; Fang and Pollard 2003;
Safonova et al. 2004], and spacetime constraints serve as one of
the main target applications for the development of algorithms
for automatic differentiation in graphics [Guenter 2007]. Explicit
derivatives for different physical systems can be obtained through
the adjoint method, see [McNamara et al. 2004; Wojtan et al. 2006;
Barbič et al. 2009].

Model reduction is an established technique in solid mechanics
that can be used to accelerate simulations of elastic solids, cf.
[Nickell 1976; Idelsohn and Cardona 1985; Krysl et al. 2001]. In
graphics Pentland and Williams [1989] pioneered work in this area
by using modal analysis to automatically generate reduced spaces.
Based on an efficient representation of the forces in the reduced
space, Barbič and James [2005] obtained real-time rates for forward
simulation of elastic solids. In addition, they extended the auto-
matic generation of subspaces to include modal derivatives, which
helps to improve the approximation of large deformations. Treuille
et al. [2006] and Wicke et al. [2009] used reduced spaces con-
structed from eigenmodes for fluid dynamics. In geometry process-
ing, reduced spaces were used for interactive modeling of triangu-
lar meshes by Huang et al. [2006] and Hildebrandt et al. [2011].
Kim and James [2009] used model reduction to speed up the cal-
culation of large simulations for animation, by skipping full steps
if the reduced step satisfies an accuracy condition. The reduced
model is not built in a preprocess, but online as the simulation pro-
gresses. Reduced spaces have also been used for spacetime con-
straints. For human motions, Safonova et al. [2004] and Sulej-
manpašić and Popović [2005] constructed reduced spaces from mo-
tion capture data. Barbič et al. [2009] constructed reduced spaces

for deformable objects automatically from the keyframes by using
vibration modes and tangents of a deformation curve that is fitted
to the keyframes. This technique for constructing reduced spaces
is similar to the way we construct reduced spaces. However, our
method allows working with larger reduced spaces then theirs.

Related to spacetime constraints is also geometric interpolation be-
tween two or more shapes. The variational problem for geodesics
in shape spaces has a comparable complexity and solvers need to
deal with varying curves in a shape spaces, as well. Efficient mul-
tiresolution solvers for computing geodesics in shape spaces were
proposed by Kilian et al. [2007] and by Wirth et al. [2009].

Figure 2: An illustration of our scheme. The animator generates
keyframes with a surface modeler. A reduced space (blue plane)
is generated from the keyframes. Our method constructs a motion
that interpolates the keyframes by solving a reduced spacetime op-
timization problem.

3 Dynamics of Deformable Objects

There are different theories that model the behavior of elastic ob-
jects and various ways to discretize them. We keep the presentation
of our approach general so that it covers a broad class of discrete
deformable objects; the specific setting we use for our experiments
is treated in Section 5. We consider a time-continuous motion of a
discrete deformable object, represented by a vector valued function
x : t �→ R

3n, whose dynamics are described by a system of second
order ODE’s of the form

M ẍ(t) +D(ẋ(t)) +G(x(t)) = F (t), (1)

where M is a mass matrix and G,D, and F represent the in-
ner forces, the damping, and the outer forces that act on x. The
function x may represent the motion of vertices of a triangle
or tet mesh, the nodes of a finite element mesh, or the con-
trol points of a subdivision surface or solid. Equation (1) cov-
ers discretizations with finite elements, finite differences, simple
spring systems, as well as geometrically motivated discrete sys-
tems, cf. [Terzopoulos et al. 1987; Pentland and Williams 1989;
Shabana 1997; Baraff and Witkin 1998; Barbič and James 2005;
Chao et al. 2010].

To approximate G around a state x̂, we expand

G(x̂+ u) ≈ Ĝ+K u, (2)

where u = x − x̂, Ĝ = G(x̂), and K = ∂
∂u

G|x̂ is the stiffness
matrix. Furthermore, we use Rayleigh damping, i.e. we assume
that D has the form

D(ẋ(t)) = (αM + β K)ẋ(t).

With these approximations the equations of motion take the form

M ü(t) + (αM + β K)u̇(t) +K u(t) + Ĝ = F (t). (3)

Figure 3: Snapshots from an animation of a jumping block (green) that interpolates keyframes (yellow) and velocities at the keyframes (black
arrows). Before it actually jumps, the block deforms in order to achieve the prescribed veocity at the second keyframe. For comparison,
results of interpolation with cubic B-splines (gray) are shown. (Animations are shown in the attached video.)

The matrix M is symmetric and positive definite. Furthermore, we
assume that K is symmetric, which is the case for most models
of elasticity considered in graphics (e.g. for hyperelastic materials).
However, K need not be positive definite, since x̂ may not be a rest
state of the system.

