Interactive Systems:

Bridging the Gaps Between Developers and Users

Jonathan Grudin, Aarhus University

oday, user needs are recognized to

I be important in designing interac-

tive computer systems, but as re-

cently as 1980, they received little empha-

sis. In most major systems development

companies, the basic organizational struc-

tures and development processes were

defined in an earlier era, when the dialogue

between computer systems and computer
users did not have to be considered.

This point is of more than historical
interest; it raises some basic questions:
Can these companies develop effective in-
teractive systems? What changes would
bring greater knowledge of users and their
work environments into systems develop-
ment? How long will it take to translate this
new understanding into reliable, effective
practice?

Until 15 years ago, most computer sys-
tem users were engineers and program-
mers. Developers were designing systems
for their own use or for other technically
proficient users. They felt no need to seek
user participation in design. Now, howev-
er, computer use has spread to workplaces
that are very unlike engineering laborato-
ries. Contact with system users is required,
but determining how direct or extensive
this contact need be and actually achieving
it have been surprisingly difficult.

Toward a user focus. Early proponents
of greater user involvement included both
human factors specialists and systems de-
velopers. An IBM usability research group
stressed “an early focus on users” in the

April 1991

Three development
contexts provide a
framework for
understanding
interactive software
development projects:
competitively bid,
commercial product,
and in-house/custom
development.

1970s, and an influential 1983 paper rec-
ommended that “typical users (e.g. bank
tellers, as opposed to a ‘group of expert’
supervisors, industrial engineers, pro-
grammers) ... become part of the design
team from the very outset when their per-
spectives can have the mostinfluence, rather
than using them to ‘review,’ ‘sign off on,’
‘agree’ to the design before it is coded.”
Perhaps coincidentally, this paper appeared
when popular books such as In Search of
Excellence were urging industry to cater to
the customer. A user focus was further

0018-9162/91/0400-0059$01.00 © 1991 IEEE

emphasized in User Centered System De-
sign,? an influential 1986 collection of re-
search papers. Also inthe 1970s and 1980s,
Europeans experimented with greater user
involvement in systems design. In particu-
lar, the Scandinavian “participatory de-
sign” approach, in which users collaborate
as full development team members, at-
tracted attention (see Suchman’s review,
“Designing with the User”).?

The challenge of designing better inter-
active systems has not gone unnoticed in
software engineering. Boehm observes that
the dominant waterfall development mod-
el “does not work well for many classes of
software, particularly interactive end user
applications.” His proposal, a “spiral
model” of software development, incorpo-
rates user involvement, prototyping, and
iterative design. Yourdon recently wrote,
“The first, and by far the most important,
player in the systems game is someone
known to systems analysts as a user.”

The spiral model is not yet widely used,
and as Boehm notes, it may be difficult to
apply in some contexts. Similarly, Your-
don’s observation has not been fully trans-
lated into practice. The software methods
that are employed widely today were de-
veloped before interactive end user appli-
cations became important. They do not
provide for an early and continual focus on
users — quite the contrary. Traditional
structured analysis relegates the task of
establishing a “man-machine interface” to
one subphase of system development.®
Jackson System Development “excludes

59



the whole area of human engineering in
such matters as dialog design ... Itexcludes
procedures for system acceptance, instal-
lation, and cutover.”” Because such meth-
ods do not specify user involvement in
design, project plans do not anticipate it,
and development organizations are not
structured to facilitate it. In fact, organiza-
tional structures and processes often work
against user participation.

Many development projects do not in-
clude directuser involvement. Such projects
indirectly acquire knowledge about system
users, finding ways to bridge the gap be-
tween developers and users. These indirect
methods sometimes work, but they may
not meet the rising expectations of computer
buyers and users.

Terminology. The authors above em-
ploy the term “user” when referring to the
people directly engaged with the system,
sometimes called “end users.” I follow
their lead in equating “user” with “end
user.” Terms such as “customer” and
“buyer” refer to other people involved in
system acquisition and use. Similarly,
“developers” refers to active members of a
development project, a relatively narrow
definition that excludes those in manage-
ment and support roles, whose contributions
are described separately. Of course, de-
velopers are also users of the tools and the
development system.

The term “functionality” describes the
high-level system or application functions
or operations that relate to the work the
software supports, while “interface” or “user
interface” describes the lower level opera-
tions and features that define the way users

interact with the system. From the users’
perspective, the functionality and the in-
terface are intertwined aspects of usability
and utility, but in a given project, the terms
can be defined at different times by differ-
ent people.

Identifying developers
and users

Figure | presents three paradigms for
software project development based on
when users and developers are identified.
The left edge of each horizontal bar repre-
sents the point when many of the project’s
developers oreventual users are known. Of
course, not every project matches one of
these time courses precisely. Also, it can
be difficult to pin down events to one
moment in time.

This framework best applies to projects
that begin with a decision to build, modify,
or replace a system or application and in-
clude a planned completion or delivery
date. The three development paradigms
describe a large set of projects that have
significantly influenced interactive systems
development.

In contract development or software ac-
quisition, the user organization is known
from the outset, but the development orga-
nization is identified after a contract is
awarded. The clearest cases involve com-
petitive bidding; for example, a govern-
ment agency prepares a design specifica-
tion for a new computer system and awards
the contract to the developer with the most
responsive bid. Actual practice caninvolve
ambiguity or complications. The user or-

Users identified

Competitively bid [

contract development

Product development

Users identified

Developers identified

Developers identified

Users identified

In-house and [

custom development

]

Developers identified

| |

Time ——» Project

start

System
delivered

Figure 1. Project time lines with points of user and developer identification.

60

ganization may have some idea of who will
get the contract; the user population may
change before the system is completed,
perhaps due to system personnel require-
ments; and contracts may be awarded in
stages. But the essence of contract devel-
opment is that the users are identified be-
fore the developers.

In product development, also called
commercial off-the-shelf or shrink-wrap
software development, the developers are
known from the outset, but the users often
remain unknown until the product is mar-
keted. Of course, all product development
begins with some idea of the intended
customers, whether existing or new. But
uncertainty about the eventual user popu-
lation is an important facet of product de-
velopment, as the unexpected fates of many
products, positive as well as negative, re-
mind us. The IBM PC and the Apple
Macintosh are successful systems whose
markets were not initially foreseen, whereas
the designers of countless failed products
anticipated user populations that did not
materialize.

