
1

Interactive Tensor Field Design and Visualization

on Surfaces
Eugene Zhang, James Hays, and Greg Turk

Abstract— Designing tensor fields in the plane and on surfaces
is a necessary task in many graphics applications, such as
painterly rendering, pen-and-ink sketch of smooth surfaces, and
anisotropic remeshing. In this paper, we present an interactive
design system that allows a user to create a wide variety of
surface tensor fields with control over the number and location
of degenerate points. Our system combines basis tensor fields
to make an initial tensor field that satisfies a set of user-
specifications. However, such a field often contains unwanted
degenerate points that cannot always be eliminated due to
topological constraints of the underlying surface. To reduce the
artifacts caused by these degenerate points, our system allows the
user to move a degenerate point or to cancel a pair of degenerate
points that have opposite tensor indices.

We observe that a tensor field can be locally converted into
a vector field such that there is a one-to-one correspondence
between the set of degenerate points in the tensor field and the
set of singularities in the vector field. This conversion allows
us to effectively perform degenerate point pair cancellation
and movement by using similar operations for vector fields. In
addition, we adapt the image-based flow visualization technique
to tensor fields, therefore allowing interactive display of tensor
fields on surfaces.

We demonstrate the capabilities of our tensor field design
system with painterly rendering, pen-and-ink sketch of surfaces,
and anisotropic remeshing.

Index Terms— Tensor field design and visualization, non-
photorealistic rendering, remeshing, tensor field topology.

I. INTRODUCTION

MANY graphics applications make use of a second-

order symmetric tensor field, which is equivalent to

a line field that does not distinguish between the forward

and backward directions. In painterly rendering, for instance,

brush stroke orientations are guided by a line field that is often

chosen to be perpendicular to the image gradient field [11],

[9]. In hatch-based illustration of smooth surfaces, hatches

usually follow one of the principle directions of the curva-

ture tensor [10]. Similarly in anisotropic remeshing, principle

curvature directions are used to build a quad-dominant mesh

from an input mesh [1], [13], [7].

Tensor field design, the main topic of this paper, enables

applications such as painterly rendering and hatch-based illus-

tration to achieve different visual effects by using different

tensor fields. It also allows a user to modify an existing

tensor field to improve its quality. For instance, a numerical

estimation of the curvature tensor field on a polygonal surface

often leads to excessive degenerate points, where anisotropy

disappears. Degenerate points often cause visual artifacts in

hatch-based sketching [10], and they require special care when

performing anisotropic remeshing in surrounding regions [1],

[13], [7]. While tensor field smoothing can remove a large

percentage of degenerate points, it often “washes away” nat-

ural features in the field. Tensor field design provides a user

with control over the smoothness of a tensor field as well

as the number and location of the degenerate points that it

contains. Lastly, a tensor field design system can also be used

to test the efficiency of tensor field visualization algorithms.

By creating tensor fields with known configurations, it is

straightforward to verify whether a visualization algorithm has

correctly identified these configurations.

There are several challenges to tensor field design. First,

such a system should enable a user to create a wide variety

of tensor fields with relatively little effort. Second, the user

should have control over tensor field topology, such as the

number and location of the degenerate points in the field.

Third, the system should allow interactive design and display

of a tensor field. While there are many high-quality off-

line visualization methods, interactive techniques have been

lacking. Finally, creating a continuous tensor field on a 3D

mesh surface requires that we deal with the discontinuities of

surface normal at the vertices and across the edges.

To achieve these goals, we develop a two-stage tensor field

design system for both planar domains and curved surfaces.

In the first stage, a user can quickly produce an initial tensor

field through a set of design elements. Every element is used

to create a basis tensor field over the domain that has a

degenerate point of a particular index. All basis fields are

then summed along with an input field that is either zero or

an application-dependent field, such as a numerical estimation

of the curvature tensor in a 3D surface. In the second stage,

the user modifies the initial tensor field through a set of pre-

defined editing operations, such as moving a degenerate point

to a more desirable location or cancelling a pair of degenerate

points that have opposite tensor indices. As the user modifies

the field, our system quickly analyzes the result and provides

visual feedback. A user may perform any number of editing

operations before accepting the result.

Our system performs degenerate point pair cancellation and

movement by converting a tensor field into a vector field such

that there is a one-to-one correspondence between the set of

degenerate points in the tensor field and the singularities in

the vector field. This conversion and its inverse operation

allow us to use singularity pair cancellation and movement

operations for vector fields. We have also developed an in-

teractive visualization algorithm for second-order symmetric

tensor fields, which is an extension of the image-based flow

visualization technique [28], [29], [12]. In order for our design

2

Fig. 1. This figure illustrates how painterly rendering can benefit from tensor field design. For an input image of a human eye, three different tensor fields
(bottom row) were to used to guide brush stroke orientations and produce the van Gogh style paintings (top row): a tensor field extracted from the image
(left), a combination of the previous field with a user-added center in the middle of eye (middle), and a tensor field designed completely from scratch (right).
Notice that both designed fields (middle and right) are smoother in the pupil and near the corners of the eye. Tensor field design allows a user to guide brush
stroke orientations in regions where the image gradient is weak. The painterly images shown here were produced by the algorithm of Hays and Essa [9]. The
colored dots in the bottom images indicate the location and type of degenerate points in the fields: yellow for wedges and blue for trisectors.

system to work on curved surfaces, we adapt the surface vector

field representation scheme that was developed for vector field

design [32] to tensor fields. In this scheme, concepts from

differential geometry such as geodesic polar maps and parallel

transport are used to construct initial tensor fields and to

perform tensor field analysis and editing.

In this paper, we have made the following contributions.

First, we have identified tensor field design as an important

problem in computer graphics. We will also demonstrate that

the edge field in an image is better modelled as a tensor

field than a vector field when it comes to painterly rendering.

