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Abstract

We show SUGILITE, an intelligent task au-

tomation agent that can learn new tasks and

relevant associated concepts interactively from

the user’s natural language instructions and

demonstrations, using the graphical user inter-

faces (GUIs) of third-party mobile apps. This

system provides several interesting features:

(1) it allows users to teach new task proce-

dures and concepts through verbal instructions

together with demonstration of the steps of a

script using GUIs; (2) it supports users in clari-

fying their intents for demonstrated actions us-

ing GUI-grounded verbal instructions; (3) it in-

fers parameters of tasks and their possible val-

ues in utterances using the hierarchical struc-

tures of the underlying app GUIs; and (4) it

generalizes taught concepts to different con-

texts and task domains. We describe the archi-

tecture of the SUGILITE system, explain the

design and implementation of its key features,

and show a prototype in the form of a conver-

sational assistant on Android.

1 Introduction

Interactive task learning (ITL) is an emerging

research topic that focuses on enabling task

automation agents to learn new tasks and their

corresponding relevant concepts through natural

interaction with human users (Laird et al., 2017).

This topic is also known as end user development

(EUD) for task automation (Ko et al., 2011; Myers

et al., 2017). Work in this domain includes both

physical agents (e.g., robots) that learn tasks that

might involve sensing and manipulating objects

in the real world (Chai et al., 2018; Argall et al.,

2009), as well as software agents that learn how to

perform tasks through software interfaces (Azaria

et al., 2016; Allen et al., 2007; Labutov et al.,

2018; Leshed et al., 2008). This paper focuses on

the latter category.

A particularly useful application of ITL is for

conversational virtual assistants (e.g., Apple Siri,

Google Assistant, Amazon Alexa). These systems

have been widely adopted by end users to perform

tasks in a variety of domains through natural lan-

guage conversation. However, a key limitation

of these systems is that their task fulfillment and

language understanding capabilities are limited to

a small set of pre-programmed tasks (Li et al.,

2018b; Labutov et al., 2018). This limited support

is not adequate for the diverse “long-tail” of user

needs and preferences (Li et al., 2017a). Although

some software agents provide APIs to enable third-

party developers to develop new “skills” for them,

this requires significant programming expertise and

relevant APIs, and therefore is not usable by the

vast majority of end users.

Natural language instructions play a key role in

some ITL systems for virtual assistants, because

this modality represents an natural way for humans

to teach new tasks (often to other humans), and

has a low learning barrier compared to existing tex-

tual or visual programming languages for task au-

tomation. Some prior systems (Azaria et al., 2016;

Labutov et al., 2018; Le et al., 2013; Srivastava

et al., 2017, 2018) relied solely natural language

instruction, while others (Allen et al., 2007; Kirk

and Laird, 2019; Sereshkeh et al., 2020) also used

demonstrations of direct manipulations to supple-

ment the natural language instructions. We sur-

veyed the prior work, and identified the following

five key design challenges:

1. Usability: The system should be usable for

users without significant programming exper-

tise. It should be easy and intuitive to use with

a low learning barrier. This requires careful

design of the dialog flow to best match the

user’s natural model of task instruction.

2. Applicability: The system should handle a
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Figure 1: An example dialog structure while SUGILITE learns a new task that contains a conditional and new con-

cepts. The numbers indicate the sequence of the utterances. The screenshot on the right shows the conversational

interface during these steps.

wide range of common and long-tail tasks

across different domains. Many existing sys-

tems can only work with pre-specified task

domains (Labutov et al., 2018; Azaria et al.,

2016; Gulwani and Marron, 2014), or services

that provide open API access to their function-

alities (Campagna et al., 2017; Le et al., 2013).

This limits the applicability of those systems

to a smaller subset of tasks.

The same problem also applies to the language

understanding capability of the system. It

should be able to understand, ground, and act

upon instructions in different task domains

(e.g., different phone apps) without requiring

pre-built parsers for each domain.

3. Generalizability: The system should learn

generalized procedures and concepts to handle

new task contexts that go beyond the example

context used for instruction. This includes

inferring parameters of tasks, allowing the use

of different parameter values, and adapting

learned concepts to new task domains.

4. Flexibility: The system should be sufficiently

expressive to allow users to specify flexible

rules, conditions, and other control structures

that reflect their intentions.

5. Robustness: The system should be resilient

to minor changes in target applications, and

be able to recover from errors caused by pre-

viously unseen or unexpected situations, pos-

sibly with some help from the user.

