
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2010), pp. 1–10
M. Otaduy and Z. Popovic (Editors)

Interactive SPH Simulation and Rendering on the GPU

Prashant Goswami†, Philipp Schlegel‡, Barbara Solenthaler§ and Renato Pajarola¶

Visualization and MultiMedia Lab, Department of Informatics, University of Zurich

Abstract

In this paper we introduce a novel parallel and interactive SPH simulation and rendering method on the GPU

using CUDA which allows for high quality visualization. The crucial particle neighborhood search is based on

Z-indexing and parallel sorting which eliminates GPU memory overhead due to grid or hierarchical data struc-

tures. Furthermore, it overcomes limitations imposed by shading languages allowing it to be very flexible and

approaching the practical limits of modern graphics hardware. For visualizing the SPH simulation we introduce a

new rendering pipeline. In the first step, all surface particles are efficiently extracted from the SPH particle cloud

exploiting the simulation data. Subsequently, a partial and therefore fast distance field volume is rasterized from

the surface particles. In the last step, the distance field volume is directly rendered using state-of-the-art GPU

raycasting. This rendering pipeline allows for high quality visualization at very high frame rates.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—SPH Simulation, Raycasting, Surface Reconstruction

1. Introduction

Physically-based real-time simulations of fluids have a wide
range of applications in computer graphics like computer
games, medical simulators, and virtual reality applications.
Real-time constraints, however, required in the past low
fluid resolutions resulting in poor physical and visual re-
sults. The particle-based fluid solver Smoothed Particle Hy-

drodynamics (SPH), needs a large number of particles to
achieve smooth surfaces and to resolve fine-scale surface de-
tails. To accelerate the simulation, enabling real-time sim-
ulation with a higher particle resolution, we have imple-
mented the SPH fluid solver and particle rendering on the
GPU. Although executing the SPH physics on the GPU ac-
celerates the simulation compared to a CPU implementa-
tion [AIY∗04, HKK07b, ZSP08], previous solutions come
with a number of limitations. The main disadvantage is that
the common grid based approach overestimates the memory
consumption per grid cell a priori, thus excess use of GPU

† goswami@ifi.uzh.ch
‡ schlegel@ifi.uzh.ch
§ solenthaler@ifi.uzh.ch
¶ pajarola@acm.org

memory cannot be avoided. Furthermore, these approaches
are highly constrained in their choice and usage of problem
attributes with respect to functionalities allowed by shader
languages.

To cope with these issues, we present a novel CUDA
based parallel SPH implementation. The approach relies
only on basic CUDA structures like textures and arrays and
hence is very flexible and generic and can therefore accom-
modate any extra attributes. Spatial indexing and search is
built upon Z-indexing that eliminates use of buckets and al-
lows to determine the neighborhood set of a particle in con-
stant time without wasting space. All other computations,
which include sorting particles, are done on the GPU avoid-
ing any CPU-GPU transfer overhead. As a result, the ap-
proach produces more efficient results for a similar particle
count than state-of-the-art real-time SPH simulation meth-
ods. Also our solution can be used for offline SPH simulation
of larger particle counts than existing GPU based methods.
Alternately, the available free graphics memory can be used
for visualization purposes together with simulation.

Once the physical simulation is completed, the resulting
particle cloud needs to be visualized. However, visualizing
the particles comprises the explicit or implicit reconstruc-
tion of the surface of the particle cloud. Many of the pro-

submitted to Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2010)

2 Goswami & Schlegel & Solenthaler & Pajarola / SPH Simulation and Rendering

posed methods for explicit surface reconstruction include
expensive calculations and preprocessing and are therefore
not suitable for visualization at interactive frame rates. Fur-
thermore, many existing methods cannot be applied to a par-
ticle fluid which consists of multiple surfaces, splashes and
individual droplets. For that reason, one of the most popu-
lar methods to render particles are metaballs [Bli82] which,
however, suffers from overly bumpy surfaces.

In this paper we present a new, efficient rendering pipeline
that allows for high quality visualization at very high frame
rates. The rendering pipeline consists of several steps in-
cluding the interactive generation of a distance field vol-
ume as core step. First, the surface particles have to be ex-
tracted from the simulation particle cloud though. The cri-
terion whether a particle is a surface particle is its devia-
tion from the center of mass of the local neighborhood in
combination with the overall number of particles in the lo-
cal neighborhood. The optimal reuse of the simulation data
makes this selection very fast. After the surface particles are
extracted, a distance field volume is generated by rasterizing
the surface point cloud into a volume with scalar values. The
values are the minimal square distance to the nearest parti-
cle by rasterizing each particle at its position and updating
the neighborhood within a predefined radius for the mini-
mal square distance. Thereafter, the normals for lighting are
estimated by calculating the gradient based on central differ-
ences of the distance field volume. All this is done entirely in
parallel on the GPU using CUDA as well. Once the distance
field is completed, we render the distance field volume using
current state of the art GPU raycasting. The actual color of a
pixel depends upon the transfer function. The transfer func-
tion is a function of the distance to the nearest particle in
the distance field volume. This allows for rendering of soft
surfaces and easy visualization of bubbles inside the particle
cloud.