Second, we present a tensor field design system for mesh

surfaces. This system allows a user to create a wide variety of

tensor fields in a fast and efficient manner, and it provides the

user with control over the degenerate points in the field. To our

knowledge, this is the first time a tensor field design system

has been proposed and developed. Third, we provide efficient

implementations of degenerate points pair cancellation and

movement by locally converting the tensor field into a vector

field. The conversion is conceptually simple, yet it allows us

to reuse algorithms from vector field analysis and design.

Fourth, we develop a piecewise interpolating scheme that

produces a continuous tensor field on a mesh surface based

on tensor values defined at the vertices. This scheme supports

fast and efficient tensor field analysis such as degenerate

point detection and separatrix computation, and it removes

the need for a surface parameterization. Finally, we present an

interactive and high-quality surface tensor field visualization

technique.

The remainder of the paper is organized as follows. We first

review some relevant background on tensor fields in Section II.

Then, in Section III, we compare tensor fields and vector

fields in terms of image edge extraction. In Section IV, we

review relevant work in vector field design, and tensor field

analysis and visualization. We present our interactive tensor

field visualization technique in Section V and describe our

tensor field design system in Section VI. Section VII provides

some results of applying our tensor field design system to

various graphics applications, such as painterly rendering, pen-

and-ink sketch of surfaces, and anisotropic remeshing. Finally,

we summarize our contributions and discuss some possible

future work in Section VIII.

II. BACKGROUND ON TENSOR FIELDS

We first review some relevant facts about tensor fields on

surfaces. A tensor field T for a manifold surface M is a

smooth tensor-valued function that associates to every point

p ∈ M a second-order tensor T (p) =

(
T11(p) T12(p)
T21(p) T22(p)

)
. A

tensor [Ti j] is symmetric if and only if Ti j = Tji. Symmetric

tensor fields appear in many graphics applications, such as the

metric tensor for surface parameterization, the curvature tensor

in remeshing, and the diffusion tensor in medical imaging. A

symmetric tensor T can be uniquely decomposed into the sum

of its isotropic part S and anisotropic (deviate) part A:

T = S +A = λ
(

1 0

0 1

)
+ µ

(
cosθ sinθ
sinθ −cosθ

)
(1)

3

Fig. 2. Example first and second-order degenerate points in a tensor field. Notice that the second-order points (node, focus, center, and saddle) are visually
similar to first-order singularities in a vector field.

where µ ≥ 0. A has eigenvalues ±µ , and A and T have the

same set of eigenvectors. In this paper, we explore the design

of directional fields on 3D surfaces, which is equivalent to

designing deviate tensor fields. A more general design system

for symmetric tensor fields can be obtained by combining our

system and a scalar field design system, such as [16].

A deviate tensor field A(p) is equivalent to two orthogonal

eigenvector fields: E1(p) = µ(p)e1(p) and E2(p) = µ(p)e2(p)
when A(p) 6= 0. Here, e1(p) and e2(p) are unit eigenvectors

that correspond to eigenvalues µ and −µ , respectively. E1 and

E2 are the major and minor eigenvector fields of A. A point

p0 is degenerate for a tensor field T if and only if A(p0) = 0.

A degenerate point for a tensor field often serves the same

purpose as a singularity for a vector field. The most basic types

of degenerate points are: wedges and trisectors (Figure 2).

Delmarcelle and Hesselink [6] define a tensor index for an

isolated degenerate point p0 as follows. Let γ be a small circle

around p0 such that γ contains no degenerate points and it

encloses only one degenerate point, p0. Starting from a point

on γ and travelling counterclockwise along γ, the major field

(after normalization) covers the circle a number of times. This

number is the tensor index of p0, and it must be a multiple

of 1/2 due to the sign ambiguity. It is 1/2 for a wedge and

−1/2 for a trisector. The tensor index for a regular point is

zero. There are also higher-order degenerate points, such as

centers, nodes, and foci with an index of 1, and saddles with

an index of −1 (Figure 2). As in the case of vector field, the

total indices of a tensor field with only isolated degenerated

points is related to the topology of the underlying surface. Let

S be a closed orientable manifold with an Euler characteristic

χ(S), and let T be a continuous tensor field with only isolated

degenerate points {pi : 1 ≤ i ≤ N}. Denote the tensor index of

pi as I(pi). Then

N

∑
i=1

I(pi) = χ(S) (2)

.

Delmarcelle and Hesselink [6] suggest visualizing hyper-

streamlines, which are curves that is tangent to an eigenvector

field everywhere along its trace. To trace a hyperstreamline

from a point, one needs to trace in both directions to obtain

two “half” hyperstreamlines. Tracing in one direction results

in the loss of sign ambiguity along the path, effectively turning

the tensor field into a vector field. Different hyperstreamlines

can only meet at degenerate points, and a degenerate point is

a hyperstreamline that consists of a single point. Other special

Fig. 3. This figure illustrates the difference between vector-based image
edge field (VIEF) and tensor-based image edge field (TIEF). For the rectangle
(top row), the image gradient vector field along the walls points to the other
side (left, red arrows). This causes VIEF to point in opposite directions,
and extrapolating values from the wall to the interior of the rectangle cause
singularities (middle, green and blue arrows). TIEF does not suffer from this
problem due to the sign ambiguity in directions (right). For the heart, TIEF
(right) is much smoother than VIEF (left) in the interior region.

hyperstreamlines include separatrices and closed orbits, which

together with degenerate points define the topology of a tensor

field [6]. In this work, we focus on controlling the degenerate

points in a tensor field.