Finally, in in-house development, also
called internal or information systems devel-
opment, both the users and the developers are
known at the project outset. (For example, a
bank’s computer services division develops
a system for the bank’s platform managers.)
The user population may evolve or be too
large or too dispersed to deal with individu-
ally, but the degree of initial identification is
very high. This also occurs in custom de-
velopment, where a specific external devel-
oper is engaged from the start to produce a
system for a specific customer.

Projects may not be pure expressions of
one paradigm. When a contract is negotiat-
ed without bidding, the developer has greater
early involvement and encounters fewer
restrictions on user access, a situation that
lies somewhere between competitively bid
contract development and in-house/custom
development. Another paradigm merge
occurs when a development company ac-
quires a contract for a single system with
the idea of subsequently developing it into
a product. Similarly, an in-house project
acquires some characteristics of product
development when the organization features
a large, diverse, and geographically dis-
persed user population (for example, when
a bank’s data processing department de-
velops a system for branches that vary in
size and operation).

It is not surprising that conditions for
user participation vary across these devel-
opment contexts. The timing gap between
user and developer involvement in a prod-

COMPUTER




uct or competitively bid contract develop-
ment project is an obstacle to collabora-
tion. Many aspects of development practice
have evolvedto “communicate across time”
— to bridge the gaps shown in Figure | —
as well as to bridge the physical distances
that often separate developers and users.
These “bridges” or mediators include con-
sultants, independent or third-party software
developers and vendors, domain experts
hired by development companies, internal
market research or development groups,
users and standards organizations, and
flexible or multistage contracts.

Such mediation works better in some
cases than in others. Keep in mind the
chorus of recommendations that interac-
tive systems developers establish and
maintain continual contact with users, and
the widening gulf between development
and user environments. Intuition has become
a less reliable guide to development, and
theeffectiveness of replacing it with indirect
contact between developers and users must
be continually reexamined.

Three development
contexts

Each of the paradigms or contexts in
Figure 1 has contributed to contemporary
practices of developing interactive sys-
tems while maintaining its own history,
literature, and even language. Contract
development has been central to the evo-
lution of software project management
methods; product development has focused
attention on computer interfaces to indi-
vidual users; and in-house development
has explored social and organizational as-
pects of system use. Many people work
exclusively in one paradigm or another.
Understanding the different perspectives
can eliminate some of the resulting con-
fusion and allow us to evaluate approaches
that are based on unfamiliar research and
development experiences.

Contract development and a focus on
software methods. From the beginning of
commercial computer development, gov-
ernment contracts have been a powerful
force in the industry. The United States
government has been and remains the larg-
est computer user.® Government-initiated
large-scale projects focused attention on
software development methods.

Major contributions to the stage model
of systems development were first described
at a 1956 Office of Naval Research Sym-
posium and a 1966 Air Force Exhibit.* The

April 1991

The reliance on
specifications
documents imposes a
“wall” between users
and developers.

waterfall model of the software life cycle
became the basis for most government
software-acquisition standards. This mod-
eldescribes an unvarying sequence of phases
in which feasibility is established, require-
ments are specified, and preliminary and
detailed designs are drawn up prior to
coding. Then, these phases are followed by
testing, integration, implementation (or
installation), operation, and maintenance.
This provides minimal opportunity for
prototype testing and iterative design, which
form the basis of ongoing user involve-
ment.

The waterfall model restricts prototyp-
ing to “build-it-twice” development and
restricts further iteration to feedback from
adjacent phases. These limitations were
recognized early by some software devel-
opment managers and have been a source
of criticism that has gathered force with the
spread of interactive systems. But, the
waterfall model is a natural fit to compet-
itive contract development, where the user
organization determines feasibility, pre-
pares arequirements specification, and then
issues one or more contracts for design,
development, administration, and mainte-
nance.

The waterfall model and its refinements
were suited in other ways to the large, often
government-contracted systems that dom-
inated early systems development. The
heavy emphasis on early design is more
successful for relatively predictable, non-
interactive systems, which have less un-
certainty about requirements than systems
that support substantial user interaction. In
addition, the documentation and the dis-
tinct phases facilitate creation of an audit
trail.

Strongly promoted by IBM, the water-
fall model became the foundation for many
structures and procedures found in most
systems development. However, for to-
day’s interactive systems developer, the
reliance on specifications documents im-
poses a “wall” between users and develop-

ers. This wall may not be impenetrable, but
it clearly impedes user-based iterative de-
sign. The other development contexts are
slowly freeing themselves from the prob-
lematic organizational structures and de-
velopment practices that originated in
contract development.

Product development and a focus on
the user interface. As hardware costs fell
and the market for computer systems
broadened during the 1960s and 1970s,
off-the-shelf product development grew in
importance, especially in the United States.
The discretionary nature of product ac-
quisition means that systems must appeal
to people, rather than meet written re-
quirements specifications. However,
product developers are buffered from end
users by two intermediaries: the market
and the customer.

With a large number of possible users, a
product can do very well if only a fraction
of the market finds it acceptable. In addi-
tion, especially in less mature markets, the
product generally has to appeal to the
customer — the person who makes the
purchasing decision, often a manager or
information systems specialist — not the
end user. These customers share with the
product development company the job of
assuring system acceptance. The customer
can hire systems administrators, provide
training, establish internal development
groups to tailor the product, supplement
the product with third-party software, or
even mandate use. Thus, just as the speci-
fication requirement in contract develop-
ment is a wall between developers and
users, the market and the customer in product
development represent a thick hedge. In-
formation about users’ needs gets through,
but it takes time and is muffled. Individual
voices are not heard.

The delay in responding to users’ needs
allowed product development companies
to focus on functionality, even if they met
the usability needs of only a fraction of the
potential users. Product development or-
ganizations could postpone attending to
the human-computer dialogue while slow-
ly finding indirect methods (consultants,
market research, user groups, shows, trade
press, etc.) to learn about major user needs.
Now, as usability expectations increase in
more mature software markets, product
development companies are entering the
phase in which users’ needs replace soft-
ware constraints as the dominant influence
on development. We will see that the in-
direct, mediating organizational structures
and processes that product developers

61



formed to bridge the gap to users often
inhibit direct user-developer contact.