The contributions of our visualization are manifold. We
introduce a new rendering pipeline consisting of fast sur-
face particle extraction, partial distance field generation and
direct volume raycasting. This voxel based approach is not
only very fast but opens a whole range of opportunities like
transfer function application, easy refractions and Fresnel ef-
fects as shown in Figure 7. Constructing the distance field is
a fast way to extract a volume from the particle cloud and
has, to our knowledge, not been done for SPH visualization
so far. The advantage of a distance field is that a voxel is
only dependent on the nearest particle. Therefore, it is pos-
sible to construct the distance field only where really needed
to achieve a better performance.

The main contributions of our paper can be summarized
as follows. We present

1. a novel, memory-optimized SPH implementation using
Z-indexing, and

2. a rendering pipeline based on a minimal distance field
volume.

All steps of the simulation and visualization are fully ex-
ecuted on the GPU avoiding any CPU-GPU transfer over-
head. We show that with our system we are able to simulate
and render 255K particles at interactive frame rates. The per-
formance data of our implementation shows that our system
is faster than previous GPU implementations claiming the
same simulation quality and stability as ours. In [ZSP08] a
higher simulation performance is reached but only at the cost
of excessive memory consumption and by introducing sim-
plifications that can lead to stability problems [SP08]. Our
approach facilitates a much higher particle resolution, pro-
duces better simulation results and incorporates a fast ren-
dering pipeline with an inspiring image quality.

2. Related Work

Simulating fluid motion using SPH was introduced in astro-
physics [Mon92] and successfully used in computer graph-
ics to simulate a few thousand particles at interactive frame
rates [MCG03]. Performance improvements were obtained
by using adaptive particle sizes [APKG07], and by enforcing
incompressibility by applying a local prediction-correction
scheme to determine the particle pressures [SP09]. While
these implementations run completely on the CPU, the GPU
was used in addition in [AIY∗04] to speed-up the execu-
tion. In their work, the neighbor search is computed on the
CPU while the standard SPH physics computation is done
on the GPU. Similar to our work, [HKK07b,ZSP08] execute
all steps of the computation on the GPU. In these methods,
a grid-based structure is used to simplify the shader based
neighbor search. The drawback of grid structures, however,
is that they use too much memory as buckets are allocated
with predefined capacity. In a typical simulation, many of
these buckets are not used hence the occupied GPU memory
cannot be used for any other purpose. Another issue with
these approaches is that shader languages make an efficient
mapping of the problem difficult and are limited in their us-
age of problem attributes.

While [ZHWG08] present a method to efficiently con-
struct a real-time KD-Tree on the GPU, it is well known
that hierarchical data structures are not the best for SPH like
computations [HKK07a]. On the other hand, the sliced data
structure proposed by [HKK07a] might not only end up us-
ing as much memory as the grid volume itself in the worst
case, but it might make direct mapping of SPH onto CUDA
more complicated. Though the simulation of simple particle
interactions has been done on CUDA [NVI09] using a uni-
form grid structure with an upper bound of 8 neighboring
particles, there is no other work besides [HKK07b, ZSP08]
leveraging its huge computation power for SPH simulation.

Visualizing a particle cloud can be done in many different
ways but few of them are suitable for rendering at interac-
tive frame rates. A classical method is to extract a polygonal
mesh of an iso-surface using marching cubes [LC87]. The
particle cloud has to be transformed into a 3D scalar field

submitted to Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2010)

Goswami & Schlegel & Solenthaler & Pajarola / SPH Simulation and Rendering 3

that is suitable for marching cubes and marching cubes itself
has to be performed fast enough. There are GPU implemen-
tations of marching cubes like [DZTS07] to speed it up. The
MLS surface introduced in [Lev03] can be used for recon-
structing a surface without a polygonal mesh. The projection
procedure of MLS is quite expensive and not suitable for in-
teractive applications. Many improvements have been pro-
posed like point set surfaces [AK04] or algebraic point set
surfaces [GG07,GGG08], which greatly enhance the perfor-
mance and enable interactive applications. However, most
of them still presume particle normals to be pre-calculated.
Even though there are fast methods to calculate particle nor-
mals like the color field approach presented in [Mor00], the
resulting normals are of low quality in regions with a weak
particle density. Nevertheless, the biggest issue with point
set surfaces surfaces is that in many cases the particle cloud
does not form a smooth, manifold surface or no surface at
all and not all particles may lie on the surface. According
to our experiments, this causes bad results in these critical
areas. The point set surface operator often needs many time
consuming iterations or does not converge at all and even if
it converges, the reconstructed surface doesn’t form a plau-
sible liquid surface because of the wrong input points.

Other method for visualizing a particle cloud include
metaballs [Bli82]. The concept of metaballs is quite closely
related to the concept of SPH and therefore well suit-
able. In [ZSP08] an approach is presented for rendering a
SPH simulation using metaballs on the GPU. Kanamori et
al. [KSN08] showed how a large number of metaballs can
be rendered using raycasting. Unfortunately, metaballs can-
not hide their structure even if several 10k particles are used
for the simulation. Points as a rendering primitives have been
successfully used to render high quality surfaces and could
also be employed for rendering particle clouds, see [GP07].
In [IDYN08] point primitives are used for rendering of wa-
ter surfaces. Unfortunately, point-based methods also rely on
accurate particle normals and effects like the surface of a
transparent liquid with (multiple) refractions are difficult to
implement. In [YHK09] a voxel based method has been pre-
sented recently. They construct a density field in two stages.
First they construct a rough approximation which they re-
fine later on. The finished density field is then rendered us-
ing standard GPU raycasting. With their approach they can
render liquids with multiple refractions at interactive frame
rates.