III. IMAGES AND TENSORS

When it comes to representing natural directions in an image

or on a 3D shape, tensor fields provide a larger vocabulary of

visual elements than vector fields. For instance, the basic types

of degenerate points (wedges and trisectors) do not appear

in continuous vector fields. On the other hand, higher-order

degenerate points can be used to mimic the visual behavior of

a vector field singularity of any order. For instance, a node in

a tensor field is visually similar to a source or sink in a vector

field, and a fourth-order degenerate point has a similar appear-

ance as a dipole in the vector field. In painterly rendering,

brush stroke orientations are often guided by a field F that is

4

Fig. 4. Comparison between vector-based image edge field (VIEF, left) and tensor-based image edge field (TIEF, right) for painterly rendering of an image
of a duck. Notice that TIEF is much smoother than VIEF (top row), and their impact on the painterly results are clearly visible near the beak of the duck.

perpendicular to the image gradient vector field. There are two

ways of representing F : vector-based image edge field (VIEF)

and tensor-based image edge field (TIEF). VIEF is obtained

by rotating the image gradient by π/2 counterclockwise, and

TIEF is the tensor field whose minor eigenvector field is

colinear with the image gradient. Often, the image edge field is

computed where the image gradient is strong. Then, values in

these regions are propagated to other regions where the image

gradient is weak. Under this scenario, however, TIEF provides

a smoother representation than VIEF. Figure 3 illustrates this

with two examples: a rectangle and a heart. In the rectangle

example (top), the values of the image gradient vector field

are strong on the inner walls (left, red arrows), and they point

towards the other side. This causes VIEF (middle) to point

upward along the left wall and downward along the right

wall (green arrows). Propagating these values to the interior of

the rectangle leads to singularities. On the other hand, TIEF

does not suffer from this problem due to the sign ambiguity

(right). In the heart example, both VIEF and TIEF capture

the boundary of the shape. However, TIEF is smoother and

more uniform elsewhere than VIEF. Figure 4 illustrates the

difference between VIEF and TIEF in painterly rendering with

an example image of a duck. Notice VIEF (left) contains more

noise than TIEF (right), which causes artifacts in the painterly

results (compare the region near the beak).

A vector field can be treated as a tensor field if one ignores

directions. However, treating a tensor field as a vector field

requires that sign ambiguity be removed, which in general

will create discontinuities in the resulting vector field. This

issue has two implications that we have to deal with. First,

the image-based flow visualization technique does not directly

apply to tensor fields. Second, using a vector field design

system to modify a tensor field is likely to be unsuccessful.

IV. PREVIOUS WORK

Tensor field analysis and visualization have been well-

researched by the scientific visualization community. To re-

view all of this work is beyond the scope of our paper. We will

only refer to the work that are most relevant to ours. Tensor

field synthesis or design, on the other hand, have received

relatively little attention. To the best of our knowledge, there

are no published tensor field design systems. Next, we will

review the work in tensor field visualization and analysis, and

we will also look at design systems for vector fields.

Delmarcelle and Hesselink [5] propose to visualize 2D or

3D tensor fields with hyperstreamlines, which has proven very

efficient in revealing the features in a tensor field. Around the

same time, Carbal and Leedom [2] present a texture-based

5

technique for visualizing planar vector fields with the use

of line integral convolution (LIC). Given an initial texture

of white noises and a vector field, they assign a color to

every pixel by performing line interval convolution along the

streamline that contains the pixel. The LIC method results in

a high-quality continuous representation of the vector field.

However, it is computationally expensive since it requires

tracing a streamline for every pixel. Later, Stalling and Hege

describe a faster way of creating LIC images by reducing the

number of streamlines that need to be traced (FastLIC) [20].

Zheng and Pang [33] propose a tensor field visualization

technique that they call HyperLIC. This method makes use of

LIC to produce images that resemble visualizations based on

hyperstreamlines. Van Wijk [28] developed an interactive and

high-quality image-based flow visualization technique (IBFV)

for visualizing vector fields defined on a planar domain. IBFV

enables interactive display of vector fields with the assistance

of graphics hardware. Later, van Wijk [29] and Laramee et

al. [12] extend IBFV to 3D surfaces. IBFV is at the core of our

visualization technique, which we will describe in Section V.

Delmarcelle and Hesselink demonstrate the importance of

topological analysis for tensor field visualization. They also

provide detailed analysis and algorithms for computing of the

topology of 2D tensor fields, such as degenerate points and

separatrices [6]. Tensor fields from scientific datasets often

contain noise, which makes visualization difficult. Tricoche

and Scheuermann [26] simplify the topology of tensor fields

by performing “pair annihilation” on degenerate point pairs

that are spatially close. They also cluster nearby first-order

degenerate points into a higher-order one [24]. Alliez et al. [1]

perform tensor field smoothing to remove noise in the field,

which also tends to reduce the number of degenerate points.

Our system provides both types of tensor field simplification

algorithms (Section VI-B).

While tensor field synthesis and design systems have been

lacking, there have been published work on scalar and vector

field design. Ni et al. [16] allow a user to design fair Morse

functions (scalar) on 3D surfaces for a number of graphics

applications, such as parameterization and remeshing [7].

Vector field design has been used in texture synthesis [17],

[27], [30], fluid simulation [21], and vector field visualiza-

tion [28]. These algorithms were developed in a quick manner

to generate vector fields for a particular application, and

the details of these systems were not published. Rockwood

and Bunderwala [18] develop a vector field design system

based on geometric algebra. All of these design systems

lack control over vector field topology, such as singularities.

The design system of Theisel [22] allows a user to control

vector field topology, but it requires the user to provide the

complete topological skeleton, which is cumbersome. Zhang

et al. [32] introduced an interactive vector field design system

that provides users with control over the number and location

of the singularities in the field. In addition, their system works

for both planar domains and curved mesh surfaces. Our tensor

field design system is reminiscent of their system in terms

of the functionalities. However, their system cannot be used

to modify tensor fields, such as the tensor-based image edge

fields and curvature tensor fields.

Fig. 5. This figure illustrates our visualization technique with a planar
tensor field. The system first produces images according to two direction
assignments: Vx (upper-left), in the positive x-direction and Vy (upper-right),
in the positive y-direction. The images are then blended according to weight
functions Wx (a color coding shown in lower-left) and Wy = 1 −Wx. The
resulting image (lower-right) no longer contains the visual artifacts from Vx

and Vy.

