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ABSTRACT 

In previous work we have presented a prototype of an assistant 

system for the blind that can be used for self-localization and 

interactive object identification of static objects stored within 3D 

environment models. In this paper we present a new method for 

interactive tracking of various types of movable objects. The state 

of fixed movable objects, like doors, can be recognized by 

comparing the distance between sensor data and a 3D model. For 

the identification and model-based tracking of free movable 

objects, like chairs, we have developed an algorithm that is 

similar to human perception, based on shape and color 

comparisons to trained objects. Further, using a common face 

detection algorithm, our assistant system informs the user of the 

presence of people, and enables the localization of a real person 

based on interactive tracking of virtual models of humans. 

Categories and Subject Descriptors 

H.5.2 [User Interfaces]: User-centered design, Prototyping  I.4.6 

[Segmentation]: Edge and feature detection, Region growing, 

partitioning I.4.7 [Feature Measurement]: Feature 

representation I.4.8 [Scene Analysis]: Color, Depth cues, Object 

recognition, Shape, Stereo, Tracking K.3.1 [Computer Uses in 

Education]: Distance learning K.4.2 [Social Issues]: Assistive 

technologies for persons with disabilities 

General Terms 

Algorithms, Measurement, Design, Experimentation, Human 

Factors 

Keywords 

Indoor navigation, blind users, impaired vision, mobile computing 

1. INTRODUCTION 
Remarkable advances have been made in the development and 

technical optimization of assistant systems which provide blind 

and deafblind people web accessibility equal to that of others. 

Regarding mobility, however, there remain many challenges to 

equal information access for the sensory impaired. Several 

devices under development or on the market provide object 

and/or obstacle recognition. Most basic is the cane, advancing 

to devices based on ultrasound [21,32], laser [15] or other 

technologies which transform image data into sound [29]. Even 

more sophisticated are eyeglasses with an embedded camera to 

support recognition and naming of previously-trained faces 

[13]. The problem in most cases is that users of these systems 

often know neither their own position nor the position of 

specific objects within their environment. Localization becomes 

even more difficult when movable objects are involved. In such 

cases, positional estimations are little better than chance. 

This self-localization and navigational system for the blind and 

partially-sighted is based upon detailed 3D models of indoor 

environments. These models, thus far restricting our system to 

indoor environments, are available for many public and private 

buildings or can be created in a reasonable time. In 2004 we 

presented a design for a new type of indoor navigation and 

object identification system for the blind [8]. The basic idea of 

this system combines 3D environmental models with 

information acquired from a local sensor module. The sensor 

module consists of a stereo camera, a 3D direction sensor, and a 

keyboard. By pressing keys, inquires can be sent either to the 

connected portable computer or to a platform of one or more 

servers distributing information about the immediate and more 

distant environment. Initial room location of the user can be 

determined using conventional WiFi installations. Precise 

localization of the user within rooms is accomplished using our 

self-localization method based on distance measurement of 

feature points on walls and appropriate adjustment of the 

building model [11]. Our system enables users to recognize 

objects from the 3D model by detecting the closest object in 

front of the user, and transmitting its name over a loudspeaker. 

In the near future it will also be possible to solve complex 

navigation inquiries using the “Nexus Platform”, an open 

platform of several servers which allows access to many 

different applications and will include spatial-temporal features 

of the user’s environment [23,24]. By pressing one of the keys 

on our system, it is also possible to switch the speech output to 

other languages. This offers the opportunity to playfully learn 

object names in foreign languages just by exploring one’s own 

environment [10]. This feature might also be helpful for blind 

children while learning their native language. 
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Another of our developments is a combination of our object 

identification system with commercial portable Braille displays. 

This solution was designed to afford deafblind persons [9] equal 

access to environmental information. Use of the Braille display 

might also prove advantageous for blind users in situations 

when acoustical output is to be avoided. 

During early usability tests of our first prototype it became 

clear that important objects can be missed if scanning of the 

environment is done in an unsystematic manner. It sometimes 

happened that the blind user unexpectedly came upon a critical 

area (stairs, e.g.) because the sensor module was pointed in 

another direction. To avoid such occurrences we augmented our 

indoor 3D models with “virtual navigation areas”. These were 

conceptualized as simple rectangles and positioned in front of 

important places, such as building entries, room doors, hallway 

intersections, elevators, stairs, emergency exits, and restrooms. 

In reality there are no corresponding objects in these areas. 

