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Interactive Teaching of Elementary Digital Logic
Design With WinLogilLab

Charles Hacker and Renate Sitte, Member, IEEE

Abstract—This paper presents an interactive computerized
teaching suite developed for the design of combinatorial and
sequential logic circuits. This suite fills a perceived gap in the
currently available computer-based teaching software, with the
purpose of providing alternative-mode subject delivery. The
authors were, therefore, prompted to develop a Microsoft-Win-
dows tutorial suite, WinLogil.ab, comprising a set of interactive
tutorials that show the link between Boolean algebra and dig-
ital combinatorial and sequential circuits. The combinatorial
tutorials follow the initial design steps: from Boolean algebra,
to truth tables, to minimization techniques, to production of the
combinatorial circuit in a seamless way. Similarly, the sequential
tutorials can design simple finite-state counters and can model
more complex finite-state automata.

Index Terms—Boolean algebra, computer-aided logic design,
educational technology, Karnaugh map, logic gates, minimization
software, online-interactive learning, Quine-McCluskey.

1. INTRODUCTION

EACHING elementary circuit design can be a challenge

because electrical engineering students often do not see
the immediate relationship between cause and effect, which can
be seen, for example, in mechanical engineering experiments.
Traditionally, circuit-design teaching follows a three-stage se-
quence from introductory logic to combinatorial circuits, and,
several lectures later, to sequential circuits. While a number of
packages dealing with circuit-related issues are available, they
are not specifically designed for a seamless interactive-learning
environment that demonstrates the progression from Boolean
algebra through optimization, to the finally designed circuit in
a modern Windows environment. To fill this gap, the authors
have designed and implemented WinLogilLab. WinLogiLab is
an interactive Microsoft (MS)-Windows-compatible computer-
ized teaching suite to aid in the teaching of combinatorial and
sequential logic design. This software is applicable to introduc-
tory digital design courses in Electrical Engineering, Computer
Science, and Computer Engineering curricula. It serves both as
student-centered self-paced learning and as a teaching demon-
stration tool. The main contribution of this work is to provide a
set of interactive teaching aids to approach the basics of com-
binatorial and sequential digital circuit design. Its strength lies
in its pedagogic value by showing to novices the link between
Boolean algebra and the finally designed digital logic circuits,
in a fully integrated environment, and the convenience of being
MS-Windows compatible.
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In introductory undergraduate electrical engineering courses,
students are required to understand digital logic design con-
cepts. Students acquire the knowledge of how to design initially
a digital logic circuit, allowing them to solve, for example, the
following semi-real-life problem:

“An alarm is required to activate if an intruder is de-
tected from a window breaking, a pressure pad signaling, or

a movement detector signal. However, the alarm must not

activate if the person comes in the door, which is detected

by the movement detector and pressure pad signaling to-
gether.”

Students are requested to develop a combinatorial digital
logic circuit that will perform this task. In this process, the truth
tables must be derived and then solved into the most efficient
Boolean algebra expression by applying the Karnaugh map, the
Quine-McCluskey, or other algorithms. This expression results
in the final digital circuit diagram, which contains the logic
gates and connections obtained by the minimization process.

Many useful computer programs are available that achieve
various aspects of digital logic design. They range from simple
simulators, to specific teaching tools, to advanced and special-
ized software. The authors tested several of these packages for
the purpose of introductory circuit design teaching. These pack-
ages often perform the functions traditionally required in under-
graduate courses, for example, Karnaugh maps and Quine—Mc-
Cluskey and Espresso minimizations. What makes WinLogiLab
distinct is that it integrates all necessary functions into one tu-
torial suite.

Several programs can perform the simulation of a digital cir-
cuit, e.g., Logic Works [1], PSpice Mixed Mode Simulator [2],
and Micro-Cap V [3]. Other programs can emulate the func-
tions performed in a digital electronic laboratory, e.g., Win-
Breadboard [4] and Electronics Workbench [5]. The authors
also looked at programs written to provide the teaching of dig-
ital logic circuits in the style of an electronic book, e.g., Digital
Technology Learning Package [6] and Digital Logic Tutor I [7].
There are others that electronically design certain segments of
digital logic, such as the Espresso Logic Minimizer [8]. A range
of specialized designed software is available, which is devel-
oped for proprietary equipment, such as Programmable Logic
Devices (PLD) and Field Programmable Gate Arrays (FPGA).
They cover various aspects of digital logic design and simu-
lation, e.g., Hardware Description Language (HDL) programs,
such as Mentor Graphics [9] and Cadence [10], as well as soft-
ware designed for ASIC/FPGA hardware, such as Xilinx [11]
and Actel [12]. These programs are very efficient at designing
very complex digital systems, but they are mainly for PLD and
FPGA design.
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Fig. 1. Structure of WinLogiLab interactive computerized teaching suite.