3.1 Reduced spaces

In most of our experiments, we used a reduced shape space in-
stead of the full space R

3n. Our reasons for doing so are three-
fold. Firstly, the accurate representation of a geometry usually
needs high dimensional discrete representation whereas anima-
tions often require only a fraction of the degrees of freedom, cf.
[Kim and James 2009]. Secondly, the computational cost decreases
dramatically. Thirdly, reduced spaces cut off high frequency modes
and thereby lower the stiffness of the optimization problem which,
in turn, increases the numerical robustness of the resulting method.

We consider a d-dimension reduced space that is a subspace of R3n

and is given by a set of d vectors that form a basis of the space.
There are various possible ways to construct such a basis. Our con-
struction uses the keyframes and modes of oscillation around the
keyframes. At this point, we keep the presentation independent of
the particular choice of a basis and postpone the discussion of our
construction of such a basis to Section 5. Let U be a 3n×d-matrix
whose columns are the basis vectors. Then, U maps coordinates q
in the reduced space to the u-coordinates in R

3n

u = Uq.

The reduced mass and stiffness matrices are

M̄ = UTMU and K̄ = UTKU, (4)

and the equations of motion in the reduced space are

M̄ q̈(t) + (αM̄ + β K̄)q̇(t) + K̄ q(t) + UT Ĝ = UTF (t). (5)

This last equation follows from multiplying (3) with UT and us-
ing (4). For our purposes it is convenient to choose a specific basis
in the reduced space, namely a basis in which the reduced mass and
stiffness matrices are diagonal matrices. This can be achieved by
solving the (low-dimensional) generalized eigenvalue problem

K̄ φi = λiM̄φi. (6)

We assemble the eigenvectors φi to form the rows of a matrix Φ
and denote coordinates with respect to the basis {φi} by ω. The
transformations from ω to the q- and the u-coordinates are

q = Φω and u = Ũω, (7)

where Ũ = UΦ, and the representation of the mass and the stiffness
matrix in the ω-coordinates is

1 = ΦT M̄Φ and Λ = ΦT K̄Φ, (8)

where Λ is the diagonal matrix whose diagonal entries are the
eigenvalues λi. Then, the reduced equations of motion take the
form

ω̈(t) + (α1+ β Λ)ω̇(t) + Λω(t) + g = ŨTF (t), (9)

where g = ŨT Ĝ. The advantage of using the ω-coordinates is
that (9) is a system of d independent ODEs, whereas (5) is a coupled
system.

4 Interactive Spacetime Control

In this section, we describe the basis of our approach: a model
reduction of the spacetime constraint problem for deformable ob-
jects. In Section 4.1, we formulate a linearized spacetime constraint
problem in the reduced space and show that in the ω-coordinates it
decouples to d one-dimensional spacetime problems. In Section
4.2, we derive a scheme for the computation of the exact solution
of the one-dimensional problem, which amounts to solving a low-
dimensional linear system with a band structure. Section 4.3 de-
scribes how we construct the final motion by blending a number of
solutions of linearized problems. In Section 4.4 we give an outline
of the algorithm and divide it into a preprocess and an interactive
phase in which the animation is edited.

The spacetime problem, we consider, is to generate optimal
motions that assume prescribed poses X0, X1, ..., Xm at times
t0, t1, ..., tm, where a motion is optimal if the forces required to
generate the motion have minimal spacetime L2-norm (integral
over the squared norm of the forces over all points of the deformable
object and the time interval) among all competitors. For unique-
ness of the solution, we additionally impose boundary conditions
on the motion. For example, we fix the initial and final velocities
ẋ(t0) = Y0 and ẋ(tm) = Ym. Alternatively, interpolation of sec-
ond derivatives at the boundary and circular motions are possible.

4.1 Linearized spacetime problem

Let us assume that the reduced space contains all keyframes Xk

and the vectors Y0 and Ym. If this is not the case, they can simply
be added to the reduced basis. To restrict the spacetime problem
to a reduced space, we allow only forces that are contained in the
reduced space, and to linearize the problem, we assume that the
dynamics are described by linearized equations of motion. Then,

the reduced problem can be formulated in the ω-coordinates. The

componentsΩk of the keyframes in this basis satisfy Ũ Ωk = Xk−
x̂, which follows from (7). Multiplying the equation with ŨTM
and using (8) shows that this is equivalent to

Ωk = ŨTM(Xk − x̂).

Similarly, the vectors Y0 and Ym transform by

Ψ0 = ŨTM Y0 and Ψm = ŨTM Ym.