To address these challenges, we present the

prototype of a new task automation agent named

SUGILITE
12. This prototype integrates and im-

plements the results from several of our prior re-

search works (Li et al., 2017a, 2018a, 2017b; Li

and Riva, 2018; Li et al., 2019), and we are cur-

rent preparing for a field deployment study with

this prototype. The implementation of our system

is also open-sourced on GitHub3. The high-level

approach used in SUGILITE is to combine conver-

sational natural language instructions with demon-

strations on mobile app GUIs, and to use each of

the two modalities to disambiguate, ground, and

supplement the user’s inputs from the other modal-

ity through mixed-initiative interactions.

2 System Overview

This section explains how SUGILITE learns new

tasks and concepts from the multi-modal interactive

instructions from the users.

The user starts with speaking a command. The

command can describe either an action (e.g.,

“check the weather”) or an automation rule with

a condition (e.g., “If it is hot, order a cup of

Iced Cappuccino”). Suppose that the agent has

no prior knowledge in any of the involved task

1Sugilite is a gemstone, and here stands for Smartphone
Users Generating Intelligent Likeable Interfaces Through
Examples.

2A demo video is available at https://www.youtube.com/
watch?v=tdHEk-GeaqE

3https://github.com/tobyli/Sugilite development

https://www.youtube.com/watch?v=tdHEk-GeaqE
https://www.youtube.com/watch?v=tdHEk-GeaqE
https://github.com/tobyli/Sugilite_development
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Figure 2: The screenshots of SUGILITE’s demonstration mechanism and its multi-modal mixed-initiative intent

clarification process for the demonstrated actions.

domains, then it will recursively resolve the un-

known concepts and procedures used in the com-

mand. Although it does not know these con-

cepts, it can recognize the structure of the com-

mand (e.g., conditional), and parse each part

of the command into the corresponding typed

resolve functions, as shown in Figure 1. SUG-

ILITE uses a grammar-based executable semantic

parsing architecture (Liang, 2016); therefore its

conversation flow operates on the recursive ex-

ecution of the resolve functions. Since the

resolve functions are typed, the agent can gen-

erate prompts based on their types (e.g., “How do I

tell whether. . . ” for resolveBool and “How do

I find out the value for. . . ” for resolveValue).

When the SUGILITE agent reaches the

resolve function for a value query or a proce-

dure, it asks the users if they can demonstrate

them. The users can then demonstrate how they

would normally look up the value, or perform the

procedure manually with existing mobile apps

on the phone by direct manipulation (Figure 2a).

For any ambiguous demonstrated action, the user

verbally explains the intent behind the action

through multi-turn conversations with the help

from an interaction proxy overlay that guides the

user to focus on providing more effective input (see

Figure 2bcde, more details in Section 3.2). When

the user demonstrates a value query (e.g., finding

out the value of the temperature), SUGILITE

highlights the GUI elements showing values with

the compatible types (see Figure 3) to assist the

user in finding the appropriate GUI element during

the demonstration.

All user-instructed value concepts, Boolean con-

cepts, and procedures automatically get generalized

by SUGILITE. The procedures are parameterized

so that they can be reused with different parameter

values in the future. For example, for Utterance

8 in Figure 1, the user does not need to demon-

strate again since the system can invoke the newly-

learned order Starbucks function with a dif-

ferent parameter value (details in Section 3.3). The

learned concepts and value queries are also gener-

alized so that the system recognizes the different

definitions of concepts like “hot” and value queries

like “temperature” in different contexts (details in

Section 3.4).

3 Key Features

3.1 Using Demonstrations in Natural

Language Instructions

SUGILITE allows users to use demonstrations to

teach the agent any unknown procedures and con-

cepts in their natural language instructions. As

discussed earlier, a major challenge in ITL is that

understanding natural language instructions and

carrying out the tasks accordingly require having

knowledge in the specific task domains. Our use

of programming by demonstration (PBD) is an ef-

fective way to address this “out-of-domain” prob-

lem in both the task-fulfillment and the natural lan-

guage understanding processes (Li et al., 2018b).

In SUGILITE, procedural actions are represented as

sequences of GUI operations, and declarative con-
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Figure 3: The user teaches the value concept “commute

time” by demonstrating querying the value in Google

Maps. SUGILITE highlights all the duration values on

the Google Maps GUI.

cepts can be represented as references to GUI con-

tents. This approach supports ITL for a wide range

of tasks – virtually anything that can be performed

with one or more existing third-party mobile apps.