Undoubtedly, these programs can be used in teaching at dif-
ferent levels, and some are perhaps better suited for specific
purposes than others. For example, the HDL programs (such
as Mentor Graphics, Cadence, Xilinx, and Actel) are very ad-
vanced design and simulation tools and are, indeed, success-
fully being used in teaching in more advanced courses; however,
they are beyond the purpose of an introductory course because
their complexity would detract the pupils’ focus and attention.
The size and complexity of these programs usually require spe-
cific training to learn a program’s operation. Professional com-
puter-aided design (CAD) tools can and have been successfully
applied in undergraduate learning in specifically integrated cur-
ricula [13] and conventional courses. However, with student edi-
tions’ availability either limited or unavailable altogether, the
price and licensing requirements of such programs can be justi-
fied only for more advanced courses. For introductory courses
that typically are attended by a high number of students, the
high cost may not be cost-effective or within reach, in particular,
when the purpose is to gain fundamental process understanding.

From search and experience, the authors found that MS-Win-
dows-compatible teaching software was desirable. It would
cover the complete introductory digital logic design process in
an interactive way. The software was required to demonstrate
the link between Boolean algebra, truth tables, logic circuits,
and minimization techniques of combinatorial logic to junior
students. In addition, the software was required to extend
these fundamentals into sequential circuits to design flip-flop
counters and finite-state machines (FSMs). The software also
needed to be user friendly, and thus very intuitive to use, while
producing formal presentations and realistic design outputs.

Most currently available digital logic software focuses on
simulation rather than design because simulation is based on

defined principles and offers greater commercial opportunity.
The absence of software to perform digital logic design could,
most likely, be attributed to the highly theoretical nature of the
design, commonly resulting in very subjective designs. The pro-
gramming of such subjective tasks is complex and must be ele-
mentary enough to enable automation.

II. THE WINLOGILAB INTERACTIVE TUTORIAL SUITE

To address the distinct absence in software for the teaching
of introductory digital logic design, the authors have developed
WinLogiLab. WinLogiLab is an interactive MS-Windows-com-
patible computerized teaching suite to aid in the teaching of
combinatorial and sequential logic design. Its emphasis lays in
demonstrating to novice students the steps of elementary circuit
design in a seamless transition sequence and in an interactive
visual way.

The structure of WinLogiLab, including its major modules, is
depicted in Fig. 1. Its major clusters are the combinatorial logic
and the sequential logic modules. There is also a small cluster
for introduction to Numerical Theory.

The modules in the combinatorial logic are WinBoolean,
BoolTut, and WinEspresso. These modules cover logic gates,
Boolean algebra, truth tables, and logic minimization tech-
niques with Karnaugh maps and the Quine—McCluskey and
Espresso algorithms. The sequential modules are WinCounter
and WinState, which cover state counter design and the design
of general-purpose FSMs.

Special attention was paid to implement WinLogilLab in a
user-friendly environment. A tutorial with short pop-up instruc-
tions provides additional guidance to new students.
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The components of the WinLogiLab tutorial suite can be used
in two modes. One mode is a step-by-step, self-paced, set tuto-
rial that guides the student through any of its tasks and serves
as an introduction because it provides specific explanatory in-
formation. Alternatively, students can experiment by designing
their own circuits as independent self-paced exercises in which
students use their own input. Both modes offer ample help and
feedback to the student in a self-paced learning mode, in partic-
ular, because the students can see an immediate relationship in
cause and effect by what happens on the screen and, in addition,
from pop-up feedback comments. This level of understanding
would be difficult in conventional Boolean algebra teaching.
Students do not need to go through all steps until the final cir-
cuit is designed. Input can occur at several points throughout the
circuit design sequence, by either a manual input or a file saved
from an earlier session.