However, when a blind person walks into a virtual navigation 

space, appropriate spoken information is provided, including 

the existence of banisters or landings, the number of steps, etc. 

[7]. 

The paper is organized as follows: The subsequent section 

focuses on related work. We then describe our design and 

developments and summarize our results thus far. We next 

provide an outlook on future work. The paper closes with an 

overall discussion and a final conclusion. 

2. RELATED WORK 
Navigation and orientation systems for blind and visual 

impaired people have recently become quite an active research 

area. Several different, interesting, and unique approaches exist, 

and it seems that all compete to be the best and most widely 

utilized. These diverse research approaches and the systems 

they generate can, for the most part, be classified into a few 

general categories. One category can be termed basic obstacle 

avoidance. It includes the NavBelt from Shoval et al. [30] 

which produces a 120-degree wide view ahead of the user, then 

translates the information into stereophonic acoustical sound. 

Another in this category is John Zelek’s [34] work to extend the 

range of the walking cane. Two web cams, attached to the cane, 

stream stereographic images into the system. Incoming signals 

are translated into tactile feedback, expressed via vibrating 

buzzers inside a glove worn by the user. A similar approach has 

been described by Mecocci et al. [20]. They also use image 

analysis to produce a simple scene description with useful 

landmarks, but information is delivered acoustically to the user. 

Other approaches are more closely related to ours, since they 

also take advantage of large scale infrastructure equipment for 

determining the location of the user. Magatani et al. [19] use an 

optical beacon system, in which the user carries a beacon 

receiver on his shoulder. However, their system is only able to 

determine the user’s position, not his directional orientation. 

Drishti from Ran et al. [27] also uses optical beacons for 

locating a user inside an indoor environment. Additionally, their  

system  is  equipped  with  a  differential  GPS sensor, affording 

both indoor and outdoor navigation. A spatial database 

containing detailed information about the indoor environment is 

used, similar to our modeled environments. They also provide 

the user’s orientation, and their current position is accurate 

within 22 cm. Although their system provides both indoor and 

outdoor navigation, the user must use a voice command to 

switch between the two modes. 

Optical systems are vulnerable to occlusion problems, however, 

representing a significant disadvantage. A different approach 

was proposed by Kulyukin et al. [14]. They use RFID tags and 

receivers, as well as a robotic assistant that navigates the user 

inside the building. Another system uses base plates equipped 

with RFID tags. Spoken text concerning the current location 

can be provided via a receiver on the cane. This system will be 

commercially available soon [22]. 

The increasing prevalence of WiFi, Bluetooth or similar 

network systems allows for the localization of persons in many 

areas on the basis of signal strength measurements combined 

with map information [2]. All these systems work well in new 

and unknown indoor environments. However, they rely on the 

provision and installation of specific infrastructures – in the 

case of optical tracking, very specialized and expensive sensors 

and transmitters. Unfortunately, this often prohibits large-scale 

deployment. 

For outdoor navigation several systems have been proposed 

[5,17,18,28,31] or are commercially available [4]. They most 

often rely on the GPS navigation system and suffer different 

constraints than indoor navigation systems. Therefore, they are 

hardly comparable to our system. 

One of the most advanced systems for face recognition is the 

iCARE interactions assistant for the blind, developed by 

Krishna and Black [13]. They use principal component analysis 

and images of distinctive facial features to discriminate between 

faces. When their small, eyeglass-integrated camera recognizes 

a face stored in a database, the name of the person can be 

presented over the loudspeaker. Like our system, theirs uses 

images and databases, however it cannot provide information 

about the distance and location of recognized persons. 

3. TRACKING OF MOVABLE OBJECTS  

3.1 Setup and Typical Test Scenario 
We have thus far developed two different sensor modules 

enabling object identification and augmented indoor navigation 

for the blind within unknown and complex environments. Our 

first system was hand-guided and could be held like a 

combination flashlight and cell phone [8]. In our latest version a 

synchronized stereo camera (Bumblebee BB-Col-40, by Point 

Grey Research) is built into the front part of the bicycle helmet 

(Figure 1). This head-guided version allows hands-free 

operation, and its higher position offers a better overview than a 

sensor module at the typical hand level. The disparity images of 

the stereo camera are used for distance analysis, and in the case 

of free movable objects, also for segmentation purposes, 

described later in detail. An inertial sensor (MT9B, by Xsens) is 

mounted in the back of the helmet. This includes a 3D compass, 

a 3D gyroscope, and a 3D acceleration sensor. Inquiry options 

concerning objects or navigation advice, and adjustments such as 

volume changes, can be made via the external keyboard of a 

notebook computer (Samsung, x20, 1.6 GHz), or, in the case of 

the hand-guided sensor module, via the integrated keyboard of a 

cell phone. 
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Figure 1:  Typical test scenario for the tracking of movable 

objects. A stereo camera integrated in the front of a bicycle 

helmet is used for image analysis and distance measurement. 