V. IMAGE-BASED TENSOR VISUALIZATION

In this section, we present our interactive visualization

technique for planar and surface tensor fields. This tech-

nique is an extension of the image-based flow visualization

techniques [28], [29], [12]. To visualize vector fields, IBFV

produces streaks in the direction of the flow starting from an

initial image (usually white noise). This initial image is warped

in the flow direction by texturing a coarse 2D mesh with the

image and then moving the mesh vertices along the flow. The

warped image is blended with the old image, and the process

is repeated.

To visualize a tensor field, we find it sufficient to show

only the major eigenvector field. No information is lost by

omitting a view of the minor eigenvector field since it is

simply the major field rotated by π
2

. Given a tensor field T

and its major field E1(T), it is desirable to convert E1(T) into

a continuous vector field V so that we can apply vector field

visualization techniques, such as IBFV. One obvious way to

perform this task is to choose a direction for every point in the

domain. However, V will contain discontinuities that cannot

be always be eliminated. For instance, the following tensor

field T (x,y) =

(
x y

y −x

)
contains a wedge at (0,0). Assume

there is a way to assign directions to every point such that the

sign ambiguity is removed. Then (0,0) becomes a singularity

in V . However, the Poincaré index of a first-order singularity

is ±1, which is impossible to achieve for the wedge. This

is because the total Poincaré index of a region for a vector

field must be an integer, and the total index of T for the same

6

Fig. 6. Example high-order design elements with a positive tensor index (top row) and a negative tensor index (bottom row). From left to right are third
through eighth-order elements.

region is 1/2. In fact, a necessary condition for the existence

of a consistent assignment is that the tensor field contains no

degenerate points of an odd order (1,3, ...,2n+1, ...).
Let D denote the domain and S(V)⊂ D be the set of points

where V is discontinuous. While it is not always possible to

construct a vector field V from a given tensor field T such

that S(V) = /0, we build two vector fields V1 and V2 such

that
⋂

i S(Vi) only contains the degenerate points of T , and

every regular point in the domain belongs to D \ S(Vi) for

some i. The major field E1(T) for T can be represented in

terms of two spatially-varying scalar fields ρ and θ , which are

the magnitude and direction of E1, respectively. Specifically,

E1(T) = ±ρ
(

cosθ
sinθ

)
(ρ ≥ 0). We define the following two

vector fields from E1(T):

Vx =





ρ
(

cosθ
sinθ

)
if cosθ ≥ 0

ρ
(
−cosθ
−sinθ

)
otherwise

(3)

Vy =





ρ
(

cosθ
sinθ

)
if sinθ ≥ 0

ρ
(
−cosθ
−sinθ

)
otherwise

(4)

Basically, Vx is obtained from E1(T) by choosing directions

so that the x-component of Vx is non-negative everywhere.

S(Vx) = {(x,y)|cos(θ(x,y)) = 0}. Similarly, Vy is obtained by

choosing directions so that the y-component of Vy is non-

negative, and S(Vy) = {(x,y)|sin(θ(x,y)) = 0}. S(Vx)
⋂

S(Vy)
is the set of degenerate points. Let Ix and Iy be the images

produced using IBFV with Vx and Vy, respectively. Let WX =
cos2 θ and Wy = sin2 θ = 1−Wx be the blending functions.

Then the final image I = Ix×Wx + Iy×Wy produces the desired

result. Figure 5 illustrates this process for a tensor field T in

lower-right. We compute the IBFV images based on Vx (upper-

left) and VY (upper-right). Notice the visual artifacts caused by

the discontinuities in these images. The weight function Wx is

shown in lower-left according to the following color coding.

From 0 to 1 in the increasing order, the colors are dark, red,

yellow, and green. To extend this technique to visualizing a

surface tensor field T , we project E1(T) onto the image space

and apply the two-image blending technique to the projection.

VI. TENSOR FIELD DESIGN

In this section, we describe our two-stage tensor field design

system for planar domains and surfaces.

A. Initialization and Analysis

During the initialization stage, our system allows a user to

quickly create an initial tensor field through a set of design

elements. An element can be either regular if a desired tensor

value is specified, or singular if a particular type of degenerate

point is needed. For our applications, we have found that it is

usually sufficient to provide specifications up to second-order

degenerate points (first-order: wedge and trisector; second-

order: node, center, and saddle; see Figure 2). Every design

element is extended to a globally defined basis field, and the

user-defined tensor field is a sum of these basis fields.

Given a regular element (V X0,VY0) defined at p0, we

compute ρ0 =
√

V X2
0 +VY 2

0 and θ0 = 2arctan(VY0
V X0

) and define

the following basis field:

T (p) = e−d‖p−p0‖
2

ρ0

(
cosθ0 sinθ0

sinθ0 −cosθ0

)
(5)

where d is a decay constant that is used to control the

amount of influence of the basis field. Using weight func-

tions e−d‖p−p0‖
2

allows us to combine basis tensor fields by

summing them. Singular elements can be extended to create

basis fields in a similar fashion. For example, to create a

basis field with a wedge point at p0 = (x0,y0) such that its

only separatrix is extended in the positive x-axis, we use the

following formula.

T (p) = e−d‖p−p0‖
2

(
x y

y −x

)
(6)

7

Fig. 7. A tensor field (left) is first rotated by π/4 (middle), then reflected
with respect to the Y -axis (right).

where x = xp − x0 and y = yp − y0. The following matrices

produce a trisector, a node, a center, and a saddle, respectively.

(
x −y

−y −x

)
,

(
x2 − y2 2xy

2xy −(y2 − x2)

)

(
y2 − x2 −2xy

−2xy −(y2 − x2)

)
,

(
x2 − y2 −2xy

−2xy −(y2 − x2)

)

The system allows a user to modify the location, orientation,

and scale of a singular element as well as to remove an existing

element. Modifications to a singular element will result in

more complicated matrices.