3. Physical Simulation

The computationally most expensive part in SPH simulation
is the neighborhood search, performed on each particle for
every time step. Fixed grids have commonly been used to
allocate particles to buckets for fast spatial range queries.
However, the number of buckets grows too quickly with the
count of particles and extent of the simulation domain to
maintain this concept on the GPU with its limited memory.

We present a method which performs the entire SPH com-
putation on the GPU using CUDA, not only optimizing the
neighborhood search, both in terms of space and time over-
head, but also accelerating the expensive SPH computations.
The efficient neighborhood search also supports subsequent
surface particle extraction used in the visualization part.

3.1. Neighbor Search

Our approach introduces an efficient Z-indexing [Mor66]
in the context of range queries which enables obtaining a
neighborhood set for a particle without any space overhead.
The simulation domain is divided into a virtual indexing grid
in X ,Y,Z along each of the dimensions, and the grid loca-
tion of a particle is used to determine its bit-interleaved Z-
index, see also Figure 1. The Z-index can be computed very
efficiently using a table lookup approach. We can observe
that all particles lying within any power-of-two sized aligned
block have contiguous Z-indices.

X: 0 1 2 3 4 5 6 7

Y: 0

1

2

3

4

5

6

7

000 001 010 011 100 101 110 111

000

001

010

011

100

101

110

111

000000

001000

001010

000010

100000

101000

101010

100010

000001

001001

001011

000011

100001

101001

101011

100011

000100

001100

001110

000110

100100

101100

101110

100110

000101

001101

001111

000111

100101

101101

101111

100111

010000

011000

011010

010010

110000

111000

111010

110010

010001

011001

011011

010011

110001

111001

111011

110011

010100

011100

011110

010110

110100

111100

111110

110110

010101

011101

011111

010111

110101

111101

111111

110111

Figure 1: Z-indices of particles falling within an aligned

block of some power of 2 are contiguous, and can be con-

structed using bit-interleaving from grid locations.

For range queries given a radius R, the global support ra-
dius of the SPH simulation, we determine the nearest power-
of-two block size S in the indexing grid domain. The starting
Z-index s of any block of size S can easily be determined and
particles falling into that block form a sequence between s

and s+S3.

At the start of each time step, the Z-indices of all par-
ticles are calculated in parallel. Furthermore, the particles
are then sorted using parallel radix-sort in CUDA [LG07].
Hence for each block we just need to determine the index

submitted to Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2010)

4 Goswami & Schlegel & Solenthaler & Pajarola / SPH Simulation and Rendering

of its first particle and the number of particles it contains.
This is accomplished by launching as many CUDA threads
as there are number of particles wherein each particle de-
termines its block. Whereas the first particle in a block can
be determined using the atomicMin operation in CUDA, the
number of particles is found by incrementing a particle count
with atomicInc. Thus each particle updates both the starting
index and particle count of its block in the list B, which is
of size |B| = (Xmax

S)3 (assuming a simulation domain grid
dimension Xmax).

For the subsequent steps, we have the information of the
starting index of every block in B and the number of particles
in it. Populated blocks are split if holding more than some
N particles and compacted to a set of non-empty CUDA
blocks B′ in parallel also using atomicMin and atomicInc,
see also Figure 2. Instead of directly launching a pre-decided
number of threads, we launch only as many CUDA kernel
blocks |B′| as necessary. Each of these blocks has at most N

CUDA threads which is the maximum number of particles
per block. Each thread is responsible to copy particles itera-
tively from one of its 27 neighboring blocks in B, and includ-
ing itself, into the shared memory of its own CUDA block in
B′ as illustrated in Figure 3. Alternating with this copy pro-
cess, each CUDA thread computes the physical attributes for
one particle in its block in B′, see also the algorithm in Fig-
ure 4. Therefore, each particle effectively ends up interacting
with slightly more others than its actual SPH neighbors. But
this way we avoid duplicate copying and hence expensive
global memory accesses as well as duplicate particle inter-
actions since:

1. Each particle is copied into a block’s shared memory ex-
actly once.

2. Each copied particle in shared memory is used by all
other threads or particles in that block once.

0 1 2 3 4 5 6 7

B

B'

N threads

per block

Figure 2: For each non-empty block in B, a CUDA block is

generated in B′ and launched with N threads (N = 4 here).

Many blocks may contain fewer than N particles but still
run N threads. However, a thread with thread-id tid will not
be completely idle as long as the particle count in the current
block is equal to greater than tid, or tid < 27 in which case
the thread has to copy particles from neighboring blocks.

Thus as mentioned above in order to keep track of a block,
we just need two attributes and therefore the space required
to maintain all blocks is only 2∗B for |B| grid blocks in the
simulation domain. Note that blocks refer to their particles

only by index, using the starting particle and number of par-
ticles in a block, and that particles are maintained in a CUDA
attributes array. Moreover, as we show in Section 3.3 block
computations can be carried out within the memory used for
particle attributes and we do not need any extra memory al-
located for it.

S cuda threads

1 2 3

5

87

4

6

0

cuda block

0 1 2 3 4 5 6 7

shared memory

Figure 3: Each CUDA thread in a block computes attributes

for one particle and at the same time copies particles from a

neighboring block into its shared memory.