Problem 1 (linearized spacetime problem) In the space of ad-
missible motions ω find

argmin
ω

tm
∫

t0

‖ω̈(t) + (α1+ β Λ)ω̇(t) + Λω(t) + g‖2 dt, (10)

where ω is admissible if ω ∈ C2([t0, tm],Rd) and

ω(tk) = Ωk ∀ k ∈ {0, 1, ...,m},
ω̇(t0) = Ψ0, and ω̇(tm) = Ψm

holds.

The norm we use in (10) is simply the standard norm of Rd. Since
the mass matrix in the ω-coordinates is the identity matrix, this
norm is a discrete L2-norm for functions on the deformable ob-
ject. The advantage of using the ω-coordinates is that the problem
decouples, i.e. component functions ωi(t) and ωj(t) do not in-
fluence each other (for i 	= j). Hence, we only need to solve the
one-dimensional problems

argmin
ωi

tm
∫

t0

(ω̈i(t) + 2 δiω̇i(t) + λi ωi(t) + gi)
2

dt (11)

subject to

ωi(tk) = (Ωk)i ∀ k ∈ {0, 1, ...,m},
ω̇i(t0) = (Ψ0)i, and ω̇i(tm) = (Ψm)i,

for all i ∈ {1, 2, ..., d}. Here we set δi = 1
2
(α + β λi). Once a

solution ω(t) in the reduced space is computed, the matrix Ũ maps
ω(t) to a motion u(t) in R

3n, see also eq. (7).

Remark 1 We would like to mention that Problem 1 can be
motivated as an application of Gauß’ principle of least con-
straint [Gauß 1829] to keyframe interpolation.

4.2 Explicit wiggly splines

Kass and Anderson [2008] considered the one-dimensional space-
time constraint problem (11) and called the solutions wiggly
splines. They used a finite difference method to solve the prob-
lem. Here we propose an alternative scheme to solve the problem
based on a closed-form representation of the wiggly splines.

The Euler-Lagrange equation of the one-dimensional problem (11)
is the fourth order ODE

....
ω i(t) + 2(λi − 2δ2i) ω̈i(t) + λ2

i ωi(t) + λi gi = 0. (12)

This can be verified by a lengthy but straightforward calculation.
The solutions of this equation form a 4-dimensional (affine) vec-
tor space. The type of functions that are in this space depends on
relations of λi and δi. We classify these different types into six

ω(t)

ω(t)

ω(t)

ω(t)

t

t

t

t

Figure 4: Wiggly splines (black) with varying stiffness and damp-
ing parameters, interpolation points (red), polygon connecting the
points (blue), and boundary conditions (turquois). The parameters
are: λ = 0, δ = 0 (top left), λ = 5, δ = 0 (top right), λ = 5, δ = 5
(bottom left), λ = 5, δ = 0, and an additional constant gravita-
tional force (bottom right).

cases and explicitly list basis functions {b1i (t), b2i (t), b3i (t), b4i (t)}
that span the spaces of solutions for all cases in the appendix. The
minimizer ωi(t) of the 1-D spacetime problem is a function that
is four times continuously differentiable and satisfies (12) within
all intervals (tk, tk+1) and is twice continuously differentiable at
the tks. It follows that the restriction of the minimizer to any inter-
val [tk−1, tk] is a combination of the basis functions. We denote by
ωi,k(t) the restriction of ωi(t) to the interval [tk−1, tk]. Then, for
every k ∈ {1, 2, ...,m} there are four coefficients w1

i,k, w
2
i,k, w

3
i,k,

and w4
i,k such that

ωi(t)|[tk−1,tk] = ωi,k(t) =
∑4

l=1
wl

i,kb
l
i(t)− ci,

where ci = gi/ |λi| if λi 	= 0 and ci = 0 if λi = 0. To obtain

ωi(t), we need to compute the 4m coefficients wl
i,k for all k ∈

{1, 2, ...,m} and l ∈ {1, 2, 3, 4}. These are determined by the
interpolation conditions

ωi,k(tk−1) = (Ωk−1)i and ωi,k(tk) = (Ωk)i (13)

for all k ∈ {1, 2, ...,m}, the regularity assumptions

ω̇i,k(tk) = ω̇i,k+1(tk) and ω̈i,k(tk) = ω̈i,k+1(tk) (14)

for all k ∈ {1, 2, ...,m − 1}, and the boundary conditions that
specify the velocities at t0 and tm

ω̇i,1(t0) = (Ψ0)i and ω̇i,m(tm) = (Ψm)i. (15)

Together these 4m linear equations determine a unique spline
ωi(t). The conditions can be arranged to form a band matrix with
bandwidth 8. Since m is typically small (e.g. m = 10), solving
such a system requires only fractions of a ms; even on a custom
laptop and without parallelization, one can compute 10 k wiggly
splines within a second.