To allow an arbitrary tensor field to be created, our system

allows the use of a design element of any order. In general,

an Nth-order element (N > 0) has a tensor index of ±N
2

. Such

an element can be created by using the following matrix:

DN

(
acos(Nθ)+bsin(Nθ) ccos(Nθ)+d sin(Nθ)
ccos(Nθ)+d sin(Nθ) −(acos(Nθ)+bsin(Nθ))

)

(7)

where D =
√

(x− x0)2 +(y− y0)2, θ = arctan(y−y0
x−x0

), and the

matrix

(
a b

c d

)
has a full rank. The sign of tensor index of a

degenerate point equals that of ad−bc. Figure 6 shows some

third through eighth-order elements (from left to right), where

the elements in the top row have a positive tensor index and

the elements in the bottom row have a negative index.

The resulting tensor field is interactively updated and dis-

played as the user continues to make adjustment to the set

of regular and singular elements. The tensor fields in the

middle and right of Figure 1 and at the right of Figure 12

show examples of designed fields. Colored line segments

with arrows indicate the location and orientation of regular

elements, and colored boxes indicate the type and location of

singular elements. Our implementation of field initialization is

similar to the vector field design system of [32]. Notice this is

not the only way to create an initial tensor field. Other methods

such as constrained optimization could also be used. The

initial tensor field that a user creates often contains unspecified

singularities, and our system handles them through topological

editing operations that we will describe in the next section.

The initial tensor field is then sampled at the vertices and

linearly interpolated inside the triangles. Our system then

computes the location and type of degenerate points in a

tensor field. In addition, we compute separatrices emanated

from wedges and trisectors. For planar tensor fields, we follow

closely the algorithms described in [5], [25].

Fig. 8. This figure shows a tensor field before and after user-guided tensor
field smoothing. The original field (left) has many degenerate points, while
the smoothed field (right) has only one. Notice that tensor values outside the
smoothing region (the white loop) do not change.

B. Editing

Our system provides three types of editing operations for

tensor fields: matrix actions on tensor fields, smoothing, and

topological editing. These operations are natural adaption of

the editing operations provided in the vector field design

system of Zhang et al. [32]. While the functionalities of our

tensor editing operations are similar to their counterpart for

vector fields, the implementations are rather different due

to the sign ambiguity in tensor fields. One of our major

contributions in this paper is the use of conversions between

vector fields and tensor fields, which allows us to adapt editing

operations for vector fields to tensor fields. We will now

describe our editing operations in more detail.

1) Matrix Actions on Tensor Fields: We consider the action

of a non-degenerate 2 × 2 matrix M on a tensor field T :

(M̃(T))(p) = MT T (p)M. It is straightforward to verify that

M̃ is a group action on the set of deviate matrices if and

only if M = ρ
(

cosθ −sinθ
sinθ cosθ

)
or M = ρ

(
cosθ sinθ
sinθ −cosθ

)

for some ρ ∈ R and θ ∈ [0,2π). Ignoring scales, we con-

sider the following sets: R = {

(
cosθ −sinθ
sinθ cosθ

)
} and F =

{

(
cosθ sinθ
sinθ −cosθ

)
} where θ ∈ [0,π).

Let Rθ be an element in R that rotates the major (minor)

field of T by an angle of θ . Rθ does not change the number

or location of the degenerate points in T . Furthermore, it

maintains the tensor index of any isolated degenerate point,

and it can be used to turn a center into a node or a focus

with an appropriate rotation θ . Any element Fθ in F also

maintains the number and location of the degenerate points in

T . The signs of tensor indices of degenerate points are negated,

however, by the operators in F . Performing Fθ twice results

in the original field.

Figure 7 illustrates this on a tensor field shown in the left.

It is first rotated by π/4 to obtain the tensor field shown in

middle, which is then reflected with respect to the Y -axis

to obtain the field in the right. Notice that tensor rotations

and reflections do not change the number or location of the

degenerate points. Rotations maintain tensor indices while

reflections negate them.

8

Fig. 9. This figure compares the degenerate points in a tensor field (left)
to the singularities in the vector field (right) after conversion (Section VI-
B.3). Notice this conversion does not change the number and location of the
degenerate points.

2) Smoothing: Our system allows tensor field smoothing

inside a user-specified region R. By holding tensor values

fixed on the boundary of R, the system performs component-

wise Laplacian-smoothing. Similar smoothing operations have

been used in tensor field smoothing [1], [13], and vector

field smoothing [23], [32]. Tensor field smoothing allows a

user to reduce the geometric complexity of a field as well

as the number of degenerate points that it contains. Figure 8

compares a tensor field (left) with its smoothed version (right).

Note the tensor values on and outside the region’s boundary

(the white loop) do not change.

3) Topological Editing: Our system provides two topolog-

ical editing operations: degenerate point pair cancellation, and

degenerate point movement. We will refer to them as pair

cancellation and movement from now on. The pair cancellation

operation allows a user to eliminate a pair of unwanted

degenerate points with opposite tensor indices. Due to the

Poincaré theorem for tensor fields, degenerate points can only

be eliminated in pairs so that the total index sum does not

change. The movement operation provides control over the

location of degenerate points. In our system, both operations

are designed to provide topological guarantees in that only

the intended degenerate points are affected. There have been

several algorithms for pair cancellation, such as [26]. To the

best of our knowledge, the movement operation is new.

Tricoche and Scheuermann [26] perform degenerate pair

cancellation by first finding a small neighborhood surrounding

the degenerate point pair, and then iteratively update tensor

values at the interior vertices so that the tensor index for each

cell in the region is zero. This method requires planar tensor

fields, and it is intended for degenerate point pairs that are

closer to each other than to other degenerate points. We have

set our goals on performing pair cancellation on tensor fields

that are defined on either planar domains or curved surfaces,

and for degenerate point pairs even when they are not closest

neighbors. Zhang et al. [32] provide robust algorithms for pair

cancellation and movement of singularities in a surface vector

field based on Conley index theory [15]. We wish to adapt their

algorithms to surface tensor fields. However, Conley index

theory is defined in terms of vector fields, and it is not obvious

how it might be extended to tensor fields.