Our prior study (Li et al., 2019) also found that

the availability of app GUI references can result in

end users providing clearer natural language com-

mands. In one study where we asked participants to

instruct an intelligent agent to complete everyday

computing tasks in natural language, the partici-

pants who saw screenshots of relevant apps used

fewer unclear, vague, or ambiguous concepts in

their verbal instructions than those who did not see

the screenshots. Details of the study design and the

results can be found in Li et al. (2019).

3.2 Spoken Intent Clarification for

Demonstrated Actions

A major limitation of demonstrations is that they

are too literal, and are therefore brittle to any

changes in the task context. They encapsulate what

the user did, but not why the user did it. When

the context changes, the agent often may not know

what to do, due to this lack of understanding of

the user intents behind their demonstrated actions.

This is known as the data description problem in

the PBD community, and it is regarded as a key

problem in PBD research (Cypher and Halbert,

1993; Lieberman, 2001). For example, just look-

ing at the action shown in Figure 2a, one cannot

tell if the user meant “the restaurant with the most

reviews”, “the promoted restaurant”, “the restau-

rant with 1,000 bonus points”, “the cheapest Steak-

house”, or any other criteria, so the system cannot

generate a description for this action that accurately

reflects the user’s intent. A prior approach is to ask

for multiple examples from the users (McDaniel

and Myers, 1999), but this is often not feasible due

to the user’s inability to come up with useful and

complete examples, and the amount of examples

required for complex tasks (Myers and McDaniel,

2001; Lee et al., 2017).

SUGILITE’s approach is to ask users to verbally

explain their intent for the demonstrated actions us-

ing speech. Our formative study (Li et al., 2018a)

found that end users were able to provide useful

and generalizable explanations for the intents of

their demonstrated actions. They also commonly

used in their utterances semantic references to GUI

contents (e.g., ”the close by restaurant” for an entry

showing the text “596 ft”) and implicit spatial refer-

ences (e.g., “the score for Lakers” for a text object

that contains a numeric value and is right-aligned

to another text object “Lakers”).

Based on these findings, we designed and im-

plemented a multi-modal mixed-initiative intent

clarification mechanism for demonstrated actions.

As shown in Figure 2, the user describes their in-

tention in natural language, and iteratively refines

the descriptions to remove ambiguity with the help

of an interactive overlay (Figure 2d). The over-

lay highlights the result from executing the current

data description query, and helps the user focus on

explaining the key differences between the target

object (highlighted in red) and the false positives

(highlighted in yellow) of the query.

To ground the user’s natural language explana-

tions about GUI elements, SUGILITE represents

each GUI screen as a UI snapshot graph. This

graph captures the GUI elements’ text labels, meta-

information (including screen position, type, and

package name), and the spatial (e.g., nextTo),

hierarchical (e.g., hasChild), and semantic rela-

tions (e.g., containsPrice) among them (Fig-

ure 4). A semantic parser translates the user’s expla-

nation into a graph query on the UI snapshot graph,

executes it on the graph, and verifies if the result

matches the correct entity that the user originally

demonstrated. The goal of this process is to gener-

ate a query that uniquely matches the target UI ele-

ment and also reflects the user’s underlying intent.

Our semantic parser uses a Floating Parser ar-
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Figure 4: SUGILITE’s instruction parsing and ground-

ing process for intent clarifications illustrated on an ex-

ample UI snapshot graph constructed from a simplified

GUI snippet.

chitecture (Pasupat and Liang, 2015) and is imple-

mented with the SEMPRE framework (Berant et al.,

2013). We represent UI snapshot graph queries in

a simple but flexible LISP-like query language (S-

expressions) that can represent joins, conjunctions,

superlatives and their compositions, constructed by

the following 7 grammar rules:

E → e;E → S;S → (join r E);S → (and S S)

T → (ARG MAX r S);T → (ARG MIN r S);Q → S | T

where Q is the root non-terminal of the query ex-

pression, e is a terminal that represents a UI object

entity, r is a terminal that represents a relation,

and the rest of the non-terminals are used for inter-

mediate derivations. SUGILITE’s language forms

a subset of a more general formalism known as

Lambda Dependency-based Compositional Seman-

tics (Liang et al., 2013), which is a notationally

simpler alternative to lambda calculus which is par-

ticularly well-suited for expressing queries over

knowledge graphs. More technical details and the

user evaluation are discussed in Li et al. (2018a).