Remark 2 (complex wiggly splines) In this paper, we use only so-
lutions of the 1-D spacetime constraint problem over the real num-
bers. However, the complex solutions are interesting as well; Kass
and Anderson [2008] show great examples of how they can be
used for designing and augmenting motions of characters. Our
algorithm directly generalizes to the calculation of complex wig-
gly splines. The space of complex solutions of the Euler-Lagrange

equation (12), in the generic case where δi 	= 0 and δ2i − λi 	= 0,
is spanned by the four complex functions

bli(t) = e

(

±δi±
√

δ2
i
−λi

)

t
. (16)

Then, to determine a complex wiggly spline, the interpolation (13),
continuity (14), and boundary constraints (15) need to be treated
as complex equations.

The proposed computation of the wiggly splines has three major
advantages over a finite difference scheme. The first is that the re-
sult is a wiggly spline in closed form, not just an approximation.
The second is a significantly lower computational cost. Thirdly, we
do not need to deal with stability issues caused by discretization.
Roughly speaking, the problem with stability is that the continu-
ous equation is stable, but once continuous derivatives are replaced
by finite differences, stability is no longer guaranteed. Frequen-
cies higher than those representable at the used sampling rate can
destabilize the equation. For a throughout discussion of the stability
problem, we refer to Kass and Anderson [2008].

4.3 Multipoint linearization and blending

A problem when using linearized equations of motion (3) is that
artifacts may develop for larger deformations away from the point x̂
(around which the inner forces were expanded). To counteract such
problems, we use the fact that the desired motion interpolates the
keyframes. We expand the inner forces around every keyframe Xj

and get (m+1) linearized equations of motion. Then, we solve the
corresponding linearized spacetime problems to compute (m + 1)
motions xj(t). From these solutions, we assemble a final motion

x(t) by blending over each interval [tj , tj+1] the trajectories xj(t)
and xj+1(t) with cubic splines. In our implementation, we used

only the motion xj(t) in the interval [tj−(tj−tj−1)/4, tj+(tj+1−
tj)/4] and blended in the intervals [tj + (tj+1 − tj)/4, tj+1 −
(tj+1 − tj)/4].

A limitation of this approach is that the deformation from one
keyframe to its successor should not be too large. However, since
the points around which we linearize the equations of motion need
not be interpolated by the motion, one could add ghost meshes
between keyframes and linearize the equations around these extra
meshes without forcing interpolation of these meshes. However,
for our examples, we did not use such a technique.

4.4 Algorithm outline

We divide the computation into two parts: a preprocess and an in-
teractive editing phase. The following is shifted to the preprocess

1. a basis of the reduced space is calculated and stored in the
matrix U

2. for every keyframe, the mass and stiffness matrices M and K
and their reduced counterparts M̄ and K̄ are set up

3. for every pair of reduced matrices M̄ and K̄ the eigenvalue
problem (6) is fully solved and the matrices Φ and Λ as well
as the vector g are set up

Then, the interactive phase begins. To compute the animation, we
only need to compute the (m + 1) motions and blend them to get
the final motion. This means that (m+ 1) ∗ d wiggly splines must
be computed, which (for settings like m = 10 and d = 100) takes
only fractions of a second. Editing operations to change

• physical parameters, like material stiffness or damping coef-
ficients

Figure 5: Animation of a walking bug enriched with secondary mo-
tion. Top row shows only the secondary motion and the keyframes
that generate the motion.

• boundary conditions

• times of the keyframes

• positions in space of keyframes

require only a recomputation of the wiggly splines, hence take only
fractions of a second, as well. Additional effort is required for
modeling or adding a keyframe. However, we do not need to re-
run the whole preprocess. Instead, we can keep the reduced space,
which was computed in the preprocess, and add some basis vec-
tors. Similarly, we only need to compute the stiffness matrix K and
mass matrix M of the new (or modified) keyframe and we keep the
(unreduced) matrices of all other keyframes. Only the operations
in the reduced space (that is setting up the reduced matrices and
solving the reduced eigenvalue problems) must be carried out for
all keyframes. Since the reduced space is low-dimensional, these
operations come at low computational costs. Alternatively to aug-
menting the reduced space, one can project the new (or modeled)
keyframe into the reduced space. Such a strategy further reduces
the computation effort but modifies the keyframe. A nice approach
is to create or model new keyframes directly in the reduced space.