Muffling individual users’ voices meant
that in the 1980s, as computer use spread
and usability became an issue, product
developers focused on the generic aspects
of the human-computer dialogue that are
shared by almost all users. Motor control,
perception, and lower cognitive processes
— the “look and feel” of software — were
explored by researchers and developers in
the field of human-computer interaction.
Since the hardware, the software environ-
ment, and product functionality are typi-
cally specified before a product develop-
ment team is formed, only these aspects of
the user interface design remain to be de-
fined.

A community focused on interface is-
sues coalesced in 1983 with the formation
of the ACM Special Interest Group on
Computer and Human Interaction (SIG-
CHI). Industry representation at the annual
CHI conferences and in the related jour-
nals (such as Human-Computer Interac-
tion, established in 1985) has come pre-
dominantly from product development
companies.

Developers could safely ignore social or
organizational concerns when the spread
of multitasking systems and personal com-
puting made single-user systems and ap-
plications very profitable. The design and
use of word-processor or spreadsheet pro-
grams, for example, are relatively inde-
pendent of the social context in which they
are used. The profits enabled American
product development companies to form
research groups, recruit heavily from lead-
ing universities, and influence the direc-
tion of academic research.

This field, human-computer interaction,
has had less involvement from those work-
ing in contract development, where usabil-
ity is taking even longer to come into focus.
In-house development also remains rela-
tively uninvolved, due in large part to dif-
fering interests: Internal development must
focus on the individual and group differ-
ences and social dynamics that product
developers can ignore; these are central to
the acceptance of a specific in-house or
custom-built system. In addition, the nar-
row “user interface” focus is less useful to
in-house developers, who are more likely
to consider functionality and its interface
together.

In-house and custom development and
afocus on user participation. In-house or
internal development, in which the devel-
opers and users work under the same cor-

62

There is growing
competitive pressure
for usability in the
marketplace and
greater focus on the
human-computer
dialogue in contracts.

porate roof, was the original development
context. The early developers were also
the users of their own systems. In the Unit-
ed States today, the other contexts have
achieved greater visibility through their
concentration of resources and association
with the major computer manufacturers.
But in-house development is a major gen-
erator of software (and in much of Europe,
itis the most visible). This paradigm affords
an obvious potential advantage to user
participation in design: The developers and
the eventual users are known when the
project is initiated.

Potential obstacles to success do exist.
Projects for multiuser systems are more
challenging than single-user applications.
Also, along with any benefits received by
adopting the specifications-based water-
fall model, internal developers created the
documentation “wall” between themselves
and users. This wall has less purpose in this
environment, and it comes down immedi-
ately when the system is completed.

Many system design challenges for end
users were first experienced in in-house
development, where success required that
a predefined set of users accept the system.
Successful contract development requires
conformance to a written specification;
successful product development does not
depend on appealing to a specific individ-
ual or group. But an internal development
project must be accepted by a set group of
users.

By the late 1970s or early 1980s, user
needs replaced software constraints as the
dominant concern within internal systems
development.® It is not surprising that this
occurred as soon as interactive systems
began replacing batch processing. (A sim-
ilar transition is under way, a decade later,
in product development. Its arrival has

been delayed by the market and the cus-
tomer, which stand between off-the-shelf
product developers and their users.) De-
sign approaches based on active user in-
volvement gathered strength, notably in
British and Scandinavian projects. Many
were collaborations between researcher-
developers and specific user organizations;
they shared the in-house development
characteristic of identifying developers and
prospective users at the outset.

Cultural and political factors, including
a strong trade union movement, are often
credited for the Scandinavian interest in
collaborative design. While these factors
surely contribute, the dominance of the in-
house and custom development paradigm
in these countries presented precisely the
right motivation and conditions for such
experiments. Unlike the situation in the
United States, research and development
resources were not absorbed by large com-
petitively bid government contracts or by
product development, contexts in which
user needs have been slower to come into
focus and in which conditions forengaging
users in development are less favorable.

Today, usability is becoming more im-
portant to product and contract develop-
ment organizations. These organizations
are still to some extent buffered from the
end users by the size of the product market
and by the reliance on contract documents.
However, resistance to unfriendly systems
is growing. There is growing competitive
pressure for usability in the marketplace,
particularly in mature application domains,
and greater focus on the human-computer
dialogue in contracts. The success of the
Macintosh in the mid-to-late 1980s was a
turning point — a good interface drove
hardware and software sales.

Product and contract developers who
foresaw the importance of usability en-
countered obstacles toinvolving users. Few
successful cases of user participation in
development have been reported. For this
reason, some researchers and developers
are turning to Europeans who have a track
record in such collaborations. For exam-
ple, at the 1988 ACM-sponsored Confer-
ence on Computer Supported Cooperative
Work held in Portland, Oregon, six of the
30 presentations were based on the Scandi-
navian approach. (Recent books and arti-
cles on this approach are listed in “Further
reading.”) Thus, just as contract and prod-
uct development have influenced interac-
tive systems development, work originat-
ing in in-house development contributes
techniques and approaches.

Product and contract developers can gain

COMPUTER




insight from the European approaches, but
must bear in mind that in-house develop-
ment is a different context. Today, product
development projects in particular have
acquired the same motivation to involve
users that in-house development projects
had 10 years ago. However, they experi-
ence different conditions within which to
engage users. Roadblocks to a strong focus
on users include the timing of involvement
shown in Figure 1, as well as the organiza-
tional structures and processes that were
established before the importance of the
interaction dialogue. Adapting to the new
situation may ultimately require substan-
tial organizational change. We can guide
that change, and work effectively in the
meantime, by identifying each paradigm’s
unique advantages and disadvantages for
realizing successful user participation in
design and by understanding the alterna-
tives to direct user involvement and their
limitations.

Factors influencing
interactive systems
development

Before exploring the opportunities and
obstacles that each paradigm offers, let’s
consider several constraints on develop-
ment projects that influence the conditions
for user contact. One constraint, the time
for involving development partners, was
used to identify the three development par-
adigms: a single user organization for which
there are many potential developers (con-
tract development), a single development
group with many potential users (product
development), and a single development
group with a single user organization (in-
house development). Other factors include
the size, charter, and structure of the devel-
opment organization; the nature of the user
population; the degree of design uncertain-
ty; the presence or absence of other part-
ners or contributors to the project; the na-
ture of the commitments and agreements
among the parties involved; societal con-
ditions that the partners may be unable to
control; and changes encountered over the
life of the project.