In addition, a self-test is available to the student. In this test,
a student is requested to answer a number of computer-gener-
ated multiple-choice or short-answer questions on digital logic.
For example, the student can be requested to enter the Boolean
equation for a given randomly generated circuit diagram. Sim-
ilarly, other randomly generated questions on circuits, equa-
tions, truth tables, or minimization techniques are possible. A
true/false feedback is given immediately after each answered
test question, and a total score of the number of questions that
were correctly answered is given at the end. WinLogilLab has
also proven to be a useful lecturing aid when projected on a
large screen.

The current state of development of the WinLogiLab tutorial
suite can be obtained on CD from the authors or downloaded
from the Griffith University School of Engineering web page at
http://www.gu.edu.au/school/eng/mmt/MMTdownlds.html

In the following sections, the authors will briefly explain the
features of each of the modules.

A. WinBoolean

WinBoolean is designed to show the link between the equiva-
lent digital logic forms of logic gates, Boolean algebra, and truth
tables. All three techniques can be used interchangeably; thus,
a student in Digital Logic is required to be familiar with con-
verting from one to any other of these three equivalent forms.
Therefore, WinBoolean allows input in any of the three logic
forms and automatically converts it to any of the other equiva-
lent forms. Figs. 2 and 3 show sample screen images for input by
circuit diagram and equation, respectively. The entered user data
can then be simplified by a Karnaugh map or the Quine—Mc-
Cluskey algorithm [14]. Fig. 4 shows an example of Quine—Mc-
Cluskey output of WinBoolean. The entered user data can then
be simplified by a Karnaugh map, a Quine—McCluskey algo-
rithm, or Espresso algorithm to produce a minimized logic dia-
gram.

B. BoolTut

BoolTut is designed to provide an interactive tutorial on the
Karnaugh map or the Quine—-McCluskey minimization process.
The program operates with a user-supplied truth table and dis-
plays an animated step-by-step presentation on each individual
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Fig. 4. Example of a final Quine-McCluskey output.

stage of the minimization process [15]. It allows the user to
enter a truth table via the keyboard or mouse clicks, or alter-
natively, the program can randomly generate a truth table. The
user then selects the minimization process to be demonstrated
by either the Karnaugh map, the Quine—McCluskey algorithm,
or Espresso. The Karnaugh map process is valid for up to four
inputs, while the Quine—-McCluskey process will allow up to 12
input variables. Although it is clear that a Karnaugh map can be
used for more than four variables, a higher number of variables
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noticeably slows the process down. There is a tradeoff with how
much can be put on a computer screen without the need for con-
stantly scrolling up and down to see one single diagram. For the
purpose of understanding the process of deriving a Karnaugh
map, the authors considered it more important to show the two
modes, the truth table, and the Karnaugh map together on the
screen to visualize interactions, rather than a high number of
variables. For more complex minimizations with multiple out-
puts, the students would be using the Espresso algorithm. This
technique is explained in the next section.

Figs. 5-7 show selected examples of different stages of the
screen animations as they appear in the interactive tutorials.

C. WinEspresso

WinEspresso provides an alternative method for simplifying
Boolean truth tables, using a more efficient approach. The ra-
tionale is that there are two main fields in Boolean truth table
minimization: the exact and the heuristic techniques. The exact
techniques use thorough Boolean algebra operations resulting
in an optimal minimized solution. The heuristic techniques use
rule-based approximations, which result in near-optimal min-
imized solutions. Brayton et al. discuss different logic-mini-
mizing techniques and introduce or expand the heuristic tech-
niques [16], [17].

The two exact techniques for truth table minimization are
the Karnaugh map and the Quine—-McCluskey algorithm. Both
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algorithms are implemented in the WinBoolean and BoolTut
modules. These exact minimization techniques, in particular the
Quine-McCluskey algorithm, require the generation of all pos-
sible solutions (known as primes) and then the finding of the best
solution by a minimum cover procedure. In exact minimization
techniques, when the number of inputs to the function becomes
large, the computing process required increases exponentially.
This process is very inefficient because of the extreme number
of iterations that are required to generate all the possible solu-
tions. For this reason, the process becomes impractical or im-
possible to implement [16].