3.3 Task Parameterization through GUI

Grounding

Another way SUGILITE leverages GUI groundings

in the natural language instructions is to infer task

parameters and their possible values. This allows

the agent to learn generalized procedures (e.g., to

order any kind of beverage from Starbucks) from

a demonstration of a specific instance of the task

(e.g., ordering an iced cappuccino).

SUGILITE achieves this by comparing the user

utterance (e.g., “order a cup of iced cappuccino”)

against the data descriptions of the target UI ele-

ments (e.g., click on the menu item that has the

text “Iced Cappuccino”) and the arguments (e.g.,

put “Iced Cappuccino” into a search box) of the

demonstrated actions for matches. This process

grounds different parts in the utterances to specific

actions in the demonstrated procedure. It then ana-

lyzes the hierarchical structure of GUI at the time

of demonstration, and looks for alternative GUI ele-

ments that are in parallel to the original target GUI

element structurally. In this way, it extracts the

other possible values for the identified parameter,

such as the names of all the other drinks displayed

in the same menu as “Iced Cappuccino”

The extracted sets of possible parameter values

are also used for disambiguating the procedures to

invoke, such as invoking the order Starbucks

procedure for the command “order a cup of latte”,

but invoking the order PapaJohns procedure

for the command “order a cheese pizza.”

3.4 Generalizing the Learned Concepts

In addition to the procedures, SUGILITE also auto-

matically generalizes the learned concepts in order

to reuse parts of existing concepts as much as pos-

sible to avoid requiring users to perform redundant

demonstrations (Li et al., 2019).

For Boolean concepts, SUGILITE assumes

that the Boolean operation and the types of the

arguments stay the same, but the arguments

themselves may differ. For example, the concept

“hot” used in Figure 1 can be generalize to “arg0

is greater than arg1” where arg0 and arg1

can be value queries or constant values of the

temperature type. This allows the various constant

thresholds of temperature, or dynamic queries

for temperatures depending on the specific task

context. This mechanism allows concepts to be

used across different contexts (e.g., determining

whether to order iced coffee vs. whether to open

the window) task domains (e.g., “the weather is

hot” vs. “the oven is hot”).

Similarly, named value queries (resolved from

resolveValue such as “temperature” in Fig-

ure 1) can be generalized to have different imple-

mentations depending on the task domain. In “the

temperature outside”, query Temperature()
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can invoke the weather app, whereas in “the temper-

ature of the oven” it can invoke the smart oven app

to look up the current temperature of the oven (Li

et al., 2017b).

4 Evaluation

We conducted several lab user studies to evaluate

the usability, efficiency and effectiveness of SUG-

ILITE. The results of these study showed that end

users without significant programming expertise

were able to successfully teach the agent the proce-

dures of performing common tasks (e.g., ordering

pizza, requesting Uber, checking sports score, or-

dering coffee) (Li et al., 2017a), conditional rules

for triggering the tasks (Li et al., 2019), and con-

cepts relevant to the tasks (e.g., the weather is hot,

the traffic is heavy) (Li et al., 2019) using SUG-

ILITE. The users were also able to clarify their

intents when ambiguities arise (Li et al., 2018a).

Most of our participants found SUGILITE easy and

natural to use (Li et al., 2017a, 2018a, 2019). Effi-

ciency wise, teaching a task usually took the user

3–6 times longer than how long it took to perform

the task manually in our studies (Li et al., 2017a),

which indicates that teaching a task using SUG-

ILITE can save time for many repetitive tasks.

5 Discussion and Future Work

5.1 Using GUIs for Language Grounding

SUGILITE illustrates the great promise of using

GUIs as a resource for grounding and understand-

ing natural language instructions in ITL. The GUIs

encapsulate rich knowledge about the flows of the

underlying tasks and the properties and relations of

relevant entities, so they can be used to bootstrap

the domain-specific knowledge needed by ITL

systems that rely on natural language instructions

for learning. Users are also familiar with GUIs,

which makes GUIs the ideal medium to which

users can refer during task instructions. A major

challenge in natural language instruction is that

the users do not know what concepts or knowledge

the agent already knows so that they can use it

in their instructions (Li et al., 2019). Therefore,

they often introduce additional unknown concepts

that are either unnecessary or entirely beyond

the capability of the agent (e.g., explaining “hot”

as “when I’m sweating” when teaching the agent

to “open the window when it is hot”). By using

the app GUIs as the medium, the system can

effectively constrain the users to refer to things

that can be found out from some app GUIs (e.g.,

“hot” can mean “the temperature is high”), which

mostly overlaps with the “capability ceiling” of

smartphone-based agents, and allows the users to

define new concepts for the agent by referring to

app GUIs (Li et al., 2017a, 2019).