3.2. Density and Force Computation

The first step in SPH simulation is the density computation
of Equation 1 (see also [Mon92]) where m j refers to the
mass of particle of particle at position r j and W (r,h) is the
smoothing kernel with core radius h.

ρi = ∑
j

m jW (ri − r j,h) (1)

Since our simulation domain is divided into blocks of size
equal to or greater than the global support radius, the neigh-
bors to any particle in a block for density or force com-
putation, lie no farther than the particles in its immediate
neighbor blocks, see also Figure 3. Each of the N threads
in a CUDA kernel block copies one particle at a time from a
neighboring block to its shared memory and at the same time
computes physical attributes for one particle in the current
block. In each iteration, every particle in the current block
thus updates its density with all the particles copied into
shared memory which are at a distance less than or equal
to global support radius.

The computed densities from the last step are made avail-
able as CUDA textures for force computation. Each particle
repeats the same procedure as above for accessing neighbors
and their new densities, calculates the force using Equation 2
where ρ j refers to density of a particle, pi to pressure and
∇W (r,h) to the gradient of the smoothing kernel. Thereafter
it updates its own position and Z-index. In a CUDA kernel
block, each thread also computes attributes like inverse den-
sity once and stores them in the shared memory. This way
we optimize by reducing expensive operations like division,
since similar to density its inverse value is also used by all
the threads of block. Finally, each thread writes the com-
puted attributes for its particle to the global memory.

submitted to Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2010)

Goswami & Schlegel & Solenthaler & Pajarola / SPH Simulation and Rendering 5

f
pressure
i = −∑

j

m j

ρ j

(pi + p j)

2
∇W (r− r j,h) (2)

Since the updated density values are required for force
kernels, density and force computation cannot be clubbed
together in a single CUDA procedure and therefore, have
to be launched separately as different kernels. This necessi-
tates neighbor finding and copying into the shared memory
separately in each procedure. However, in our case neighbor
finding is inexpensive and does not hurt the overall perfor-
mance.

3.3. CUDA Computation

Figure 4 outlines the basic steps of our CUDA SPH algo-
rithm. All the global look-up tables for SPH kernel compu-
tations are generated beforehand and kept in constant mem-
ory. We avoid bit operations in Z-indexing (Figure 1) by
computing interleaved bitwise representations of all possi-
ble grid values along any x,y and z dimension and storing
them as CUDA texture. The Z-index value for a given posi-
tion (rx,ry,rz) on the grid can be obtained by bitwise OR of
these texture look-ups.

For the physics part, our implementation requires four
ping-pong CUDA arrays: first for radix-sort, second for po-
sition and Z-index, third for velocity and pressure, fourth
for density. Since it could be the case that global memory
accesses are not coalesced, we obtain the old attribute val-
ues from CUDA texture arrays (i.e. particle positions, den-
sities) while we write updated values into the ping-pong ar-
rays. These two sets of CUDA arrays reverse their role ev-
ery frame as readable textures and writable global memory.
Since force values are not required outside the force kernel,
we do not need any global memory for them. Also, we avoid
allocating separate memory for block computations by doing
it in the same CUDA array as we use for radix-sort. Once up-
dated particle positions are copied to the position array, the
radix-sort array is free and can be used for block compu-
tations. Hence, no extra space is in fact needed for blocks
maintenance.

4. Rendering

For visualizing the simulated particle data we introduce
a new, voxel-based rendering pipeline. Voxel based ap-
proaches have the advantage that no explicit surface recon-
struction is required and that estimating surface normals is
quite easy. Furthermore, there is no limitation to a single,
closed surface, e.g. bubbles in the liquid can easily be ren-
dered. The rendering pipeline consists of three parts: sur-
face particle extraction, distance field volume generation and
GPU raycasting. Our approach is very flexible in terms of
trading performance for quality and vice versa. If a higher
rendering quality is desired, a larger distance field can be

ComputePhysics()

{
Copy all particles from CPU to GPU memory
foreach frame {

/*—— Z-index and Sorting ——*/
Calculate Z-indices for particles
Sort them using radix-sort
Copy sorted particles in the ping pong array
Make CUDA texture of sorted particle positions

/*—— Block Generation ——*/
Create blocks from sorted particles by determining
foreach block (using positions from texture):

– Starting index or index of first particle in array
– Number of particles in it

B0 : Number of blocks identified
Split all blocks containing more than N particles each
B′ : Number of compacted blocks after splitting

/*—— Density Computation ——*/
Launch B′ CUDA kernels with N threads each
foreach CUDA block

Determine M: max particles in neighbors
N: particles in current block
Copy its own N particles into its shared memory
for i = 0 to M

– Copy a particle from neighboring blocks 0 to 26
(one per thread) to its own shared memory
– syncthreads()
– for j = 0 to N

Compute new densities from new copied
neighbors in shared memory

for j = 0 to N

– Write updated densities to global memory
Make CUDA texture of newly computed densities

/*—— Force Computation ——*/
Launch B′ CUDA kernels with N threads each
foreach CUDA block

Determine M: max particles in neighbors
N: particles in current block
Copy its own N particles into its shared memory
for i = 0 to M

– Copy a particle from neighboring blocks 0 to 26
(one per thread) to its own shared memory
– syncthreads()
– for j = 0 to N

Compute new forces using texture densities
and neighbors copied in shared memory

for j = 0 to N

– Handle collisions and boundary forces
– Update particle positions
– Write updated positions to global memory

}
}

Figure 4: Algorithm for CUDA SPH Physics computation

submitted to Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2010)

6 Goswami & Schlegel & Solenthaler & Pajarola / SPH Simulation and Rendering

used and the simple raycaster can be enhanced by features
known from raytracers like support for multiple refractions
and reflections. In fact, our raycaster does support multiple
refractions, Fresnel effects and environment mapping and
still achieves very good frame rates (see also Figure 7).