The inertial sensor at the back of the helmet provides the 

current viewing direction. Distance and direction data are 

used for self-location by comparison with the 3D model, and 

for detection of differences between reality and model 

information. 

A typical object identification procedure works as follows: First 

the user’s current room is determined by means of a 

conventional WiFi system and a signal map showing the 

differences in the signal strength from various access points. 

Then user location within the room is determined by calculating 

the disparity between image-based distance measurement and 

the corresponding adjustment of the 3D model. The viewing 

direction of the user can be obtained from the 3D inertial 

sensor. Both location and directional data define a picking ray 

that enables the system to hit and recognize objects within the 

3D model. Using a hierarchical scenegraph (OpenSceneGraph 

[26]) we can virtually navigate instantaneously within the 

3D models following the real movements of the sensor, 

allowing real-time identification of modeled objects. The name 

and features of the closest object hit by the picking ray are 

acoustically announced to the user. 

3.2 State of Partly-Fixed Movable Objects 
For the recognition of the position of movable but partly-fixed 

objects, like doors, we work with a simple comparison of the 

measured distance using the stereo camera and the distance 

information provided by the building model. Then the distance to 

the object of interest is determined using the depth image 

calculated from the stereo images. Figure 2 shows a sequence of 

camera images on the left side, and the corresponding 3D model 

on the right side. If the distance of the targeted object (like the 

door on the left in the first image row) from the wall is equal to 

the distance from the wall in the model with the door closed, then 

the probability is high that the door is really closed. A 

corresponding message is then provided to the user acoustically. 

 

Figure 2:  Sequence of a side by side synopsis of one camera 

image and the corresponding rendered 3D model. The 

comparison of real distances with virtual distances of the 

model suggests conclusions regarding the position of the door. 

Text printed on the right images – current location, the state 

of objects, and warnings – can be delivered to the blind user 

via acoustic or tactile means. 

Figure 2 shows some of the text messages provided to the user: 

i.e., the room number and coordinates of the user (first text line), 

the closest object and features of interest (second line), additional 

warnings (third line), and other information about the objects and 

their location relative to the user. 

Recognition of door position includes measurements of the 

distance from the user to the door, and/or from the user to the wall 

behind the door. Comparative measurements with a laser 

distancemeter (DistoTM pro4a, by Leica) have shown that the error 

function of the camera increases exponentially with distance. At a 

distance of one meter there is an error of about one decimeter. 

This error increases to about two meters at the distance range of 

ten meters. For distances typical of indoor navigation (below six 

meters), the camera operates with an error of about 0.2 meters. 

Additionally, measurement of the object’s position is dependent 

upon detected contrast. The white wall behind the door in 

Figure 2 offers little contrast, increasing the probability of error. 

Statistically speaking, correct recognition of door position in this 

example would be unambiguous when the door is fully open or 

fully closed, and about 50% during the opening process. 
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Warnings can also be provided for objects that are not in the 

camera’s line of vision. If there is a discrepancy between the 

image-based distance and the model information, as it is the case 

of a half-open or an open door (second and third image row) then 

a message can be given to the user that the door is “possibly 

open”. Because of space constraints, not all acoustically-presented 

information can be visualized on the images. 

3.3 Tracking of Free Movable Objects 
When children are asked to draw an object they typically draw a 

rough shape and then fill it in with color. This simple but 

powerful example of human perception is comparable to our 

method for tracking free movable objects. This procedure enables 

our assistant system to determine the name, color and the current 

position of objects like chairs, which can be moved 

simultaneously in reality and virtually within our model. 

Our algorithm for tracking of free movable objects is divided into 

three steps: training, recognition and model-based tracking. 

Figure 3 provides an overview of the algorithm. Details of the 

algorithm are described in subsequent paragraphs. Initially, a 

movable object is trained (first image on the left, Figure 3). Then, 

the object is moved to a new location (second row). If the object 

can be found again (row three) according to a stored object 

description a virtual model can be inserted in the 3D model (row 

four, right image). When the object is moved again the location of 

the corresponding virtual model can be updated interactively (row 

five). 