To address the problem, we consider ways of converting a

Fig. 10. This figure illustrates the topological editing operations in our
system. For an tensor field shown in the left, a user first moves the two
trisectors (blue dots) to be near each other, therefore forming a saddle type
of pattern in the region (middle). Next, the user cancels the trisectors with a
wedge from each side, resulting in an elongated center pattern (right). The
conversions between tensor and vector fields enable us to reuse algorithms
from vector fields, such as those in Zhang et al. [32].

tensor field to a vector field such that any degenerate point

in the tensor field becomes a singularity in the vector field.

One possibility is to remove the sign ambiguity from the

eigenvector field. However, as we have seen in Section V,

places near odd-order degenerate points (wedge, trisector) will

cause discontinuity in the resulting vector field. Therefore, we

must look for other ways of converting a tensor field into a

vector field. Consider the following mapping α from a deviate

tensor field to a vector field:

α :

(
F G

G −F

)
→

(
F

G

)
(8)

α has the following desirable properties. First, α maps

a continuous tensor field T to a continuous vector field

V = α (T). This is different from the sign ambiguity removal

method that we used in for tensor field visualization (Sec-

tion V). Second, a point p = (x,y) is a degenerate point

of T if and only if p is a singularity of α (T). Third, the

tensor index of p with respect to T is half of the vector

(Poincaré) index with respect to α (T). Figure 9 shows an

example tensor field T (left) and the corresponding vector field

α (T) (right). Notice that a trisector in T becomes a saddle in

α (T), and a wedge is mapped to a first-order singularity with a

positive Poincaré index (right, source: green; sink: red; centers:

magenta and cyan). The inverse of α is well-defined and also

continuous, which we denote α−1. While the concepts of α
and α−1 are simple, they enable ideas and algorithms from

vector fields to be applied to tensor fields, especially those that

address degenerate points. Tricoche [25] describe yet another

relationship between a tensor field and a vector field based on

the concept of covering space. We did not use this relationship

because it maps a wedge in the tensor field to a regular point

in the vector field.

To perform pair cancellation and movement on a tensor

field T , we first convert it to a vector field V = α (T). Next,

we perform the corresponding topological editing operations

on V to obtain V ′, which we then convert back to a tensor

field T ′ = α−1(V ′). Figure 10 illustrates the topological editing

operations on a tensor field with two centers and two trisectors

(left). First, the trisectors (blue dots) were moved into nearby

positions to form a saddle pattern. Next, the trisectors were

cancelled with a wedge from each side. This results in an

elongated center pattern (right).

9

Fig. 11. This figure shows example tensor fields designed on various test models. The tensor field on the sphere (left) was created by placing a center
element at each of the six evenly-spaced points on the sphere. The topological skeleton of the major field is very similar to the edges of a cube. The field on
bunny was created by putting node elements on both sides of its face and on the tail. The tensor field on Venus was obtained by combining the curvature
tensor field with center elements on her eyes to emphasize them.

C. Tensor Field Design on Surfaces

Designing tensor fields on surfaces is considerably more

difficult than on the plane. First, building basis tensor fields

requires a global parameterization, which is often lacking for

a surface. Second, the surface normal for a mesh surface

is discontinuous at the vertices and across the edges. As

illustrated in [32], the piecewise linear representation for

planar vector fields does not produce continuous vector fields

on surfaces. This is also true for tensor fields.

To remedy the problems, we adapt the surface vector field

representation and design algorithms of [32] to surface tensor

fields, which are based on the concepts of geodesic polar maps

and parallel transport. The adaption is straightforward due

to the connections between vector fields and tensor fields de-

scribed in the previous section. Interested readers may refer to

their work for details on surface vector field design. Example

tensor fields on various 3D surfaces are shown in Figure 11.

The colored boxes indicate singular elements. Also shown

are the separatrices that correspond to the major field (the

red curves). Notice that this scheme allows us to consistently

trace hyperstreamlines based on a surface tensor field without

the need for a surface parameterization. In fact, we used the

scheme to compute separatrices in a tensor field (Figure 11), to

create hatches in pen-and-ink sketch (Figures 13 and 14), and

to trace lines of curvature in anisotropic remeshing (Figure 15).

VII. RESULTS AND APPLICATIONS

All tensor fields shown in this paper were created using

our system. In addition, we demonstrate the capability of our

system with three graphics applications: painterly rendering,

pen-and-ink illustration of surfaces, and anisotropic remeshing.

Painterly rendering is a well-researched area, and to review

all existing algorithms is beyond our scope. In this work, we

use the approach of Hertzmann [11] and Hays and Essa [9]

with the following modification: instead of using the image

edge field to guide brush stroke orientations, the user creates a

tensor field either from scratch or by modifying the image edge

field with our tensor field design system. Figure 1 illustrates

this with three example tensor fields on the same image of

a human’s eye. The field shown in the left column is the

tensor-based image edge field (TIEF). While it captures the

main features in the image, such as the eye and the eyebrow,

it is not smooth near the corners of the eye and around the

pupil. By adding a center element in the middle of the eye

(middle column), the noise around the pupil becomes less

noticeable. Finally, the images shown in the right correspond

to a tensor field that was created from scratch. Figure 12

provides additional examples. From left to right are: Mona

Lisa (TIEF), Mona Lisa (modified TIEF), and a cat’s face

(a field designed from scratch). For Mona Lisa, the image

edge field contains a wedge on the left side of her forehead

that is visually distracting in the painting. Also, a part of her

left eye was “washed out”. By performing degenerate point

movement, the wedge was moved from her forehead to the

corner of her left eye, removing the artifacts in both areas. In

the cat example, the tips of ears can be easily modelled by

wedges. In contrast, it would have been difficult to model the

ears smoothly using features in vector fields.

Pen-and-ink sketching is an efficient tool in illustrating the

shape of an object. There have been numerous algorithms

on hatch-based surface illustration, and we will only mention

those that are most relevant to our work. Girshick et al. [8]

demonstrate that principle curvature directions are best in

illustrating the shape of a surface. Salisbury et al. [19] provide

a direction design tool that allows an artist to match the

hatch orientations to the features in the input image through a

set of functions such as “comb”, blending tool, and region

fill. These functionalities are vector-based, and topological

control is lacking in the system. Hertzmann and Zorin [10]

use principle curvature directions to guide the hatch fields.