The core part of our rendering pipeline is the construc-
tion of the distance field volume. Our distance field approach
allows us to construct the distance field volume only par-
tially making it cheap compared to other methods like den-
sity fields. Since the cost is directly related to the number of
particles, we reduce them by extracting only the surface par-
ticles once the simulation step is done. Only these remaining
surface particles are used to generate the distance field. The
distance field volume is then directly rendered using raycast-
ing (Figure 6). Samples along the ray are classified by apply-
ing a transfer function, illuminated and composited together
resulting in the final color value.

4.1. Surface Particle Extraction

After the physical simulation step, the surface particles are
extracted. The particles that do not lie on the surface are
not required for the visualization and can thus be omitted.
It makes the visualization much faster because the genera-
tion cost of the distance field is closely related to the number
of particles. The extraction of the surface particles follows
the method presented in [ZSP08]. A particle i is considered
to be a surface particle if its distance to the center of mass
rCMi

of its neighborhood is larger than a certain threshold.
The center of mass can be determined by summing up the
positions r j in i’s neighborhood weighted by their mass m j.

rCMi
=

∑ j m jr j

∑ j m j
(3)

However, Equation 3 fails to detect surface particles in ar-
eas where only a few particles are present and that is why an
additional constraint is added. If for a particle i the number
of neighbors is below a user defined threshold, i is always
considered to be a surface particle. Because the neighbor-
hood has already to be calculated in the physics simulation,
this method for extracting surface particles is quite efficient.
It employs the same pattern as for the density and force com-
putation. However, the result depends heavily on the defined
thresholds and is not always perfect. This is not a problem
for our rendering method, but it could be an issue for other
methods which rely on the invariant that particles correctly
belong to the surface. Our surface particle extraction is im-
plemented entirely on the GPU using CUDA. For each par-
ticle and its neighbors, the number of particles in the neigh-
borhood and the center of mass are determined respectively.
If the particle belongs to the surface it is written to an output
array and omitted otherwise.

4.2. Distance Field Generation

A distance field is a scalar field where the values represent
the distance to the nearest surface, with a distinction between
signed and unsigned distance fields. Because the relation if a
particular spatial position lies inside or outside the fluid can-
not easily be derived, we use an unsigned distance field. We
note that constructing an entire distance field is prohibitively
expensive. However, since for a distance field a voxel value
is in fact only dependent on the nearest particles, we can af-
ford to only rasterize the distance field in the areas required
for rendering, i.e. the fluid surface.

Our distance field consists of a uniformly spaced grid. The
grid size has a major impact not only on performance but
also on image quality. A larger grid results in a better image
quality but requires much more time to construct. In fact,
the number of operations raises cubically with the grid di-
mension. But the grid size is not the only factor regarding
the time needed for constructing the distance field. Also the
number of particles heavily influences the required time. For
practical reasons we are typically using a 643 grid, as it has
shown to be the best compromise in most cases.

Several methods have been proposed for fast distance
fields construction on the GPU such as [SOM04, FL08].
Though, most of the proposed methods assume construction
of a distance field from a triangle mesh. In contrast, we con-
struct a distance field from the surface particle cloud and fur-
ther, we do not require a full-fledged distance field, which
allows for optimizations. The construction of the distance
field depends on the transfer function used during raycast-
ing in the final rendering step. Not all distance values are of
interest since values for which the transfer function maps to
zero opacity are not significant. Moreover, the actual trans-
fer function mapping of the distance values itself is not im-
portant as long as it is consistent. Consequently only those
distance field areas have to be rasterized where they map
to relevant transfer function values. For a typical Gaussian,
or otherwise narrow-band transfer function for displaying a
surface, the relevant transfer function values may only occur
in a small band rmin to rmax around the surface particles as
indicated in Figure 5.

In our approach the distance field volume is initialized
with a maximum value. An imaginary box with radius r

around each extracted surface particle is then rasterized into
the distance field. The radius r of this box depends on the
particle density and transfer function, and has to prevent any
preliminary clipping. Within a particle’s box, for each voxel
the distance d to the particle is calculated. If d lies in the in-
terval [rmin,rmax] the voxel value dv is updated according the
following equation:

dv = min
(

d,d
old
v

)

(4)

If d > rmax nothing is done and if d < rmin then dv is set to
the minimal distance. rmax = r

√
3, whereas rmin corresponds

to the maximal value for which the transfer function maps to

submitted to Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2010)

Goswami & Schlegel & Solenthaler & Pajarola / SPH Simulation and Rendering 7

band of relevant values

α

voxel value

rmin

rmax

Figure 5: The grey gradient represents the distance to the

two particles. For a given transfer function, only values in

the transition band have effectively to be rasterized for the

distance field.

the same as every value < rmin minus the radius used for gra-
dient estimation. Otherwise the gradients may be impaired
depending on the particular application.