In contrast, truth table minimization techniques have con-
centrated on heuristic solving methods, which avoid computing
all possible results (the primes) [16], [18]. Instead they succes-
sively modify a given result until a suitable stopping criterion is
met, as depicted in Fig. 8.

The minimization is thus accomplished more efficiently and
rapidly. One should note that for inputs up to seven variables,
Espresso always finds the absolute optimal solution, but for
higher numbers of variables, it will find a near-optimal solution,
not necessarily the absolute optimal solution.

As a component in WinLogiLab, this method provides prac-
ticing fast simplification of truth tables with up to 12 input and
eight output variables simultaneously [19]. It allows for the vi-
sual circuit schematic output as well as the associated Boolean
function.

D. DigiTrace

The DigiTrace module provides the final testing of a designed
logic circuit by partially simulating the operation of the circuit.
The simulation is performed by displaying the trace of the dig-
ital logic signals throughout the circuit, which provides suffi-
cient visual indication of the circuit’s function [20].

DigiTrace allows the user input of a digital circuit or the
loading of a circuit developed by any of the other combinatorial
WinLogilL.ab modules. The DigiTrace module then displays the
visual trace of the logic levels through each component of the
circuit. Simulated light-emitting diode (LED) lights indicate the
logic levels. A red light represents a logic low (0), and a green
light represents a logic high (1). The simulated circuit can have
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one to four inputs, and these inputs can all have varying logic
levels. Thus, the logic levels throughout the circuit can be traced

through for all possible combinations of the input logic levels.
The tracing can be done in one of the three following modes:

1) setting manually the values of the inputs in a circuit di-
agram (via mouse clicks) on a logic-level input control
and observing the result of a simulated LED light at the
output;

2) tracing all logic inputs where the result appears as an array
of simulated LED lights;

3) tracing all waves displays a timing window showing mul-
tiple square-wave pulse output, similar to the outputs ob-
tained from many commercial and shareware logic simu-
lation packages.

E. Sequential Logic and WinCounter

Following the natural progress of lectures on introductory
logic and combinatory circuit stages, sequential circuits are also
included in the WinLogiLab.

Sequential circuits have a primitive internal memory, assem-
bled with combinatorial logic to form a counter circuit. The
counter circuits form a branch of FSM. In WinLogiLab, the se-
quential logic offers the state counter design with flip-flop com-
ponents and the design of general-purpose FSM.

One might argue that flip-flops are not used much nowadays;
however, they do have a pedagogical benefit. This benefit comes
because flip-flop memory circuits can be wired in a number of
modes. These modes are the data mode and toggle mode. A
sequential logic circuit can utilize a flip-flop that is wired in any
of these modes. The toggle mode is commonly used in counter
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applications, where transitions are frequent, such as continuous
changing counts. The data mode is more commonly used in data
storage applications, such as random access memory (RAM)
circuits.

The WinCounter program aids circuit analysis and design of
sequential state machine counters. State machine counters form
the fundamental process of most logic control applications, in-
cluding electronic timers, electronic clocks, remote controls,
and industrial process controllers. WinCounter enables the cir-
cuit design, or circuit analysis, of sequential state machine coun-
ters. The counters are implemented with data- or toggle-mode
flip-flop components and associated combinatorial logic gates
[21].

The WinCounter software provides an interactive tutorial to
exercise and understand flip-flop counter circuits. Its input can
be either as an input counter sequence or as a circuit. Its output
produces a state diagram. A counter circuit is designed from a
desired count sequence that is entered by the user. This count
sequence is input into a state transition table; the table is then
minimized by the Karnaugh map process, resulting in the final
logic circuit that will perform the required count sequence. An
example of the screen images of this process is shown in Fig. 9.

An existing counter circuit can also be analyzed by the pro-
gram. In this case, the user is required to input the known counter
schematic. The program will then determine and display the
Boolean functions to each of the flip-flop components and de-
rive the state transition table of the circuit. Finally, a state transi-
tion table then models the final count sequence of the analyzed
counter example.