In their algorithm, two families of evenly-spaced streamlines

are computed from the principle curvature directions, and

hatches are generated based on these streamlines. We adopt

a similar approach with one modification: we allow a user

to create a synthetic tensor field from which streamlines are

created. There are two advantages to this modification. First,

10

Fig. 12. Additional examples of applying tensor field design to painterly rendering. For Mona Lisa, the tensor-based image edge field contains artifacts on
her left eye and the forehead (left column). Through a degenerate point movement operation, a wedge was moved from her forehead to the corner of her
eye, and artifacts in both regions were removed (middle column). For the cat, the user created a tensor field from scratch to match the main features. The
painterly results were obtained based on the off-line high-quality painterly rendering program of Hays and Essa [9].

while there have been many algorithms for estimating the

curvature tensor field of a 3D surface [10], [14], [3], it remains

a challenge due to the numerical difficulties associated with

polygonal surfaces. There is often the need to tune certain

control parameters in order to get a reasonable estimation,

and the tuning process can be considered as design. Our

design system also involves a design process. However, it

provides explicit control over the number, location and type

of degenerate points in the field. In Figures 13 and 14, we

compare pen-and-ink sketch using curvature tensor fields (left)

and with user-designed fields (right). The designed field for

the feline was produced from scratch, and the one for the

bunny was constructed by adding center elements to create the

illustration of eyes. With design, the user was able to create

features without causing problems elsewhere on the model.

Anisotropic remeshing has received much attention recently,

thanks to the work of Alliez et al. [1]. Anisotropic remeshing

converts an input mesh that is often noisy and over-tessellated

into a quad-dominant mesh to achieve an optimal sampling

rate. A typical algorithm works as follows. First, a tensor field

is computed by either estimating the curvature tensor [1], [13]

or through the design of fair Morse functions [7]. Second, a

family of evenly-spaced streamlines are traced for both the

major and minor eigenvector fields. Third, every intersection

between any line from each family is found, and dangling

edges are removed. Finally, the intersection points are used

to produce quad-dominant meshes. Optimal remeshing near

degenerate points (or umbilics when the tensor field is the

curvature tensor) is more difficult than for regions that are

free of degenerate points. Therefore, it is important to control

the number and location the degenerate points in the field. Fig-

ure 15 illustrates the need for topological editing in anisotropic

remeshing. The curvature tensor on the horse surface contains

a wedge and trisector pair near the belly that requires special

care during anisotropic remeshing (left). By performing pair

cancellation, the same region becomes degenerate point free,

and remeshing becomes straightforward (right).

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have identified tensor field design as an

important problem in computer graphics, and we advocate that

edges in an image be treated as a tensor field rather than

a vector field. We present an interactive tensor field design

system that allows a user to create a wide variety of tensor

fields on planar domains and curved surfaces with relatively

little effort. We also provide control over the number and

location of degenerate points in the field. Our system supports

11

Fig. 13. Pen-and-ink sketch of the feline using the curvature tensor (left) and a user-designed field (right). Notice the user-designed field contains less noise
in flat regions (body and legs).

Fig. 14. A pair of center elements were used to create artificial eyes on the bunny in pen-and-ink sketch (right). Notice that the original curvature tensor
field (left) does not contain such features.

efficient degenerate point pair cancellation and movement

operations by converting a tensor field into a vector field

with the same set of singularities, which allows us to reuse

similar algorithms for vector fields. While the conversions

are simple, they can be useful for other types of tensor field

operations that involve degenerate points. We also provide

an interactive tensor field visualization algorithm for both

planar domains and surfaces. To illustrate the benefits of

our approach, we have applied tensor field design to three

graphics applications: painterly rendering, pen-and-ink sketch

of surfaces, and anisotropic remeshing.

There are a number of issues that we wish to address in

our system. First, we have so far concentrated on controlling

degenerate points in a tensor field. It is a natural next step

to consider creating and controlling separatrices and closed

orbits. Second, we are investigating techniques for automatic

pairing degenerate points for cancellation. The algorithm of

Tricoche and Scheuermann [26] is a good starting point.

Third, we wish to extend our system to other domains, such

as volumes. Finally, understanding and visualizing high-order

tensor data is of great interests to us.

REFERENCES

[1] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Lévy, and M. Desbrun,
“Anisotropic Polygonal Remeshing”, ACM Transactions on Graphics

(SIGGRAPH 2003), vol. 22, no. 3, pp. 485-493, Jul. 2003.

[2] B. Cabral, and C. Leedom, “Imaging Vector Fields Using Line Integral
Convolution”, Computer Graphics Proceedings, Annual Conference Se-

ries (SIGGRAPH 1993), pp. 263-270, 1993.

[3] D. Cohen-Steiner and J.M. Morvan, “Restricted Delaunay Triangulations
and Normal Cycle”, In 19th Annu. ACM Sympos. Comput. Geom, pp.
237-246, 2003.

12

Fig. 15. This figure demonstrates the usefulness of topological editing operations in anisotropic remeshing. The curvature tensor contains a wedge and
trisector pair in the middle of the horse’s torso, which requires special care during remeshing (the left portion). Through pair cancellation, this region becomes
free of degenerate points (right).

[4] C. Conley, Isolated Invariant Sets and the Morse Index, AMS, Providence,
RI., CBMS 38, 1978.

[5] T. Delmarcelle and L. Hesselink, “Visualizing Second-Order Tensor
Fields with Hyperstream Lines”, Proceeding IEEE Visualization, pp. 25-
33, 1993.

[6] T. Delmarcelle and L. Hesselink, “The Topology of Symmetric, Second-
Order Tensor Fields”, Proceeding IEEE Visualization, pp. 140–147, 1994.