The distance field generation is implemented entirely in
CUDA on the GPU. It is very challenging to optimize this
process for memory access patterns in CUDA. Hence we
rasterize only the minimal set of surface particles required
for rendering as described above keeping overall memory
access low. Rasterization takes place into a mapped pixel
buffer object, which can later be bound as an OpenGL 3D
texture. In principal, all data can stay in GPU memory and
no copying has to be performed. Unfortunately on few hard-
ware platforms this does not seem to be the case and we
suspect unoptimized or faulty graphics drivers.

4.3. GPU Raycasting

Eventually the distance field is rendered using GPU raycast-
ing. GPU raycasting [SSKE05] has become the preferred
way for direct volume rendering and can also be employed
for iso-surface rendering [HSS∗05]. Raycasting is based on
the light emission and absorption model [Max95] and the
volume rendering integral [Mor04] respectively. For each
pixel of the image plane a ray from the viewpoint is shot
through the volume and samples are taken along the ray, see
also Figure 6.

Each sample on a ray is mapped from the scalar voxel field
value to an (r,g,b,a) tuple according to the transfer function.
The necessary normal for lighting calculations can be ap-
proximated by the volume gradient using central differences
where ρ denotes the voxel value:

∇ρi, j,k =

∂ρ
∂x
∂ρ
∂y
∂ρ
∂z

≈

ρi+1, j,k −ρi−1, j,k

ρi, j+1,k −ρi, j−1,k

ρi, j,k+1 −ρi, j,k−1

 (5)

distance

field

image plane

eye

extracted surface

particles

splash

drops

bubble

Figure 6: Rays travelling through the rasterized distance

field have to be intersected with surface particles only.

The final color for each pixel is derived by compositing the
samples together along the ray.

Raycasting on the GPU has become very efficient with
the advent of GPU support for real loops. For each pixel a
shader is executed which basically consists of a loop where
samples along the ray are taken, mapped, shaded and com-
posited together. The rays are commonly initialized by ras-
terizing the front and the back of a bounding geometry into
two textures respectively. Its color is defined by the inter-
polated 3D coordinates of the bounding geometry. Thus the
direction vectors of rays can directly be extracted by taking
the difference between the front and back colors for each
pixel. The simplest bounding geometry is a cube enclosing
the distance field volume. Such a bounding box is easy and
fast to rasterize but contains the inherent disadvantage of po-
tentially covering large empty regions. This can be avoided
by rasterizing a more complex bounding geometry. For each
extracted surface particle a small bounding box can be ras-
terized resulting in a relatively tight overall bounding geom-
etry. We implement this approach efficiently by binding the
buffer containing the extracted surface particles as a vertex
buffer object and render the particles as simple points, and
a geometry shader generates the small bounding boxes on-
the-fly. The rasterization overhead is typically outweighed
by the gainings in raycasting.

Sampling along the rays using 3D texture lookups is the
core part of GPU raycasting. Since we use an unsigned dis-
tance field no distinction between inside/outside is needed.
The applied sampling frequency has a direct impact on the
performance as well as the image quality. 250 samples per
unit distance turned out to be sufficient for most transfer
functions. Sampling can be terminated once a pixel be-
comes opaque. We implemented GPU raycasting using reg-
ular GLSL shaders and a Phong like lighting model. We also
implemented multiple refractions and Fresnel effects based
on the gradient. Additionally we use environment mapping
and partly mix the environment to the color of the samples
defined by the transfer function.

submitted to Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2010)

8 Goswami & Schlegel & Solenthaler & Pajarola / SPH Simulation and Rendering

Figure 7: Rendering of a collapsing water cube with 16’128 particles (left), 75’200 particles (middle) and 129’024 particles

(right) respectively. The rendering rates are 126fps (left), 88fps (middle) and 70fps (right). The overall frame rates including

physical simulation, surface particle extraction and rendering are 52fps (left), 15fps (middle) and 11fps (right).

5. Results

We have implemented and tested both SPH simulation and
rendering using OpenGL, GLSL and CUDA 2.3 on two dif-
ferent platforms:

1. MAC OS X 10.5.8, 2 X 2.66 GHz Dual-Core Intel Xeon
and NVIDIA GeForce 8800 GT with 512 MB VRAM

2. Linux, 2.93 GHz Core i7 and NVIDIA GeForce GTX 280
with 1 GB VRAM

The virtual grid size for Z-indexing is kept at the same fine
resolution of 10243 throughout the experiments. Since we
need only 10 bits to represent a particle’s grid position along
any direction, all bits of a Z-index can be packed into a sin-
gle 32-bit integer. Throughout our experiments, all CUDA
blocks for SPH computation have a block dimension of 64
which we have verified to be a good size experimentally.
Also since the block size S is dependent on global support
radius R, it is important to choose parameters such that the
difference between the projection of global support radius
on grid and its closest power of 2 is minimal.

For testing the SPH simulation and rendering we have
used two different setups. The first scene consists of a water
block collapsing due to gravity as in Figure 7. The particle
count of the water block can be chosen initially and stays

constant during the simulation. This does not apply for the
number of extracted surface particles, which depends on the
actual surface and changes every frame. The second scene
consists of a water-jet filling a basin as in Figures 8 and 9.
There the number of particles changes during the simulation
but is limited by an upper bound. Scene 1 is more suitable
for performance measurements. We have measured the per-
formance for different particle counts as well as for the dif-
ferent stages of simulation and rendering as can be seen in
Tables 1 and 2. For rendering, we extended our raycaster to
include multiple refractions, Fresnel effects and environment
mapping as shown in Figures 7 and 8.