Please note that the text information on the video screen shots of 

the 3D model show only a small part of the information that can 

be provided to the user. It should also be noted that the current 

frame rate, visible on the bottom left edge of these images, is not 

the frame rate under normal conditions. The process of recording 

and saving the real image and the rendered image to the hard disc 

reduces the frame rate significantly. Frame rates normally lie in a 

range between ten and thirty frames per second, depending on the 

complexity of the scene. 

Training of Movable Objects 
In the first step of our algorithm, the object of interest is trained 

according to its shape and its color. The corresponding object 

description and its name is stored in a database with shape 

images, color histogram information, and basic color terms. For 

the segmentation of the outline we use an alpha-blending 

between one of the color images and the disparity image of the 

stereo camera. The color image is multiplied by a factor of 0.9 

and the disparity image is added with factor 0.1. The resulting 

image (Figure 4a) is used for the segmentation of the region of 

interest using a standard region-growing algorithm.  

During the segmentation procedure the disparity information 

assures that only image parts with the correct depth are chosen. 

Otherwise objects in the background with the same color could 

be selected too. For the selected region an image mask is 

generated and stored in a database together with the pertinent 

color histogram and the basic color term of this region 

(Figure 4b).  

 

Figure 3: Training, recognition and tracking of a chair. The 

shape, color term, and color histogram of the seat, viewed 

from different positions, are stored in a database. When the 

chair is moved (row two) it can be recognized using these 

object descriptions (row three). A virtual chair model is 

inserted into the 3D model (row four, right image) and 

tracking this virtual object model (row five) allows further 

location and movement descriptions relative to other objects. 

The color histogram consists of 16 hue-ranges of the HSV color 

model. The basic color term is determined with an algorithm that 

takes into account the region’s color environment. This reflects 

human color perception [12], which is influenced by surrounding 

colors. To allow for increased independence of the viewing 

direction during the search, several image masks containing shape 

information can be stored for one object in the database. 
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Description-based Search and Object Recognition 
In the second step, recognition, a search is initiated using 

camera images directed where objects of the database are 

expected. For this search we used the so-called CamShift-

method (Continuously Adaptive Mean-Shift) of the Open 

Source Computer Vision Library (OpenCV) [25]. This method 

searches for a region with the most similar histogram values as 

the histogram of the object of interest. When this first test is 

positive a second test is initiated to assess the similarity 

between color terms. If this second test is also positive the 

shape of the objects is compared using the image masks. For 

this comparison the HuMoments-method of Intel’s OpenCV 

Library is used [6]. This method involves seven special 

derivations of the direction, and has been shown to be 

independent of the rotation and the scaling of the image. When 

the last test has shown a good matching too, the name and the 

distance of the object is transmitted to the user. For this 

measurement the distance to the middle of the objects’ top edge 

is used. 

Model-based Tracking of Free Movable Objects 
During the third step of the algorithm a virtual model of the 

movable object is inserted into the static 3D environment 

model. The position of this virtual object can be updated 

interactively according to the movements of the real object. If a 

virtual corresponding 3D model of this object is available, it 

can be stored with the object description in the database. 

Otherwise an abstract model or a simple bounding box can be 

used. When the real object is moved to a new location the 

corresponding location of the virtual object model can be 

updated interactively. This can be done by adding a new 

transformation node to the scenegraph, which shifts the virtual 

object to the new location. 

This simultaneous tracking of the virtual object provides the 

blind user information about the real object, its features and its 

current location relative to the user’s. Further, it warns of 

obstacles in the current environment close to real-time 

demands. 

Restrictions, Possible Sources of Error, and Typical 

Durations 
So far the recognition capability of the system is restricted to 

modeled or trained objects. That is to say, if objects which the 

system has not been trained to recognize are placed in a 

modeled environment, misleading information may be 

announced. The nature of this incorrect data depends upon the 

size of the novel object. For small items, like a briefcase or 

backpack, correct distance data is typically combined with the 

name of the closest modeled object, resulting in incorrect object 

identification. If the unknown object is large, like a movable 

poster panel, it may obscure large parts of a wall used for the 

self-positioning process. In this case the user’s distance from 

the unknown object will be correct, but both the user’s and the 

object’s absolute position will be incorrect, and the object will 

be misnamed.  