5 Our Implementation

Our technique can be used for different types of discrete elastic ob-
jects; for our implementation, we decided to use Discrete Shells
[Grinspun et al. 2003; Bergou et al. 2007]. Discrete Shells are for-
mulated for triangle meshes, which then represent the middle sur-
face of an elastic shell. The potential energy of the inner forces
splits into two parts, a flexural (or bending) and a membrane (or
stretching) energy. Both parts can be computed from elementary
geometric properties of the triangle mesh. For explicit formulae

we refer to [Grinspun et al. 2003]. The vector Ĝ and the matrix K
in (2) are the gradient and the Hessian of the potential energy at
the point x̂. To compute the derivatives, we used the automatic-
differentiation library ADOL-C, see [Griewank et al. 1996]. In
most of our experiments, we set both material parameters (weight-
ing of the flexural and membrane energies) to the value 1, and, ad-
ditionally, we scaled the meshes to a diameter of 10. The latter
is important since the membrane and flexural energies scale dif-
ferently. An advantage of using the Discrete Shells, compared to
using elastic solids, is that we could directly use keyframes gener-

Figure 6: Physically based soft-body walking dinosaur that interpolates animator-specified keyframes.

ated with a surface modeler, thus avoiding the need to generate and
model keyframes with tet meshes.

To construct the reduced space, we collect vectors in a set S
and then use a SVD to obtain an orthonormal basis of the lin-
ear span of S. We store the basis in the matrix U . The set
S consists of two parts: one collects the vectors pointing to the
keyframes and the other contains 5-30 vibration modes of each of
the keyframes. The computation of the vibration modes follows
[Hildebrandt et al. 2012]. For this we set the keyframe to be the
rest state of the discrete shells’ potential energy and set up the Hes-
sian K and the mass matrix. Then, we compute the modes corre-
sponding to the lowest eigenfrequencies. These are solutions of the
generalized sparse eigenvalue problem

K ϕi = λi M ϕi.

In our experiments, this construction produced good results. We
did not observe the typical artifacts that one gets when working
with reduced spaces constructed from vibration modes around only
one state.

For small-size meshes, one can solve the full problem instead of us-
ing a reduced space. For example, we computed the motion of the
block, see Figure 3, with 450 vertices in the full 1350 dimensional
space. This demonstrates that we can work with larger spaces com-
pared to methods that solve the non-linear problem in a reduced
space, like [Barbič et al. 2009], and use 20-30 dimensional reduced
spaces.

6 Experiments

The attached video shows five examples of motions produced with
the proposed technique and Table 1 shows the size of the meshes
and the reduced spaces as well as run times. In this section, a wiggly
spline means a vector-valued spline that describes a motion and not
a one-dimensional spline.

The first example, the jumping block, is composed of three wiggly
splines that interpolate four keyframes. This divides the motion into
three parts: preparing the jump, jumping, and landing. During the
first and the last part, the base of the block is fixed to the ground
with equality constraints. Each of the three wiggly splines interpo-
lates two successive keyframes and satisfies boundary conditions,
which prescribe first derivatives (velocities) at all vertices of both
keyframes. The prescribed velocities at the first keyframe vanish,
and all vertices of the second keyframe, except those at the base,
have a the same upwards pointing velocity. At the second keyframe
the first and second wiggly spline meet. Both splines interpolate the
second keyframe and have the same velocities at this point. There-
fore, the compound curve is differentiable at this keyframe. As
a results, the motion anticipates the jump and the force required
to accelerate the block is distributed over the time interval. All
vertices of the third keyframe (including the base) have the same

velocity pointing into the ground. This models a collision with
ground. Since the base of the block is fixed in the third wiggly
spline, the compound curve is continuous but not differentiable at
the third keyframe. The effect is that there is no anticipation of the
landing, the block collides with the ground. Since the block cannot
bounce upwards, the collision causes a deformation of the block: a
wave is traversing upwards the block. We show two motions of the
jumping block with varying material stiffness (i.e., membrane and
flexural energy scaled up with the same parameter). For compari-
son, a motion generated with cubic B-splines that satisfy the same
interpolation and boundary conditions is shown. Whereas our mo-
tions show physical behavior, like waves that are traveling up and
down the block, the B-spline animation only varies the length of
the block. Some stills of the animation are shown in Fig. 3. We
want to note that since all four keyframes have the same geometry,
this animation is produced from one linearized spacetime-constraint
problem.

The second example, the running bug, shows a walking cycle that
is enriched with secondary motion. The primary motion interpo-
lates 12 keyframes that form a walking cycle, which we took from
the book [Ritchie et al. 2005]. The circular wiggly spline used here
does not require any boundary conditions and is fully determined
by the interpolation conditions. To get secondary motion that does
not need to interpolate the keyframes, we blended the walking cycle
motion with a second motion. For this second motion, we used two
keyframes and constrained a part of the models (gray area in Fig. 5)
that has been carefully crafted and should not be affected by sec-
ondary motion. Then we computed a reduced space and added sim-
ple vector fields to the keyframes (black arrows). We used the pro-
jections of these vector fields into the reduced space as derivatives
of the motion and forced the wiggly splines to interpolate them.