The size of the development company
or organization. This article generally
focuses on projects in large organizations.
A start-up or a small product development
company may have fewer resources, less
division of labor, fewer installed customer
base concerns, and may succeed with far
fewer sales than a larger company. These

April 1991

Product development
projects in particular
have acquired the same
motivation to involve
users that in-house
development projects
had 10 years ago.

factors permit greater flexibility, more lat-
itude for (inexpensive) innovation, and,
particularly significant for user involve-
ment, the possibility of focusing on a few
potential customers (perhaps even finding
a customer willing to cosponsor develop-
ment). In these ways, a small product de-
velopment company takes on some
characteristics of in-house or custom de-
velopment.

At the other end of the size continuum,
very large companies also present mixed
appearances. A large telecommunications
company, for example, blends substantial
internal development with opportunities
for product development provided by its
large, identifiable market. Similarly, in a
highly divisionalized company, one divi-
sion may “sell” its product to another or
even bid for an internal contract to deliver
a system.

The charter of the company or organi-
zation. Organizational charters vary, and a
company may work in more than one par-
adigm. For example, large product-devel-
opment companies pursue government
contracts for systems that can be built on or
around their products. A separate Federal
Systems Division may manage these
projects, but influences often cross divi-
sional boundaries. Paradigms also blur when
a product development company that con-
siders entry into a new market experiments
by custom building a system for one cus-
tomer to obtain domain expertise. The
Scandinavian UTOPIA project (an acro-
nym in the Scandinavian languages for
“training, technology, and products from
the quality of work perspective”) did the
reverse experiment: Methods from the in-
house/custom development paradigm were
adapted to a product development effort.’

An organizational charter shifts gradually
when a company develops a system under
contract to one user organization, then de-
cides to market it more broadly. Finally,
several influential Scandinavian projects
have involved development teams drawn
from university research laboratories, small
groups with a mixed agenda of research
and development interests.

Organizational structures and proce-
dures. Companies that do similar work do
not necessarily divide responsibilities and
meet obligations in the same way. While
certain job descriptions and work proce-
dures are widespread in the industry, com-
panies of similar size and charter organize,
distribute authority, and approach system
development differently. Marketing divi-
sons drive some companies, while engi-
neering drives others. Some are hierarchi-
cal bureaucracies, others are strongly
divisionalized into semiautonomous sub-
units, and some have experimented with
almost ad hoc approaches. An in-house
project in a large, divisionalized company
may be managed through a contract com-
peted for by internal development groups.
Even where high-level approaches to orga-
nizational structure and process are simi-
lar, small variations in structure and pro-
cess can greatly affect individual
development projects. Within a single
company, such variation results from in-
ternal reorganizations.

The nature of the system user popula-
tion. The generic term “user” masks a
tremendous diversity of computer users
and contexts of use. This diversity will
continue to increase — even if progress in
hardware development stopped today, cur-
rent technology would take decades to re-
alize its potential. The number and hetero-
geneity of users is often a particular concern
to in-house development. More generally,
some users are captive audiences, who use
systems acquired for them by others, while
others are discretionary users. At the ex-
treme end of discretionary use, those who
pay for their own systems become involved
through their personal economic stake. An
Apple developer told me, “We don’t have
to ask our users for advice; they volunteer
it.”

The physical separation of developers
from some or all users is often critical, as
are barriers of class, culture, or language.
The sensitivity of the users” work is anoth-
er factor: A group designing a system for
the CIA may have to accept a limit to their
ability to “know the users.”

63



The degree of design novelty or uncer-
tainty. The uncertainty that arises in de-
signing for a new market or in utilizing a
new medium not only affects the motiva-
tion for working with users but also affects
the conditions for doing so. Experienced
users are more easily found in a mature
application area, and mediators — con-
sultants, trade publications, empirical re-
search — are more reliable sources of in-
formation about users or technical
alternatives.

Mediators: additional partners in the
development project. Although I have
primarily considered users and develop-
ers, projects generally involve other par-
ties. These parties include other groups
within the development and user organi-
zations, as well as external consultants,
subcontractors, value-added resellers, in-
dependent software vendors, third-party
developers, product user organizations,
trade unions, and standards organizations.
Inanimate mediators include published
guidelines, trade publications, and trade
shows.

The roles of such mediators are some-
times central, sometimes incidental; they
include informing developers of users’
needs and informing users of technological
opportunities. A critical uncertainty in in-
teractive systems development is the ade-
quacy of these channels for indirect collab-
oration in development.

Commitments and agreements among
the groups involved. Commitments vary
in formality and scope, ranging from infor-
mal understandings between individuals
within one organization to binding con-
tracts among companies. They also vary in
content, focus, and flexibility. The content
can be restricted to technical aspects of the
system or can include such commitments
to the users as organizational impact state-
ments, installation, or training. Similarly,
an agreement can be restricted to the sys-
tem to be developed or can specify aspects
of the development process, including
techniques to facilitate user involvement,
such as prototyping or scheduled reviews.
Contracts vary in flexibility — even a for-
mal contract might include a level-of-
effort provision or specify times at which
its terms can be reconsidered, permitting
design changes based on user involve-
ment.*1°

Societal conditions and change over

time. Projects encounter dynamic influ-
ences that the development partners cannot

64

directly control." These influences include
aspects of the labor market, economic
considerations of supply and competition,
available technology, formal standards, and
legal restrictions on technology use or
safeguard requirements. Finally, the factors
described in this section are subject to
change within the life of a project; itis a
rare project that enjoys static conditions
from start to finish.

Focusing on users:
Opportunities,
obstacles, and
mediators

Each project has particular advantages
and disadvantages for involving users and
specific strategies to cope with the gaps
between developers and prospective users.
These are explored here at the more gen-
eral level of the three development para-
digms.

Contract development. User involve-
ment faces the most formidable obstacles
in this context, especially with fixed-cost
competitively bid contracts.

Opportunities. Starting with a well-
defined user population is an advantage in
obtaining user involvement. Of course, the
users themselves do not write the specifica-
tions, but the opportunity exists to enlist
their cooperation. (However, when specifi-
cations address only system function, such
user involvement stops short of contribut-
ing to the user interface.) Also, contract
development projects are often relatively
large and slow moving (in contrast with an
application upgrade, for example), which
could provide substantial resources and time
for iterative development with user in-
volvement. High-level management is
committed to the success of the project,
which is an important factor in system ac-
ceptance. Finally, within constraints de-
scribed below, the user organization has the
power of authoring the contract and thus
can obtain greater user involvement either
directly or indirectly (that is, contract pro-
visions may require prototyping or periodic
review; interface features, usability targets,
training requirements, or an organizational
impact statement may be specified).