F. WinState

The WinState tutorial software assists undergraduate students
in understanding the function of general-purpose FSMs, in par-
ticular, the Mealy and Moore machines. The animated computer
screen is ideal for conveying the required design and analysis
procedures, while enabling students to better visualize the func-
tioning of the FSM. In general, the purpose of FSMs as a mod-
eling tool goes beyond the machines that are used in digital
control logic systems. For example, FSMs can be used for lan-
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Fig. 10. Example of WinState input by constructing the FSM as a graph, and
its automatically updated state transition table.

guage parsing, mathematical processing, communication net-
work analysis, data encryption, and decryption [22].

FSMs operate on a recognizable (or legal) input string of
symbols (not necessarily binary), which continuously modifies
its internal state and produces a corresponding output symbol
string. FSMs can be either Moore or Mealy types. In a Moore
machine, the derived outputs depend solely on the present in-
ternal state of the FSM. In a Mealy machine, the derived outputs
depend on the present state and the applied inputs [23]. WinState
allows both the design and the analysis of Mealy or Moore gen-
eral-purpose FSM, operating with user-provided input data [24].

FSMs can be represented in two modes: in a state transition
table, which lists tables of present state, inputs, next state, and
outputs, and in a directed graph, the state transition diagram.
This diagram consists of nodes (circles), representing the states,
and linking arcs, representing the transitions or next-state func-
tions. Input symbols are placed above the arcs, while output
states are placed either next to the node (for a Moore machine) or
underneath the input symbol (for a Mealy machine). A linking
arc is drawn for each possible input symbol, linking one node
with another.

WinState allows users to enter their own FSM design. States
and arcs can be picked from the menu and placed. By clicking
on the arrow, one sees a pop-up box that prompts for input or
output. Fig. 10 shows an example of a user input by constructing
the FSM as a graph, and its equivalent state transition table is
automatically updated while the graph is being drawn.

WinState allows a range of recognizable (legal) input sym-
bols, not just 0/1. This range purposely extends its use beyond
digital circuit design. A typical FSM learning example is the
parsing of an input string (not necessarily binary), with a null
character (A) to mark the end of a string. Once the FSM has
been implemented, a user-defined input symbol string, in binary
or in an other alphabet, can then be entered for execution. This
procedure is equivalent to entering an instruction set or a rudi-
mentary program. The string to be executed is input or edited
by the user in the string dialogue window.

This input string is then “executed” on the FSM. To aid the
user in visualizing the execution, the current-state and link con-
ditions are highlighted on the FSM with thicker lines for the

affected node and arc. This highlighting occurs while the pro-
gram parses and executes the current input string and produces
the output string.

III. BENEFITS OF WINLOGILAB AND DISCUSSION

There are a number of issues that the authors have specifi-
cally addressed. The most important aim was to demonstrate to
the students the full transition from the numbering systems to
the testing of the simulated circuit by tracing its functioning,
where the student can learn by participating. The contents of
topics offered in WinLogilab map to what would be a typical
undergraduate course.

A. Self-Study and Alternative-Mode Learning

Students are able to learn at their own pace, “discovering”
principles while they experiment. Alternatively, they can step
through a set tutorial until they feel confident to use their own
input. Pop-up prompts provide guidance and feedback, and
“undo” buttons allow for quick amendments.

BoolTut is different from the digital logic tutorial packages
tested, as initially explained. The program has improved capa-
bilities in letting the students enter their own initial data. This
procedure is in contrast to other tested packages that are cur-
rently available that only present one “sample” input, going
through the same steps and the same solving process each time
the program is run. Other packages could not handle a large
number of inputs by using an algorithm such as the Quine—Mc-
Cluskey process. Again these issues were specifically addressed
and resolved in BoolTut, in flexible data input, and demon-
strated with step-by-step animations of both the Karnaugh map
and the Quine—McCluskey minimization process.

The Espresso algorithm is a heuristic technique for Boolean
minimization, which has become a widely adopted and exten-
sively discussed procedure that has been incorporated into the
teaching curriculum of many university digital logic courses
[18]. The Espresso algorithm was developed at the University
of California-Berkeley, with its authorship being attributed to
Rudell [8], [17]. The UNIX C compiler code for the Espresso
algorithm is freely available for downloading from the Design
Technology Warehouse, University of California-Berkeley [8].