The third example, shows a piece of cloth that first hangs on a line,
then is blown into the air, and finally gets stuck on a cylinder. The
motion is assembled from three wiggly splines. The first and the
last wiggly spline satisfy equality constraints that fix parts of the
piece of cloth to the line respectively the cylinder. The keyframes
were generated by taking snapshots from three different forward
simulations: cloth hanging on a line, cloth blown in the air, and
cloth stuck on a cylinder. The benefit of our approach is that we can
combine these (otherwise unrelated) animations into one animation
in which the cloth is flying through the air and hits the cylinder.

The forth example, shows a walking dinosaur (Fig. 6). The mo-
tion is composed of five wiggly splines, one for each step. Each
step is modeled with three keyframes and the foot on the ground is
fixed with equality constraints. The boundary conditions for each
of the wiggly splines are finite differences of the keyframes. For
comparison we show results of the non-linear method of Barbič et
al. [2009]. To increase comparability, we used reduced spaces of
approximately the same size. A difference of the methods is that
their scheme does not interpolate, but approximates the keyframes.

Model #Verts #S Dim. #K tp tu

Dinosaur 28098 5 5×18 11 505 0.6

Bug (primary) 4358 1 200 12 89 1.9

Bug (secondary) 4358 1 30 1 9 0.03

Cloth 1861 3 92,143,186 12 74 0.85

Block 450 3 3×1350 6 83 0.54

Flour Sack 1762 1 124 7 20 0.25

Table 1: Performance measured on a desktop PC with an Intel
Xeon 3.33 GHz CPU (single thread). From left to right: number of
vertices, number of composite splines, dimension of reduced space,
number of keyframes, time in seconds for the complete preprocess
and for an update of the full animation.

The original keyframes, they used are tet meshes that enclose the
dinosaur; they used the triangle meshes only for rendering the ani-
mation. These tet meshes have 1.8 k vertices, hence are coarser then
the triangle meshes, which have 28 k vertices. For our animation,
we used the higher resolved triangle meshes. This explains why
we need 500 s to construct the reduced space for the whole anima-
tion, while they need only 25 s. After the preprocess, our method
needs 0.6 s to compute or update the animation, while their opti-
mization takes 15 min.

The last example is a live demo. It shows how we generate an
animation of a dancing flour sack. The motion is generated by a
circular wiggly spline that interpolates eight keyframes (made from
4 poses). The video shows how times of keyframes are adjusted
and material parameters are varied. This demonstrates the inter-
active response times that our technique offers. The live demo is
followed by demo of a wiggly spline editor. It illustrates the effect
of variations of the frequency, the damping coefficient, the interpo-
lation constraints, and the boundary conditions as well as a constant
(gravitational) force.

When creating keyframes with a surface modeler, it is preferable
to use a physical-based modeler that takes the Discrete Shells en-
ergy into account. When using keyframes that were generated with
other modelers (e.g. the bug and the dino models), we did an opti-
mization routine to lower the Discrete Shells energy of the shapes.
Explicitly, we minimize a weighted sum of the Discrete Shells en-
ergy and the least-squares distances of the vertices to their original
position.

7 Conclusion

We presented a technique that implements the spacetime constraints
paradigm for animations of deformable objects. It combines phys-
ical realism with control over the animation. The main novelty of
the approach is that it offers interactive response times, hence al-
lows for interactive adjustment of physical parameters or editing
of control parameters, like times of keyframes. This is achieved
by a model reduction of the underlying variational spacetime prob-
lem, which combines dimension reduction, a multipoint lineariza-
tion strategy, and decoupling of the reduced equations of motion.
After reduction, a number of one-dimensional variational problems
need to be solved. The solutions of these problems are known as
wiggly splines. A second main contribution of this paper is a fast
and robust numerical scheme for computing wiggly splines that is
based on an explicit representation of the wiggly splines. Without
this efficient numerical scheme, our method would hardly be inter-
active. Our current implementation does not use parallelization or
graphic cards. Still, the preprocess as well as the computation of
the wiggly splines are highly parallelizable.