Obstacles. Consider a composite case
described by Gundry'': The user organiza-
tion, a large government agency, prepares
a requirements specification. This is fol-

lowed by a request for proposals (RFP) to
develop the system design. A contract is
awarded. This work results in a design
specification that is the basis for an RFP
for system development, which leads to the
development contract award.

In the initial requirements specification
executed within the large bureaucracy, user
involvement is not assured. If a task anal-
ysis is done at all, it may rely on a few
interviews of users or supervisors. Although
interaction can occur before the RFP is
issued, communication between designers
in the bidding organizations and anyone in
the user organization is then sharply cur-
tailed and monitored to prevent a bidder
from acquiring an unfair advantage.

When the contract for design is award-
ed, the designers work to the specification;
by avoiding contact with the user organiza-
tion, they avoid influencing the subsequent
bidding on the more lucrative development
contract. Since the follow-on development
contract can be awarded to another compa-
ny, the designers do not necessarily know
who the developers will be. And, when the
same company does obtain both the design
and development contracts, as often hap-
pens, the development team is usually dis-
tinct from the design team, which has moved
on to other design proposals. In addition,
companies minimize risk by preparing joint
bids, which spreads development across
two Or more organizations.

Contact with users continues to be con-
trolled during development. This is for
security or geographic separation reasons
or to avoid influencing later bidding (on
system administration, for example, or on
system maintenance, which is often the
most lucrative contract of all).

The designers and developers have an-
other reason to avoid contact with users.
Contract compliance is based on conform-
ance to the written specifications. Any de-
viation from the specification is to be
avoided: Programmers have been known
to code nonfunctioning procedures de-
scribed in miswritten specifications toavoid
jeopardizing compliance. The development
organization might prefer to commit to a
relatively comprehensible and static docu-
mentrather than try to satisfy unpredictable
users. Usability requirements in contracts
for interactive systems can be as vague as
“the system shall present information suc-
cinctly” or “the system shall be easy to
operate efficiently.”"!

Some contracts require that prototypes
be demonstrated to users yet preclude or
discourage changes based on feedback from
the demonstrations. This only serves to

COMPUTER




alert users to the inadequacies of the sys-
tem they will receive. When changes are
possible, the developers may not learn much
beyond “the system is unusable.”

Mediators. Figure 2 shows several groups
that serve as intermediaries, educating sys-
tem users about contract developers and
vice versa. Within a user organization, sys-
tem analysts or engineers specify require-
ments, and contract specialists or monitors
handle negotiations. Similar professionals
in the development organizations write
proposals and negotiate contracts, with
developers not assigned to a project until
contract award.

External consultants help the user orga-
nization by playing a surrogate developer
role during requirements definition, pro-
viding the contracting organization with
insight into feasible technologies. Although
consultants are more likely to deal with
managers or specialists, they may actively
participate with users. Contractors work-
ing on one phase of the project are in a
sense consulting on subsequent phases; for
example, those who write the design spec-
ification provide guidance to the as-yet-
unidentified developers. Similarly, devel-
opers who are barred from direct access to
real users employ consultants familiar with
the target environment to serve as surro-
gate users or hire domain experts away
from a large customer to help staff the
project.

User organizations address eventual
shortcomings in the system through modi-
fications by in-house or third-party devel-

opers. More broadly, contractors commu-
nicate their needs by working collectively
with vendors to develop formal standards,
adherence to which may be mandated in
subsequent contracts. (A large enough cus-
tomer organization, such as the United
States Department of Defense, can by itself
promote standards development and com-
pliance.) Gundry'' proposes that the con-
tracting organization supplement the re-
quirements specification with a “concepts
of use” document: an extended description
of the users, their work practices, and their
working organization. That this static view
of the users’ environment is perceived by
Gundry as a major step forward is a dra-
matic statement of how little contact be-
tween developers and users currently exists.

Government contracts impose further
challenges to developing more usable sys-
tems. Cost-plus contracts reduce the in-
centive to reuse successful components; in
fact, using a similar interface can suggest
that the government is being charged twice
for the same work. In addition, contractors
who are also engaged in product develop-
ment may be reluctant to place their best
work in the public domain by including it
in a government-owned system.

On the positive side, concurrent engi-
neering and computer-aided acquisition and
logistic support are new approaches that
reduce development time by using central-
ized databases and multidisciplinary teams
to reduce the emphasis on phased develop-
ment. While designed for other purposes,
the increased communication and coordi-
nation could promote continuous customer

and user participation. Also, as noted above,
the contract itself may be used to open up
communication. Contractors may be re-
quired to describe planned human factors
activities. Where legal barriers do not in-
tervene, user involvement can be speci-
fied. Even a formal contract may address
the uncertainties of dialogue design by
providing points for renegotiation of con-
tract terms based on prototype testing.’
Experiments have been tried with design-
to-cost contracts, reward-for-effort con-
tracts, and “buy-downs” or “fly-offs™:
multistage contracts with a “competitive
conceptual development phase” in which
several developers build and test proto-
types before the final development con-
tract competition.

Product development. This context
provides a strong incentive to increase us-
ability, but user involvement is a challenge
when the potential users are numerous yet
faceless.

Opportunities. Because development
costs are amortized over many sales, prod-
uct development organizations typically
have considerable resources and many po-
tential users that could be drawn upon to
improve usability. Competition in the mar-
ketplace provides a motive for doing s0 —
the attention given to “look and feel” re-
flects the growing awareness of the impor-
tance of usability. Product development
companies are major employers of human
factors engineers, technical writers, and
other user interface specialists. Continual

User
organization

Management

Systems

Consultants
and third-party

/ developers \

N N
7 Standards
'\ organizations .

engineers,
monitors

In-house

developers

Development
organizations

Contract
specialists,

Support N
groups

65



product upgrades or new releases free some
developers from “single-cycle” develop-
ment. They evaluate existing practice and
feed it into the next version’s design, and
they may save good ideas that arrive too
late for one project for use on another one.
Finally, while these companies can suc-
cumb to inertia or conservative forces, they
were founded on change and at some level
recognize that survival requires openness
to new ideas and approaches.