[7] S. Dong, S. Kircher, and M. Garland, “Harmonic Functions for Quadri-
lateral Remeshing of Arbitrary Manifolds”, Computer Aided Geometry

Design, (to appear in upcoming Special Issue on Geometry Processing),
2005.

[8] A. Girshick, V. Interrante, S. Haker, and T. Lemoine, “Line Direc-
tion Matters: an Argument for the Use of Principal Directions in 3D
Line Drawings”, NPAR 2000: First International Symposium on Non-

Photorealistic Animation and Rendering, pp. 43-52, 2000.

[9] J.H. Hays and I. Essa, “Image and Video Based Painterly Animation”,
NPAR 2004: Third International Symposium on Non-Photorealistic Ani-

mation and Rendering, pp. 113-120, 2004.

[10] A. Hertzmann and D. Zorin, “Illustrating Smooth Surfaces”, Computer

Graphics Proceedings, Annual Conference Series (SIGGRAPH 2000), pp.
517-526, 2000.

[11] A. Hertzmann, “Painterly Rendering with Curved Brush Strokes of
Multiple Sizes”, Computer Graphics Proceedings, Annual Conference

Series (SIGGRAPH 1998), pp. 453-460, 1998.

[12] R.S. Laramee, B. Jobard, and H. Hauser, “Image Space Based Visual-
ization of Unsteady Flow on Surfaces”, Proceeding IEEE Visualization,
pp. 131-138, 2003.

[13] M. Marinov and L. Kobbelt, “Direct Anisotropic Quad-dominant
Remeshing”, Computer Graphics and Applications, 12th Pacific Confer-

ence on (PG’04), pp. 207-216, 2004.

[14] M. Meyer, M. Desbrun, P. Schrder, and A.H. Barr, “Discrete Differential-
geometry Operators for Triangulated 2-manifolds”, VisMath, 2002.

[15] K. Mischaikow and M. Mrozek, “Conley Index”, Handbook of Dynamic

Systems, North-Holland 2, pp. 393-460, 2002.

[16] X. Ni, M. Garland, and J.C. Hart, “Fair Morse Functions for Extracting
the Topological Structure of a Surface Mesh”, ACM Transactions on

Graphics, vol. 23, no. 4, (SIGGRAPH 2004), pp. 613-622, 2004.

[17] E. Praun, A. Finkelstein, and H. Hoppe, “Lapped Textures”, Computer

Graphics Proceedings, Annual Conference Series (SIGGRAPH 2000), pp.
465-470, 2000.

[18] A. Rockwood and S. Bunderwala, “A Toy Vector Field Based on
Geometric Algebra”, Proceeding Application of Geometric Algebra in

Computer Science and Engineering, (AGACSE2001), pp. 179-185, 2001.

[19] M.P. Salisbury, M.T. Wong, J.F. Hughes, and D.H. Salesin, “Orientable
Textures for Image-based Pen-and-ink Illustration”, Computer Graphics

Proceedings, Annual Conference Series (SIGGRAPH 1997), pp. 401-406,
1997.

[20] D. Stalling and H.C. Hege, “Fast and Resolution Independent Line Inte-
gral Convolution”, Computer Graphics Proceedings, Annual Conference

Series (SIGGRAPH 1995), pp. 249-256, 1995.
[21] J. Stam, “Flows on Surfaces of Arbitrary Topology”, ACM Transactions

on Graphics, vol. 22, no. 3, (SIGGRAPH 2003), pp. 724-731, 2003.
[22] H. Theisel, “Designing 2d Vector Fields of Arbitrary Topology”, Com-

puter Graphics Forum, vol. 21, no. 3, (Proceedings Eurographics 2002)

21, pp. 595-604, 2002.
[23] Y. Tong, S. Lombeyda, A. Hirani, and M. Desbrun, “Discrete Multiscale

Vector Field Decomposition”, ACM Transactions on Graphics, vol. 22,

no. 3, (SIGGRAPH 2003), pp. 445-452, 2003.
[24] X. Tricoche, G. Scheuermann, and H. Hagen, “Scaling the Topology

of Symmetric Second Order Tensor Fields”, Proceedings of NSF/DOE

Lake Tahoe Workshop on Hierarchical Approximation and Geometrical

Methods for Scientific Visualization, California, 2001.
[25] X. Tricoche, “Vector and Tensor Field Topology Simplification, Track-

ing, and Visualization”, PhD thesis, Universitt Kaiserslautern, 2002.
[26] X. Tricoche and G. Scheuermann, “Topology Simplification of Sym-

metric, Second-Order 2d Tensor Fields”, Geometric Modeling Methods

in Scientific Visualization, In B. Hamann, H. Müller, H. Hagen (Hrsg.),
Springer, 2003.

[27] G. Turk, “Texture Synthesis on Surfaces”, Computer Graphics Proceed-

ings, Annual Conference Series (SIGGRAPH 2001), pp. 347-354, 2001.
[28] J. J. van Wijk, “Image Based Flow Visualization”, ACM Transactions

on Graphics, vol. 21, no. 3, (SIGGRAPH 2002), pp. 745-754, 2002.
[29] J.J. van Wijk, “Image Based Flow Visualization for Curved Surfaces”,

In: G. Turk, J. van Wijk, R. Moorhead (eds.), Proceedings IEEE Visual-

ization, pp. 123-130, 2003.
[30] L.Y. Wei and M. Levoy, “Texture Synthesis over Arbitrary Manifold

Surfaces”, Computer Graphics Proceedings, Annual Conference Series,

(SIGGRAPH 2001), pp. 355-360, 2001.
[31] W. Welch and A. Witkin, “Free-Form Shape Design Using Triangulated

Surfaces”, Computer Graphics Proceedings, Annual Conference Series

(SIGGRAPH 1994), pp. 247-256, 1994.
[32] E. Zhang, K. Mischaikow, and G. Turk, “Vector Field Design on

Surfaces”, Tech Report, GVU 04-16, Georgia Institute of Technology,
2004.

[33] X. Zheng and A. Pang, “Hyperlic”, Proceeding IEEE Visualization, pp.
249-256, 2003.