7.1 Limitations and challenges

In its current form, our scheme requires that every keyframe pre-
scribes a pose for the whole object. We are working on an exten-
sion of our scheme that can handle keyframes that prescribe only
the positions of some parts of the object (and leave the rest free).
Furthermore, we want to extend the scheme such that motions that
do not interpolate, but only approximate the keyframes can be pro-
duced. A challenge for our scheme (and for schemes that follow
the spacetime constraint paradigm in general) is the integration of
contact and collision handling. Currently, only limited handling of
contact is possible. In our experiments, we prescribe incoming and
outgoing velocities at a keyframe and fix parts on the object in space
by equality constraints to model the contacts of the landing block,
the walking dino (whose feet hit the ground), and the cloth hitting
the cylinder. A interesting direction of future work is to develop
counterparts of the presented approach for other types of physi-
cal systems, like fluids or particles systems, and for parametrized
characters. Furthermore, we expect to see more application of the
wiggly splines. We see them as a powerful alternative to traditional
splines that offers oscillatory behavior.

Acknowledgements. We would like to thank Jernej Barbič and
Kiaran Ritchie for sharing their animations and keyframes and the
anonymous reviewers for their comments and suggestions. This
work was supported by the DFG Research Center MATHEON

”Mathematics for Key Technologies” in Berlin.

References

BARAFF, D., AND WITKIN, A. 1998. Large steps in cloth simula-
tion. In Proc. of ACM SIGGRAPH, 43–54.

BARBIČ, J., AND JAMES, D. L. 2005. Real-time subspace integra-
tion for St. Venant-Kirchhoff deformable models. ACM Trans.
Graph. 24, 3, 982–990.

BARBIČ, J., DA SILVA, M., AND POPOVIĆ, J. 2009. Deformable
object animation using reduced optimal control. ACM Trans.
Graph. 28, 53:1–53:9.

BARZEL, R. 1997. Faking dynamics of ropes and springs. IEEE
Comput. Graph. Appl. 17, 31–39.

BERGOU, M., MATHUR, S., WARDETZKY, M., AND GRINSPUN,
E. 2007. TRACKS: Toward Directable Thin Shells. ACM Trans.
Graph. 26, 3.

CHAI, J., AND HODGINS, J. K. 2007. Constraint-based motion op-
timization using a statistical dynamic model. ACM Trans. Graph.
26.

CHAO, I., PINKALL, U., SANAN, P., AND SCHRÖDER, P. 2010.
A simple geometric model for elastic deformations. ACM Trans.
Graph. 29, 38:1–38:6.

COHEN, M. F. 1992. Interactive spacetime control for animation.
Proc of ACM SIGGRAPH 26, 293–302.

FANG, A. C., AND POLLARD, N. S. 2003. Efficient synthesis of
physically valid human motion. ACM Trans. Graph. 22, 417–
426.

GAUSS, C. F. 1829. Über ein neues allgemeines Grundgesetz der
Mechanik. J. Reine Angew. Math. 4, 232–235.

GLEICHER, M. 1997. Motion editing with spacetime constraints.
In Proc. of Symp. on Interactive 3D Graphics, 139–148.

GRIEWANK, A., JUEDES, D., AND UTKE, J. 1996. Algorithm
755: ADOL-C: a package for the automatic differentiation of
algorithms written in C/C++. ACM Trans. Math. Softw. 22, 2,
131–167.

GRINSPUN, E., HIRANI, A. N., DESBRUN, M., AND SCHRÖDER,
P. 2003. Discrete shells. In ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, 62–67.

GUENTER, B. 2007. Efficient symbolic differentiation for graphics
applications. ACM Trans. Graph. 26.

HILDEBRANDT, K., SCHULZ, C., VON TYCOWICZ, C., AND

POLTHIER, K. 2011. Interactive surface modeling using modal
analysis. ACM Trans. Graph. 30, 119:1–119:11.

HILDEBRANDT, K., SCHULZ, C., VON TYCOWICZ, C., AND

POLTHIER, K. 2012. Modal shape analysis beyond Laplacian.
Computer Aided Geometric Design 29, 5, 204–218.

HUANG, J., SHI, X., LIU, X., ZHOU, K., WEI, L.-Y., TENG, S.-
H., BAO, H., GUO, B., AND SHUM, H.-Y. 2006. Subspace
gradient domain mesh deformation. ACM Trans. Graph. 25, 3,
1126–1134.

IDELSOHN, S. R., AND CARDONA, A. 1985. A reduction method
for nonlinear structural dynamic analysis. Comput. Meth. Appl.
Mech. Eng. 49, 3, 253 – 279.

KASS, M., AND ANDERSON, J. 2008. Animating oscillatory mo-
tion with overlap: wiggly splines. ACM Trans. Graph. 27, 28:1–
28:8.

KILIAN, M., MITRA, N. J., AND POTTMANN, H. 2007. Geomet-
ric modeling in shape space. ACM Trans. Graph. 26.

KIM, T., AND JAMES, D. L. 2009. Skipping steps in deformable
simulation with online model reduction. ACM Trans. Graph. 28,
123:1–123:9.