5.2 More Robust Natural Language

Understanding

The current version of SUGILITE uses a grammar-

based executable semantic parser to understand the

users’ natural language explanations of their intents

for the demonstrated actions. While this approach

comes with many benefits, such as only requiring

a small amount of training data and not relying on

any domain knowledge, it has rigid patterns and

therefore sometimes encounters problems with the

flexible structures and varied expressions in the

user utterances.

We are looking at alternative approaches for pars-

ing natural language instructions into our domain-

specific language (DSL) for representing data de-

scription queries and task execution procedures.

A promising strategy is to take advantage of the

abstract syntax tree (AST) structure in our DSL

for constructing a neural parser (Xu et al., 2020;

Yin and Neubig, 2017), which reduces the amount

of training data needed and enforces the well-

formedness of the output code.

The current model also only uses the semantic

information from the local user instructions and

their corresponding app GUIs. Another promising

approach to enable more robust natural language

understanding is to leverage the pre-trained general-

purpose language models (e.g., BERT (Devlin et al.,

2018)) to encode the user instructions and the in-

formation extracted from app GUIs.

5.3 Extracting Task Semantics from GUIs

An interesting future direction is to better extract

semantics from app GUIs so that the user can focus

on high-level task specifications and personal pref-

erences without dealing with low-level mundane

details (e.g., “buy 2 burgers” means setting the

value of the textbox below the text “quantity” and

next to the text “Burger” to be “2”). Some works

have made early progress in this domain (Liu et al.,

2018b; Deka et al., 2016; Chen et al., 2020) thanks

to the availability of large datasets of GUIs like

RICO (Deka et al., 2017). Recent reinforcement

learning-based approaches and semantic parsing

techniques have also shown promising results in
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learning models for navigating through GUIs for

user-specified task objectives (Liu et al., 2018a;

Pasupat et al., 2018). For ITL, an interesting fu-

ture challenge is to combine these user-independent

domain-agnostic machine-learned models with the

user’s personalized instructions for a specific task.

This will likely require a new kind of mixed-

initiative instruction (Horvitz, 1999) where the

agent is more proactive in guiding the user and

takes more initiative in the dialog. This could be

supported by improved background knowledge and

task models, and more flexible dialog frameworks

that can handle the continuous refinement and un-

certainty inherent in natural language interaction,

and the variations in user goals. Collecting and

aggregating personal task instructions across many

users also introduce important concerns on user

privacy, as discussed in (Li et al., 2020).

5.4 Multi-Modal Interactions in

Conversational Learning

SUGILITE combines speech and direct manipu-

lation to enable a “speak and point” interaction

style, which has been studied since early inter-

active systems like Put-That-There (Bolt, 1980).

As described in Section 3.2, a key pattern used in

SUGILITE’s multi-modal interface is mutual dis-

ambiguation (Oviatt, 1999) where it utilizes inputs

in complementary modalities to infer robust and

generalizable scripts that can accurately represent

user intentions.

We are currently exploring other ways of using

multi-modal interactions to supplement natural lan-

guage instructions in ITL. A promising direction

is to use GUI references to help with repairing

conversational breakdowns (Beneteau et al., 2019;

Ashktorab et al., 2019; Myers et al., 2018) caused

by incorrect semantic parsing, intent classification,

or entity recognition. Since GUIs encapsulate rich

semantic information about the users’ intents, the

task flows, and the task constraints, we can poten-

tially ask the users to point to the relevant GUI

screens as a part of the error handling process, ex-

plaining the errors with references to the GUIs, and

helping the system recover from the breakdowns.

6 Conclusion

We described SUGILITE, a task automation agent

that can learn new tasks and relevant concepts in-

teractively from users through their GUI-grounded

natural language instructions and demonstrations.

This system provides capabilities such as intent

clarification, task parameterization, and concept

generalization. SUGILITE shows the promise of

using app GUIs for grounding natural language

instructions, and the effectiveness of resolving un-

known concepts, ambiguities, and vagueness in nat-

ural language instructions using a mixed-initiative

multi-modal approach.
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