Obstacles. First, the development team
members must commit to involving users.
Developers who are isolated in large engi-
neering laboratories may not empathize or
sympathize with users who are inexperi-
enced, nontechnical, or have different val-
ues and work styles. Even identifying the
development team is difficult: Functional-
ity is defined by management or marketing
before the project team is formed, project
membership changes over time, and the
developers of different user interface com-
ponents — such as software dialogue, doc-
umentation, and training — often commu-
nicate very little. In many companies,
placing all aspects of a product’s usability
under the same management would con-
flict with deeply rooted aspects of organi-
zational structure and process.

Also, the difficulty of identifying future
users is a major obstacle to involving them.
Strategic marketing decisions are careful-
ly guarded by upper management to prevent
the competition from using the information.
Development teams often do not know
which applications will be marketed as

packages. In addition, before reaching an
end user, many products are extensively
modified or tailored by third-party devel-
opers or by the customer’s in-house devel-
opers. These developers are users of the
product, too.

Another obstacle is accessing potential
users once they are identified. They work
in different organizations, perhaps even
different countries. Also, product devel-
opment companies tend to shield developers
from the time-consuming task of responding
to individual user requests.

Figure 3identifies several groups charged
with knowing the needs of users: product
management, marketing, and customer
support in the development organization,
and information systems specialists in the
user organization. These go-betweens or
mediators often discourage direct devel-
oper-user contact, either overtly or by partly
alleviating the need for it.

These mediators are often ineffective
conduits for usability information because
the task is difficult and the usability con-
cerns are new. It is particularly difficult in
this context to obtain adequate time from
potential users, who have little at stake.
When contact does occur, product devel-
opers risk overgeneralizing from a few
contacts, and they must contend with
conflicting views of different users. (Care-
ful selection of test sites happens primarily
for major products and relatively late in
development.) Finally, information that is
obtained must be worked into the develop-
ment process, which is fraught with com-
peting interests and trade-offs. The pro-

cess was designed to maximize the predict-
ability and reliability of developing nonin-
teractive systems; it does not work as well
for developing the less predictable inter-
active systems.

Another obstacle is the pressure to pro-
duce new releases of existing products —
the relatively short development cycle fa-
vors small enhancements over substantial
innovation and does not provide enough
time for users and developers to educate
one another. Caution is also encouraged by
the new fear of incurring an interface
copyright infringement suit. Emphasis on
rapid development engenders attempts to
routinize the process through the early ap-
proval of specifications and schedules,
which limits flexibility.

One approach that product developers
pioneered to overcome their separation from
users is providing customized or tailored
systems, which is a useful step but not a
panacea. Another approach has been to
rely on mediators.

Mediators. As shown in Figure 3 and
described above, sales and marketing de-
partments, management, customer support,
and other groups within large product-
development companies mediate between
users and developers. Other developers
form part of a corporate memory that for
usability issues can operate more effec-
tively than formal records. External con-
sultants serve as surrogate users, providing
developers with detailed product critiques
and information on market direction. Con-
sulting, market research, and competitive

Product
development
organization

Developers

Support
groups

Product - \a
development .
Customer

Consultants
and third-party

/ developers \

support

User
organizations

>

Systems
analysts,

In-house
developers

Figure 3. Product development: Only the development group is fully specified at the outset.

66

COMPUTER




analysis, although undertaken to support
the marketing of existing products, can
also guide developers. Value-added resell-
ers, third-party developers and indepen-
dent software vendors, who adapt or match
products to specific markets, stand between
development and user organizations. Cus-
tomer organizations engage consultants as
surrogate developers to advise them about
purchasing orinstallation. Buyers alsorely
on in-house developers to supplement or
tailor products.

Most customers exert little direct influ-
ence on product development companies
individually, but user groups representing
many customers have more influence.
However, this communication channel is
less effective when meetings are attended
by customers or buyers rather than users
and by marketers rather than developers.

In-house development. This develop-
ment context appears to offer good pros-
pects for collaboration among users and
developers, but the challenges are substan-
tial. One challenge is that internal develop-
ment is often modeled on contract devel-
opment, adopting methods that work against
user involvement.

Opportunities. Collaboration is logical-
ly easier when users and developers are
known from the beginning (see Figure 4).
An early relationship can lead to parallel
work on the functionality and the interface
and is needed for prototyping and iterative
design. User involvement can also help
with system acceptance because partici-
pating users acquire an interest in the out-
come; they may accept system features
that they otherwise would have resisted.®
In in-house development, communication
between developers and users can be en-
hanced by the shared corporate culture (but
see below). Also, the transitions across
development phases are smoother; in par-
ticular, the developers are accessible dur-
ing product introduction and use. A further
advantage is that these projects have strong
management support, an important element
in obtaining system acceptance. Finally,
they often enjoy a less pressured, more
flexible development schedule — shifting
focus from the product to the development
process occurs most naturally in this envi-
ronment.

Obstacles. In-house projects are gener-
ally systems or major applications designed
to support organizations, which are more
difficult than the single-user applications

April 1991

User/developer
organization

Management

Systems
analysts,

developers

specialists,
@

Alternative
development
organization

Outside
developers /

Figure 4. In-house and custom development: Developer and user populations are

known at the outset.

that dominate software product develop-
ment. In addition, identifying future users
is easier than ensuring collaboration. Large
companies may impose geographic as well
as organizational separations. Conflicts of
interest exist within organizations: Man-
agement or information systems staff
themselves may be the principal beneficia-
ry of a project; if their interests conflict
with the end users’, user alienation is more
likely than cooperation. Conflicts also oc-
curamong different worker groups — Ehn®
describes jurisdictional disputes among
typesetters, journalists, and administrative
workers in one project. Friction between
developers and users can result from dif-
fering codes of values, conduct, and dress,
as well as disparities in age and salary.®
Selecting representative users is a chal-
lenge. Not all potential users have the time
or inclination to participate fully, manage-
ment may wish to participate or to control
participant selection, and workers with
greater knowledge of technology may be
more interested but less representative.
Potential participants’ political roles in the
organization must be balanced against their
roles as system users. In addition, some
techniques must be used very carefully in
internal development — rapid prototyping
can unduly raise users’ expectations of the
system’s capabilities or state of comple-
tion. (This problem also appears as the
rapid-prototyping technique is introduced
in contract development; in product devel-
opment, where disappointing one potential
user is not as serious, the risk is that devel-
opment management will be misled.)
Fewer resources may be available to in-

house development projects than to con-
tract or product-development projects.
Building a single system to be used for
many years provides less opportunity for
evaluation, feedback, and catching missed
opportunities the next time around than is
found in product development. Prototyp-
ing and iterative design are not infinitely
flexible, so the in-house development team
must plan very carefully, considering, for
example, the likely organizational impact.
Such planning is beneficial, but given the
inherent uncertainty of interactive systems
development, the need to anticipate cor-
rectly is not an advantage.