KRYSL, P., LALL, S., AND MARSDEN, J. E. 2001. Dimensional
model reduction in non-linear finite element dynamics of solids
and structures. Int. J. Numer. Meth. Eng. 51, 479–504.

MCNAMARA, A., TREUILLE, A., POPOVIĆ, Z., AND STAM, J.
2004. Fluid control using the adjoint method. ACM Trans.
Graph. 23, 449–456.

NICKELL, R. 1976. Nonlinear dynamics by mode superposition.
Comput. Meth. Appl. Mech. Eng. 7, 1, 107 – 129.

PENTLAND, A., AND WILLIAMS, J. 1989. Good vibrations:
modal dynamics for graphics and animation. Proc. of ACM SIG-
GRAPH 23, 207–214.

POPOVIĆ, J., SEITZ, S. M., AND ERDMANN, M. 2003. Mo-
tion sketching for control of rigid-body simulations. ACM Trans.
Graph. 22, 1034–1054.

RITCHIE, K., CALLERY, J., AND BIRI, K. 2005. The Art of Rig-
ging. CG Toolkit.

SAFONOVA, A., HODGINS, J. K., AND POLLARD, N. S.
2004. Synthesizing physically realistic human motion in low-
dimensional, behavior-specific spaces. ACM Trans. Graph. 23,
514–521.

SHABANA, A. 1997. Theory of Vibration II: Vibration of Discrete
and Continuous Systems, 2nd ed. Springer Verlag.

SULEJMANPAŠIĆ, A., AND POPOVIĆ, J. 2005. Adaptation of
performed ballistic motion. ACM Trans. Graph. 24, 165–179.

TERZOPOULOS, D., PLATT, J., BARR, A., AND FLEISCHER, K.
1987. Elastically deformable models. In Proc. of ACM SIG-
GRAPH, 205–214.

TREUILLE, A., MCNAMARA, A., POPOVIĆ, Z., AND STAM, J.
2003. Keyframe control of smoke simulations. ACM Trans.
Graph. 22, 716–723.

TREUILLE, A., LEWIS, A., AND POPOVIĆ, Z. 2006. Model re-
duction for real-time fluids. ACM Trans. Graph. 25, 826–834.

WICKE, M., STANTON, M., AND TREUILLE, A. 2009. Modular
bases for fluid dynamics. ACM Trans. Graph. 28, 39:1–39:8.

WIRTH, B., BAR, L., RUMPF, M., AND SAPIRO, G. 2009.
Geodesics in shape space via variational time discretization. In
Proc. of the 7th Intern. Conf. on Energy Minimization Methods
in Computer Vision and Pattern Recognition, 288–302.

WITKIN, A., AND KASS, M. 1988. Spacetime constraints. Proc.
of ACM SIGGRAPH 22, 159–168.

WOJTAN, C., MUCHA, P. J., AND TURK, G. 2006. Keyframe
control of complex particle systems using the adjoint method. In
Proc. of ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation, 15–23.

Appendix

In this appendix, we explicitly describe the basis functions spanning
the (real) spaces of solutions of the Euler–Lagrange equation (12).
We distinguish between the two main cases and we note four special

cases. For brevity, we set ηi =
√

|δ2i − λi|, which is the frequency

in the case of oscillation. In the first case, δ2i − λi < 0, the mesh
oscillates in the direction of the mode φi (the square root in (16) is
imaginary) and the basis functions are:

b1i (t) = e−δit cos (ηit) b2i (t) = e−δit sin (ηit)
b3i (t) = eδit cos (ηit) b4i (t) = eδit sin (ηit)

In the second case, δ2i − λi > 0, the mesh exponentially decays or
grows in the direction of φi and the basis functions are:

b1i (t) = e(−δi+ηi)t b2i (t) = e(−δi−ηi)t

b3i (t) = e(δi+ηi)t b4i (t) = e(δi−ηi)t

The special cases are

1. δi = 0 and λi > 0 :

b1i (t) = cos (ηit) b2i (t) = sin (ηit)
b3i (t) = t cos (ηit) b4i (t) = t sin (ηit)

2. δi = 0 and λi < 0 or ηi = 0 and λi > 0 :

b1i (t) = e−
√

|λi|t b2i (t) = e
√

|λi|t

b3i (t) = t e−
√

|λi|t b4i (t) = t e
√

|λi|t

3. δi 	= 0 and λi = 0 :

b1i (t) = 1 b2i (t) = t

b3i (t) =
e−2δit

4δ2
i

b4i (t) =
e2δit

4δ2
i

4. δi = λi = 0 : in this case ωi(t) is a B-spline

b1i (t) = 1 b2i (t) = t
b3i (t) = t2 b4i (t) = t3