With our simulation and rendering solutions we are able
to achieve high frame rates as well as great image quality
at the same time. Effectively we can reach interactive frame
rates with a quarter million of particles on Platform 2 while
enjoying an excellent image quality.

As can be seen from Tables 1 and 2, our CUDA based SPH
implementation achieves excellent simulation and rendering
rates. Table 1 lists the statistics for Platform 1, which notably
on a slower GPU in comparison to [HKK07b] still demon-
strates improved simulation performance. While for the sim-
ulation part [HKK07b] report 17fps for 60K and 1fps for
1M particles on an NVIDIA 8800 GTX, we achieve 16fps

submitted to Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2010)

Goswami & Schlegel & Solenthaler & Pajarola / SPH Simulation and Rendering 9

Figure 8: Simulation of a water-jet with variable particle count up to 102’000. The average rendering rate is 75fps and 18fps

overall, including the physical simulation, surface particle extraction and rendering.

for 75K and 1.25fps for 1M particles on the much slower
NVIDIA 8800 GT.

On the faster 8800 GTX, [ZSP08] report faster times than
[HKK07b], although not only at the expense of extensive
memory consumption but also at a loss of quality and ac-
curacy since the density computation is combined with that
of the pressure force, which is then updated with a delay
of one frame. Though this combination about doubles the
performance, the simulation can become unstable [SP08]. If
we compare the simulation together with visualization we
are distinctly faster than [ZSP08]: they achieve 8fps for 53k
particles (8800 GTX) where we have 8fps for 75k particles
(8800 GT) on a GPU with 30% less memory bandwidth and
12.5% less CUDA cores but nevertheless at a much higher
image quality. In addition, considering the combined density
and pressure force computation as in [ZSP08], we estimate
similar physics simulation speed as [ZSP08], but even on our
slower GT hardware.

Along with the results in Table 2 we can show that our ap-
proach is applicable to a few hundred thousand particles on
current graphics hardware, matching or outperforming other
state-of-the-art methods at a reduced GPU memory over-
head.

Particle Physical Surface Particle Rendering Overall
Count Simulation Extraction
16’128 69fps 213fps 71fps 28fps
75’200 16fps 42fps 37fps 8fps

129’024 9fps 26fps 27fps 5fps
255’600 5fps 15fps 26fps 3fps

Table 1: Simulation and rendering performance results for

a collapsing water column on Platform 1.

In comparison to the fastest recent CPU based SPH sim-
ulation [SP09], our offline simulation for 250k particles is
about 5 times faster at 5.6 physics time steps per second on
an NVIDIA 8800 GT, against 1.176 on a 2.66 GHz, 4 cores
processor.

Particle Physical Surface Particle Rendering Overall
Count Simulation Extraction
16’128 123fps 413fps 126fps 52fps
75’200 26fps 74fps 88fps 15fps

129’024 17fps 51fps 70fps 11fps
255’600 10fps 28fps 49fps 6fps

Table 2: Simulation and rendering performance results for

a collapsing water column on Platform 2.

6. Conclusions

In this paper we have presented a novel GPU accelerated
parallel SPH simulation and rendering pipeline that achieves
interactive simulation and rendering rates for particle counts
of up to a quarter million on current consumer graphics hard-
ware. We have introduced a new particle neighbor search ap-
proach in CUDA based on efficient Z-indexing which is not
only computationally but also memory efficient. The spa-
tial indexing and search method is flexible and generic, and
as well can be used for fast surface particle extraction. Ad-
ditionally, we have introduced a new rendering pipeline on
the GPU based on the online construction of a distance field
volume from the extracted surface particles, which subse-
quently is rendered using state-of-the-art raycasting.

The main advantages of our parallel SPH simulation are
its low memory consumption compared to other grid based
approaches and that it outperforms prior state-of-the-art so-
lutions in terms of performance. Our SPH fluid rendering in-
troduces a new fast distance field generation method for par-
ticles combined with efficient particle raycasting that sup-
ports a wide range of volume rendering and raytracing op-
tions such as flexible transfer functions, illumination and
shading effects.

References

[AIY∗04] AMADA T., IMURA M., YASUMORO Y., MANABE Y.,
CHIHARA K.: Particle-based fluid simulation on GPU. In ACM

Workshop on General-Purpose Computing on Graphics Proces-

sors (2004).

submitted to Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2010)

10 Goswami & Schlegel & Solenthaler & Pajarola / SPH Simulation and Rendering

Figure 9: Offline rendered images using POVRAY of a simulation with 250’000 particles using our CUDA based SPH solution.

On average 5.6 physics time steps per second are reached on Platform 1.

[AK04] AMENTA N., KIL Y. J.: Defining point-set surfaces.
ACM Transactions on Graphics 23, 3 (2004), 264–270.

[APKG07] ADAMS B., PAULY M., KEISER R., GUIBAS L. J.:
Adaptively sampled particle fluids. ACM Transactions on Graph-

ics 26, 3 (July 2007), 48–54.

[Bli82] BLINN J. F.: A generalization of algebraic surface draw-
ing. In Proceedings ACM SIGGRAPH (1982), p. 273.