Mediators. The spread of interactive
systems in the early 1980s immediately
confronted in-house developers with the
needs of end users. The mediators who
enabled the other developers to adjust slowly
while delaying their entry into this phase
are less available to in-house developers.
Only upper management or human resources
departments typically intervene between
internal developers and users.

Friedman® explores five possible ap-
proaches to bridging the gap between users
and developers in internal development:
direct user participation in development
based on traditional methods, end user
computing (effectively, trying to eliminate
developers by providing systems that can
be tailored or customized by users), de-
centralizing the information center (to bring
developers into closer contact with users),
changing the systems development ap-
proach (through a process focus, notably
an emphasis on prototyping and iterative

67



design), and relying more heavily on infor-
mation systems specialists with both do-
main expertise and development skills.
These are not mutually exclusive: The
Scandinavian experiments have simulta-
neously employed direct userinvolvement,
prototyping, and the education of developers
about the domain area. In fact, these ap-
proaches are all forms of user participation,
if participation is extended to include the
education that precedes a particular project.

everal convergent forces push in-

teractive systems development to-

ward greater concern for users’
needs. First, reaching untapped markets
requires learning more about them. Com-
puter versatility enhances the likelihood of
finding a way to support a group of people
whose concerns are properly understood.
Second, users who can choose their tools
will be influenced by usability in exercis-
ing this discretion. The focus on “look and
feel,” while reflecting aesthetic as well as
utility judgments, arises from the avail-
ability of functionally equivalent product
alternatives in mature markets. Third, un-
derstanding user needs is more central to
software support of groups.

Until recently, mainframe systems fo-
cused on supporting organizations while
most micro- and minicomputer applications
focused on supporting individuals. Now,
networking and multitasking systems make
group-level support feasible. “Groupware”
product developers face issues that were
previously encountered mainly inin-house
development as the focus of application
development shifts from individual simi-
larities (with the goal of appealing to a
large group of similar people) to individual
differences and social dynamics (to attract
all members of groups, independent of
background, role, or preferences). Here,
application developers are at a disadvan-
tage relative to system developers, since
there is less corporate commitment to en-
suring the acceptance of a groupware prod-
uct than a large system. Finally, the cost of
computation was a major obstacle to pro-
viding more usable systems. As processing
time, memory, and maintenance costs con-
tinue to fall, more computational power is
devoted to handling user interaction. To-
day, the price to obtain a better interface is
not much more than the cost of building or
buying one.

In summary, computer vendors’ inter-
ests, computer users’ interests, and eco-
nomic factors work in concert to encour-
age the development of more usable

68

software. Further progress will result from
sharing experiences across the three devel-
opment contexts. Conferences such as the
1988 Computer Supported Cooperative
Work Conference and the 1990 Participa-
tory Design Conference in Seattle bring
together Scandinavian and American re-
searchers and developers from in-house
and product development.

Boehm* outlines recommendations for
contract development drawn from in-house
development experience. Techniques de-
veloped in one context can be modified and
applied in others. The process focus and
low-cost techniques that developed natural-
ly in in-house development environments
are being applied more broadly. Prototyp-
ing techniques first used in product devel-
opment are being adapted to in-house
projects. Further contact occurs as in-house
projects come to rely more heavily on off-
the-shelf software product components and
as contracts specify more standard platform
products.

The prevalence of specific development
contexts may shift with societal changes.
For example, the current integration of the
European community will promote com-
petitively bid contract development to en-
sure equal access to large projects. Europe-
ans may profit from American experience
and find ways to introduce approaches that
achieve higher levels of user involvement.

Such communication requires effort.
Many interests are not shared; there are
specialized terminologies, journals, trade
publications, conferences, and shows. Even
word meanings vary across development
contexts; for example, “implementation” is
a synonym for “development” or “coding”
to product developers, while it means “in-
stallation” or “adoption” elsewhere. “End
user” or “‘operator” to an in-house develop-
er is just “user” in a product environment.

Procedures take on different appear-
ances: To a contract or in-house developer,
a “task analysis™ generally addresses repet-
itive activity carried out in an organization-
al context by an “operator” hired to perform
it, whereas to a product developer, a “task
analysis” is more often a cognitive analysis
of individual behavior in a less structured,
discretionary use situation.

Techniques are viewed differently: Inter-
nal developers (and many in the research
community) link software “evaluation” to
testing that occurs late in development, when
only minor design changes are possible; in
contrast, product design is more likely to
begin with the evaluation of existing prod-
ucts or versions, so “evaluation” has a less
negative ring to product developers.

Finally, confusion may result from fail-
ing to differentiate among the contexts, as
illustrated by the debate over the routiniza-
tion of software development. In large
product development organizations, strong
competition and the pressure for frequent
releases create a strong desire to control the
development process and torender itimmune
to the loss of any individual — conditions
leading to “deskilling,” where individual
developers are given less responsibility and
become more expendable. However, a ten-
dency toward deskilling is not reported in
internal development, where competitive
pressures are lower and developers increase
their value to their organization by acquir-
ing domain knowledge.®

References to “the computer industry”
disguise the multiplicity of computer indus-
tries that have evolved. They share a need to
examine current practices and search for
new ones to meet the challenge of developing
usable, useful interactive software. Only by
recognizing the range of existing conditions
and their effects can we adapt the hard-
earned lessons of one development context
and apply them in others. The potential
benefits are new techniques, processes, and
organizational structures for development. Bl

Acknowledgments

Morten Kyng and the Systemarbejde Group at
Aarhus University provided the time and inspi-
ration for developing this paper. Kaj Grgnbazk,
Susanne Bgdker, and Liam Bannon participated
in its iterative design. Andrew Friedman’s book
was further inspiration and an excellent resource
on internal development. Bob Glushko, Henry
Lahore, Jane Mosier, Scott Overmyer, Steve
Poltrock, and Craig Will contributed to my un-
derstanding of contract development, although
their full understanding is not reflected. Eliza-
beth Dykstra and Tom Erickson provided useful
suggestions. Students at Aarhus University
commented helpfully on earlier drafts. Also,
anonymous Computer teviews were invaluable.