Bad lighting conditions can also lead to misinformation. Under 

normal office conditions (i.e., without extremely dark corners or 

direct sunlight), the stereo camera and the system’s shutter and 

white balance algorithm function efficiently. Indeed, current 

usability  tests  have  shown  that  it  is  advisable  to  turn  office  lights 

 (a) 

 (b) 

Figure 4: Training and search for a colored chair.  The shape 

of the targeted object is extracted using alpha-blending of one 

of the color images and the disparity image of the stereo 

camera (a). The shape, the color histogram of the target 

region, and the region’s color name are stored in a database. 

If the object is moved to a new location this description can be 

used to search for and track the object. In a successful 

matching process, the 3D model can be updated (b). 

on to achieve optimum performance. This was a rather new 

experience for our blind subjects. However, since light switches 

are included in our model, it proved an easy adjustment.  

Even when environmental objects have been modeled or trained, 

discrimination problems can occur. Since color and shape are the 

basis upon which objects are identified, similarly-shaped objects, 

especially those of the same color, cannot be distinguished from 

each other. A white metal table, for example, might be confused 

with a white wooden table. Also, identical objects of the same 

type cannot yet be detected. If there are, for example, two 

matching chairs close to each other, the search focus will change 

from one to the other while the camera is moved, but 

simultaneous identification is not possible. 

The training process can be done within a few seconds by a 

person familiar with the procedure. During training the object 

should not be moved. Recognition accuracy is optimized by 

creating and saving several image masks of the same object. 

Imaging can be done from front, side, and back perspectives, for 

example, and saved within the object description. The more 

images saved, however, the more time it takes to train the object, 

the more computing power is necessary, and the more time it 

takes during use for the device to compare stored images and 

identify the object. Duration of the recognition process depends 

on the complexity of the scene, and as already mentioned, on 

lighting. Under good conditions (as shown in Figure 3) a typical 

recognition takes place within one or two seconds. Tracking of 

objects, then, is accomplished in close to real time. 
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3.4 Model-based Tracking of Persons 
Our latest method focuses on the model-based tracking of 

persons. One constraint is that the face or upper body must be 

facing the camera more or less straight on. At present it does not 

discriminate between persons, but informs the user about the 

presence of persons and their location relative to his/her own. For 

the recognition of faces we use the face recognition algorithm of 

the OpenCV library [3] originally developed by Viola and Jones 

[33] and extended by Lienhart and Maydt [16]. This algorithm 

searches for image regions that contain what statistical model-

based training has determined to be a typical facial pattern. Once 

a face is found we determine the distance to the user, and insert a 

virtual model of a person analogous to the movable objects in 3.3. 

Figure 5 shows a typical recognition sequence of a face, with 

screenshots of a tracking movie with a virtual model of a person. 

In the first image row on the left the face is recognized. It is 

possible to follow the recognized face as it moves around, and to 

measure its distance from the user using the disparity image. Both 

types of information, the detection of a man and the distance, can 

be transmitted to the user over the speech engine. An abstract 

model of a person is inserted into the virtual 3D model (second 

row, right image). The third line shows a screenshot of the 

approaching person, and the simultaneously approaching abstract 

object within the model. The small shift between real and virtual 

user positions, seen relative to the board in the background, is 

caused by small errors in image-based self-localization.  

In normal office environments these errors are usually smaller 

than 0.5 meters. We should mention that for performance reasons 

it is not recommended at present to search for persons and 

movable objects at the same time. This would slow down the 

recognition performance significantly and prevent interactive 

tracking. 

4. RESULTS 
We have developed a new method enabling object identification 

of free movable objects for the blind within unknown and 

complex indoor environments. On the basis of recognition 

algorithms and 3D environment models it is possible to track real 

moveable objects. Insertion of a corresponding virtual object 

follows the movement of the real object. If the velocity of the 

object does not significantly exceed normal human walking 

velocity, it is possible to track walking humans close to real-time 

demands. 

Knowledge of the user’s coordinates in the 3D model, and of the 

time-dependent location of movable objects or persons relative to 

all modeled objects enables our assistant system to solve 

information tasks heretofore possible only for a human escort. All 

objects present in the model or in the database of movable objects 

can be recognized and searched for by the blind user. Absolute 

coordinates of these objects, their features and distances from the 

user and other objects can be immediately transmitted 

acoustically to the user. 

5. FUTURE WORK 
The work presented in this paper is restricted to the limited 

resources of a conventional laptop. Under these conditions efficient 

tracking can be done only for single objects.  

 

Figure 5: Model-based tracking of a person. Using a face 

detection algorithm a person can be detected in images (first 

row). The disparity information enables the insertion of a 

virtual person within the room model with acceptable 

accuracy (row two). Movements of the persons can be 

detected and transmitted to the user via acoustical or tactile 

means (row three). 