[DZTS07] DYKEN C., ZIEGLER G., THEOBALT C., SEIDEL H.-
P.: GPU marching cubes on shader model 3.0 and 4.0. Re-
search Report MPI-I-2007-4-006, Max-Planck-Institut für Infor-
matik, August 2007.

[FL08] FAGERJORD K. R., LOCHEHINA T.: GPGPU: Fast and

easy 3D Distance Field computation on GPU. Research report,
Narvik University College, 2008.

[GG07] GUENNEBAUD G., GROSS M.: Algebraic point set sur-
faces. ACM Transactions on Graphics 26, 3 (2007), 23.

[GGG08] GUENNEBAUD G., GERMANN M., GROSS M.: Dy-
namic sampling and rendering of algebraic point set surfaces.
Computer Graphics Forum 27, 2 (April 2008), 653–662.

[GP07] GROSS M. H., PFISTER H. (Eds.): Point-Based Graph-

ics. Series in Computer Graphics. Morgan Kaufmann Publishers,
2007.

[HKK07a] HARADA T., KOSHIZUKA S., KAWAGUCHI Y.:
Sliced data structure for particle-based simulations on GPUs. In
Proceedings 5th international conference on Computer graph-

ics and interactive techniques in Australia and Southeast Asia

(2007), pp. 55–62.

[HKK07b] HARADA T., KOSHIZUKA S., KAWAGUCHI Y.:
Smoothed particle hydrodynamics on GPUs. In Proceedings

Computer Graphics International (2007), pp. 63–70.

[HSS∗05] HADWIGER M., SIGG C., SCHARSACH H., BÜHLER

K., GROSS M. H.: Real-time ray-casting and advanced shading
of discrete isosurfaces. Computer Graphics Forum 24, 3 (2005),
303–312.

[IDYN08] IWASAKI K., DOBASHI Y., YOSHIMOTO F., NISHITA

T.: GPU-based rendering of point-sampled water surfaces. The

Visual Computer 24, 2 (2008), 77–84.

[KSN08] KANAMORI Y., SZEGO Z., NISHITA T.: GPU-based
fast ray casting for a large number of metaballs. Computer

Graphics Forum 27, 3 (2008), 351–360.

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes: A
high resolution 3D surface construction algorithm. In Proceed-

ings ACM SIGGRAPH (1987), pp. 163–169.

[Lev03] LEVIN D.: Mesh-independent surface interpolation. In
Geometric Modeling for Scientific Visualization (2003), pp. 37–
49.

[LG07] LE GRAND S.: Broad Phase Collision Detection with

CUDA. GPU Gems. Addison-Wesley, 2007.

[Max95] MAX N.: Optical models for direct volume rendering.
IEEE Transactions on Visualization and Computer Graphics 1, 2
(June 1995), 99–108.

[MCG03] MÜLLER M., CHARYPAR D., GROSS M.: Particle-
based fuid simulation for interactive applications. In Proceedings

Eurographics/ACM Symposium on Computer Animation (2003),
pp. 154–159.

[Mon92] MONAGHAN J.: Smoothed particle hydrodynamics.
Annu. Rev. Astron. Astrophys. 30 (1992), 543–574.

[Mor66] MORTON G.: A computer oriented geodetic data base
and a new technique in file sequencing. IBM, Ottawa, Canada,
1966.

[Mor00] MORRIS J. P.: Simulating surface tension with
smoothed particle hydrodynamics. International Journal of Nu-

merical Methods in Fluids 33 (2000), 333–353.

[Mor04] MORELAND K. D.: Fast High Accuracy Volume Ren-

dering. PhD thesis, The University of New Mexico, 2004.

[NVI09] NVIDIA: CUDA SDK Samples.
http://developer.download.nvidia.com/compute/cuda/sdk/website/

samples.html (2009).

[SOM04] SUD A., OTADUY M. A., MANOCHA D.: DiFi: Fast
3D distance field computation using graphics hardware. Com-

puter Graphics Forum 23, 3 (2004), 557–566.

[SP08] SOLENTHALER B., PAJAROLA R.: Density contrast SPH
interfaces. In Proceedings ACM SIGGRAPH/Eurographics Sym-

posium on Computer Animation (2008), pp. 211–218.

[SP09] SOLENTHALER B., PAJAROLA R.: Predictive-corrective
incompressible SPH. ACM Transactions on Graphics 28, 3
(2009), 40:1–6.

[SSKE05] STEGMAIER S., STRENGERT M., KLEIN T., ERTL T.:
A simple and flexible volume rendering framework for graphics-
hardware–based raycasting. In Proceedings International Work-

shop on Volume Graphics (2005), pp. 187–195.

[YHK09] YASUDA R., HARADA T., KAWAGUCHI Y.: Fast ren-
dering of particle-based fluid by utilizing simulation data. In Pro-

ceedings EUROGRAPHICS Short Papers (2009), pp. 61–64.

[ZHWG08] ZHOU K., HOU Q., WANG R., GUO B.: Real-Time

KD-Tree Construction on Graphics Hardware. Technical report,
Microsoft Research, 2008.

[ZSP08] ZHANG Y., SOLENTHALER B., PAJAROLA R.: Adap-
tive sampling and rendering of fluids on the GPU. In Proceedings

Eurographics/IEEE VGTC Symposium on Point-Based Graphics

(2008), pp. 137–146.

submitted to Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2010)