The UNIX C Espresso compiler code [8] is readily adaptable
for compiling to an MS-DOS (text base) executable program. A
number of authors have generated MS-DOS executables from
this Espresso code, including Espresso.exe by Changwook [25].

The original Espresso code takes as input a text-based
Boolean truth table and generates a text-based minimized truth
table output. The input truth table is provided from a text file,
or as text data from the keyboard, while the minimized output
is written to the computer’s display.

A student’s initial understanding in digital logic design is that
a tabulated Boolean truth table is minimized to a logic circuit
schematic or Boolean function. The “Berkeley standard PLA”
text format of the original Espresso C code is adequate for rep-
resenting a text-based input truth table and the corresponding
text-based minimized output. However, its cryptic text-based
format does not match the standard Boolean truth table input,
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nor does it correspond to the logic circuit or Boolean function
output.

These deficiencies were overcome by reimplementing the
algorithm as Microsoft-Windows TM-compatible software,
called WinEspresso. This new graphical user interface allows
for student input of a standard visual tabulated Boolean truth
table and, after minimization by the Espresso algorithm, allows
for the visual circuit schematic output and the associated
Boolean function.

Implementing the WinLogiLab in the MS-Windows environ-
ment gives further benefits. First, it modernizes the code for the
now standard MS-Windows 95, 98, and NT computer teaching
laboratories. The implemented WinEspresso code can currently
operate on all MS-Windows platforms, from Windows 95 on-
wards. In addition, the windows graphical user interface en-
ables the displaying and printing of all forms of truth table in-
puts and circuit schematic outputs. In addition, the program is
fully mouse-click driven and includes helpful menu commands
and toolbar buttons, with quick user-friendly operations, such
as open, save, print, and copy. Furthermore, the software en-
ables the user to use the menu items, or header toolbar buttons,
to continuously switch between the input Boolean truth table
and multiple output circuit displays. Finally, full copying and
pasting capabilities, with the MS-Windows clipboard, enables
the transfer of truth tables, circuit schematics, and Boolean func-
tions to other applications, such as word processors. This latter
capability was either not possible or very difficult to achieve
with DOS text-based code.

To assess the usefulness of the tutorial suite, the author/lec-
turer administered a survey to the students of the introductory
digital logic subject. The survey was repeated for two consecu-
tive years. Overall results revealed that the majority of students
found the tutorial suite useful and user friendly, with an overall
rating of 4.35 out of 5.

The questionnaire also posed three open-ended questions: 1)
what were the best features of the software; 2) what were the
worst features; and 3) what improvements would the students
suggest. The students’ statements about the best features in-
cluded that it was a good study aid and that the tutorials made
it easy to design circuits, to solve Boolean equations, and to un-
derstand Karnaugh maps. Students also appreciated that results
or outputs could be easily copied and pasted into other applica-
tions, such as reports for their assignment or tutorials.

Student statements on the worst features and suggested im-
provements were similar. Suggestions included adding an op-
tion for ANSI/IEEE standard logic circuit symbols, adding an
option for the circuits to snap to a grid, allowing for higher num-
bers of input variables, and making improvements in the style
and wording on various tutorials.

IV. CONCLUSION

This paper outlines the characteristics and implementation of
WinLogiLab, a computer-based tutorial suite to aid in teaching
the introductory design of digital logic circuits. WinLogiLab
fills a perceived gap in computer-aided teaching by providing
tutorials that link Boolean algebra and digital logic circuits.
The tutorials help students in digital logic design to experiment
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with different minimization techniques. These minimizations
can be performed by exact methods, using Karnaugh maps and
Quine-McCluskey algorithm, or by a computation-efficient
heuristic approximation, using the WinEspresso algorithm. The
paper also explains the implementation of a computer-based
tutorial for designing and simulating counters and general-pur-
pose FSMs. WinLogilLab covers a range of topics typically
taught in an introductory digital logic course, i.e., combi-
national and sequential circuits. It employs a graphical user
interface in an MS-Windows environment, which provides
students with interactive, visual, and user-friendly software.
Both the user friendliness and ease of use helps students to
understand better the subject material. A student evaluation
survey produced favorable responses. The survey also provided
valuable suggestions for further improvements in this digital
logic design teaching and learning aid.
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