References

1. 1.D. Gould and C.H. Lewis, “Designing for
Usability — Key Principles and What De-
signers Think,” Proc. CHI83 Human Fac-
tors Computing Systems, 1983, pp. 50-53.

2. D.A. Norman and S.W. Draper, User Cen-
tered System Design: New Perspectives in
Human-Computer Interaction, Lawrence
Erlbaum Associates, Hillsdale, N.J., 1986.

3. L. Suchman, “Designing with the User,”

ACM Trans. Office Information Systems, Vol.
6, 1988, pp. 173-183.

COMPUTER




4. B. Boehm, “A Spiral Model of Software
Development and Enhancement,” Com-
puter, Vol. 21, No. 5, May 1988, pp. 61-72.

5. E. Yourdon, Modern Structured Analysis,
Yourdon Press, New York, 1989.

6. T. De Marco, Structured Analysis and Sys-
tem Specification, Yourdon Press, New York,
1978.

7. M. Jackson, System Development, Prentice
Hall, Englewood Cliffs, N.J., 1983.

8. A.L. Friedman, Computer Systems Devel-
opment: History, Organization and Imple-
mentation, John Wiley & Sons, Chichester,
UK, 1989.

9. P.Ehn, Work-Oriented Design of Computer
Artifacts, Arbetslivcentrum, Stockholm,
1988.

10. K. Grgnbzk et al., “Cooperative System
Design: Shifting from Product to Process
Focus,” to be published in Participatory
Design, D. Schuler and A. Namioka, eds.,
Lawrence Erlbaum Associates, Hillsdale,
N.J., 1991

11. A.J. Gundry, “Humans, Computers, and
Contracts,” People and Computers IV,D.M.
Jones and R. Winder, eds., Cambridge Uni-
versity Press, Cambridge, United Kingdom,
1988.

Further reading

In-house development: the new inter-
est in Scandinavian approaches. As not-
ed in the text and described in the cited
work of Friedman and Suchman, interest is
growing in the Scandinavian participatory
design approach based on the in-house and
custom development paradigm. Examples
of recent or forthcoming publications:

Bjerknes, G., P. Ehn, and M. Kyng, eds.,
Computers and Democracy — A Scandina-
vian Challenge, Gower, Aldershot, United
Kingdom, 1987.

Badker, S., Through the Interface: A Hu-
man Activity Approach to User Interface
Design, Lawrence Erlbaum Associates,
Hilisdale, N.J., 1991.

Docherty, P., et al., eds., System Design for
Human Development and Productivity:
Participation and Beyond, North-Holland,
Amsterdam, 1987.

Ehn, P., Work-Oriented Design of Computer
Artifacts, Lawrence Erlbaum Associates,
Hillsdale, N.J., 1989.

April 1991

Floyd, C.,etal., “Out of Scandinavia: Alter-
native Approaches to Software Design and
System Development,” Human-Computer
Interaction, Vol. 4, No. 4, 1989, pp. 253-
349.

Greenbaum, J. and M. Kyng, eds., Design at
Work: Cooperative Design of Computer
Systems, Lawrence Erlbaum Associates,
Hillsdale, N.J., 1991.

Howard, R., “Utopia: Where Workers Craft
New Technology,” Technology Review, April
1985, pp. 43-49.

Schuler, D. and A. Namioka, eds., Partici-
patory Design, Lawrence Erlbaum Associ-
ates, Hillsdale, N.J., to be published in 1991.

Product development: the focus on
usability in the late 1980s. Among the many
works published, articles explicitly con-
sidering the product development environ-
ment include:

Gould, J.D., “How to Design Usable Sys-
tems,” M. Helander, ed., Handbook of Hu-
man-Computer Interaction, North-Holland,
Amsterdam, 1988.

Grudin, J., “Systematic Sources of Subopti-
mal Interface Design in Large Product De-
velopment Organizations,” to be published
in Human-Computer Interaction,Vol. 6, No.
2,1991.

Grudin, J., and S. Poltrock, “User Interface
Design in Large Corporations: Coordina-
tion and Communication Across Disci-
plines,” Proc. CHI89 Human Factors
Computing Systems, Apr. 1989.

Poltrock, S.E., “Innovation in User Inter-
face Development: Obstacles and Opportu-
nities,” Proc. CHI89 Human Factors Com-
puting Systems, Apr. 1989.

Contract development: starting to
address usability concerns. In addition to
the Gundry paper cited in the text there are
the following sources:

Overmyer, S.P., “The Impact of DoD-Std-
2167A on Iterative Design Methodologies:
Help or Hinder?” ACM SIGSoft Software
Engineering Notes, Vol. 15, No. 5, pp. 50-
59, 1990.

Smith, S.L., “User-System Interface Design
in System Acquisition,” Tech. Report ESD-
TR-84-158 Air Force Electronic Systems
Division, Hanscom Air Force Base, Mass.,
1984.

Jonathan Grudin is a visiting associate profes-
sor of computer science at Aarhus University,
Denmark. His interests include systems devel-
opment in large organizations and the effects of
systems on organizations.

He received a BA in mathematics/physics
from Reed College, an MS in mathematics from
Purdue University, and a PhD in psychology
from University of California at San Diego.

After spending several years as a systems
developer at Wang Laboratories, he worked in
the MCC Human Interface Laboratory, studying
the development process at MCC shareholder
companies. Past publications range from Byre to
the Communications of the ACM.

The author can be reached at Aarhus Univer-
sity, Computer Science Department, Ny Munk-
egade, Building 540, 8000 Aarhus C, Denmark;
e-mail jgrudin@daimi.aau.dk.

Moving?

Name (Please Print)

PLEASE NOTIFY
US 4 WEEKS IN

New Address

State/Country Zip

ADVANCE City
ATTACH

MAIL TO: LABEL

IEEE Service Center HERE .

445 Hoes Lane

Piscataway, NJ 08854

« This notice of address change will apply to all
|EEE publications to which you subscribe.

* List new address above.

If you have a question about your subscription,
place label here and clip this form to your letter.

69