The next step will be to expand our system to a client-server 

solution. The features of such a solution were described in our 

previous work. By distributing extensive calculations among 

powerful servers, real-time processing of large environment 

models would be possible. Therefore, we will continue to embed 

our system into the Nexus framework. The Nexus framework is a 

general location-aware service platform currently under 

development at the University of Stuttgart. This approach will 

enable us to handle large databases with many objects. Further, 

extended computing power, especially that provided by 

programmable graphic cards, will make it possible to integrate 

multi-functional expert knowledge and other powerful recognition 

algorithms. This will allow such advances as face recognition 

even when faces are seen from the side, and the recognition of 

fast moving objects like cars. 

In order to provide blind users accessibility to complex 

information, such as descriptions of crowd movements, usability 

tests must be done. These tests must involve a greater number of 

subjects, and should focus on software ergonomics. But 

optimization of hardware should also be considered. For normal 

users the hardware has to be reduced significantly in the next 

version, to be handled more discreetly and easily. Technical 

enthusiasts in our group of subjects are already willing to use our 

prototype during everyday activities, as bicycle helmets are not 

uncommon and relatively comfortable. They report that concern 

over the system’s appearance is far outweighed by their gains in 

functional mobility and independence. 
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6. DISCUSSION 
Blind persons are able to move and navigate easily within known 

environments with a speed that is sometimes astonishing. In 

contrast, their orientation and navigation in unknown 

environments can be both difficult and dangerous. Based on the 

recent development of mobile computing devices and optimized 

network connections, it appears possible to mitigate these 

mobility challenges. In our opinion it is currently impossible to 

achieve object identification of arbitrary objects using systems 

that are only based on image segmentation and image 

interpretation. We are therefore convinced that object 

identification, orientation and navigation tasks for the blind can 

be optimized significantly by combining local multi-sensor 

information with global world models.  

For indoor environments, most landmarks and objects important 

to the blind can be stored in 3D models of selected buildings. 

Government and public buildings, and training centers for the 

blind, for example, are available or can be created in a reasonable 

period of time. The time required to set up the system within a 

multi-story building varies from a few days to several months, 

depending upon the complexity of the building/rooms and the 

desired level of detail. Training time is less for simple mapping 

and naming of walls and doors, and greater for 3D models which 

include door handles and light switches. Increased man power can 

speed up the process significantly. We have begun to experiment 

with automatic modeling, using a combination of 3D laser 

scanners, high resolution and panoramic cameras, developed by 

Biber et al. [1]. Thus far, semantic demands inherent in the 

naming process necessitate manual modeling.  

Outdoor environments, however, still present quite a challenge to 

independent navigation for the blind, given the dearth of available 

computing resources and the complexity of the environment. 

Overall, generic use of our system is fairly simple. Blind persons 

who use cell phones or computers are able to learn its basic 

features (i.e., object recognition, distance estimation, and the 

detection of humans) within minutes. Operation of more advanced 

features (like keyboard shortcuts and training of environmental 

objects) takes more time and practice, from several hours to 

several days. Learning time varies with the individual’s 

motivation, patience and general aptitude, just as learning to use 

the more complex options on a cell phone. 

By embedding our device into the Nexus architecture, several 

new possibilities become available. Besides navigating, orienting, 

and local object identification, the system can offer everyday 

services designed for sensory handicapped people, such as 

medical support. Furthermore, our device could provide time-

dependant warning messages.  

While considering potential research and development areas, we 

must also consider some remaining challenges. One issue is 

energy consumption of the portable computer, which currently 

limits its usage to a maximum of four hours. Another is the effect 

of electromagnetic fields and strong temperature drifts, which 

increase the errors of measurement. Further, a good compromise 

must be found between the size of the device and its robustness. 

And, although the Nexus platform provides countless additional 

options for assistant systems, it was not built exclusively to serve 

the blind. Extracting relevant information, without overwhelming 

the user with extraneous detail, may prove difficult. 

7. CONCLUSION 
Apart from the optimization work that must be done in the near 

future concerning system hardware and software ergonomics, 

limited usability tests have shown that our method of tracking 

movable objects, combined with environment model information, 

provides the basis for safe and independent navigation for blind 

and deafblind people. It offers real assistance to sensory impaired 

users, providing complex recognition and navigation tasks at 

home, at school, at the workplace, and during leisure time. 
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