

Open access • Proceedings Article • DOI:10.1117/12.2182840

Interactive ultrasonic field simulation for nondestructive testing — Source link []

Jason Lambert, Gilles Rougeron, Sylvain Chatillon, Lionel Lacassagne

Institutions: Centre national de la recherche scientifique

Published on: 30 Apr 2015 - Eurographics

Topics: Software and Nondestructive testing

Related papers:

- Design of the convolution layer using HDL and evaluation of delay time using a camera signal
- ODoST: Automatic Hardware Acceleration for Biomedical Model Integration
- Massive Parallel Algorithms for Software GNSS Signal Simulation using GPU
- · Optimized hardware and software for fast full-chip simulation
- · Hardware versus software implementations of fast image processing algorithms

INTERACTIVE ULTRASONIC FIELD SIMULATION FOR NON-DESTRUCTIVE TESTING list

J. LAMBERT¹, H. CHOUH¹, G. ROUGERON¹, V. BERGEAUD¹, S. CHATILLON¹, L. LACASSAGNE², J.C. IEHL³, J.P. FARRUGIA³, V. OSTROMOUKHOV³

¹ CEA LIST, CEA Saclay - Digiteo Labs, PC120, 91191 Gif-sur-Yvette cedex, France.

² LRI, UMR 8623, Univ. Paris Sud 11, Team Parallel Systems, Bât 650 Ada Lovelace, 91405 Orsay Cedex, France.

³ LIRIS, UMR 5205, Univ. Lyon 1, team R3AM, Bât. Nautibus, 43, bd du 11 novembre 1918, 69622 Villeurbanne cedex, France

Context

Non Destructive Testing (NDT)

Non-invasive techniques used for the detection of critical defects in parts or industrial structures

- Examinations are performed during manufacturing, in maintenance or in-service.
- Many industries: energy, petrochemical, aeronautics, transports, etc.
- Strong economic and public safety issues implied.
- Multiple techniques are used: ultrasounds, Eddy currents,

CIVA software

- **NDT Simulation and Analysis Platform**
 - Design of new methods/probes
 - Qualifications of methods
 - Interpretation of complex results
 - Virtual Testing at designing of parts
 - Training

radiography X or g, etc.

• Refractions,

happen.

array.

200 customers, world-wide commercial ש

distribution many contexts and use cases.

Need for interactive simulations

Ultrasonic Field Simulation

A fast implementation for simple configurations

	Pencil computation		Results		What's next ?
	Homogeneous isotropic specimen with planar surfaces	Field image per second	PC 2x12 cores (Ivy Bridge) E5-2697v2@2,70GHz	Г	Build and test of an AVX version (256bits – 8 floats/register)
	Path computation for immersion or contact probe	20	 Reference Optimized 20 20 20 	Г	Use of Intel MIC architecture (Xeon Phi) – hope a good scaling
	Eor a single refraction at the interface between counling material and specimen	1	7	Г	Cuda reference version for GPU needs optimization (can bene

For a single retraction at the interface between coupling material and specimen material **following Snell-Descartes** following equation can be written :

 $x_i' - X$ where X is unknown $c_{1}\sqrt{(x_{i}-x_{i}')^{2}+z_{i}^{2}}$ $c_{2}\sqrt{(x_{i}'-x)^{2}+z^{2}}$

Non-linear equation solved via iterative **1D Newton method** (Similar to [2])

- Direct and indirect paths computation.
- Indirect paths = refraction + single reflexion without mode conversion.
- Validity of paths computed are tested : location of points on surfaces, occlusions.

Fresnel coefficient and divergence factor = analytic formulae.

Up to **20 field image per seconds** on simple configurations Interactivity goal on CPU is reached !

Towards more complexity

- benefit from SIMD implementation analysis on CPU).
- Functional extensions :
 - Longer ray paths (more reflexions/refraction with mode conversion) implies solving a set of N non linear equations (or use [3])
 - Non-planar surfaces (quadric, quartic) raise equations complexity.
 - Need for heuristics in order to avoid testing all the possible sets of surfaces ([2])

Difficult and still limited

Complex cases

Any geometry (non planar-surfaces,

triangle meshes)

- Heterogeneous specimen
- Ray paths of any length
- Isotropic / anisotropic materials

(progressive computation)

Heterogeneous anisotropic weld 3D CAD Pencil computation step is the most expensive step

Complex but still needs to be interactive

Preliminary results =

Basic tools

fast ultrasonic ray tracer based on Intel Embree (CPU) and Nvidia Optix (GPU)

(intel)

Acceleration of phase and energy directions computation for anisotropic material = Fast computation by intersection of meshed slowness surfaces and interpolation of normals. Acceleration vs analytic = x7 to x8

Number of ray paths with two reflections Mrays / s							
Specimen	Material	PC 2x12 cores	Nvidia Gefore GTX Titan				
Planar specimen (12 tri)	Isotropic	17,7	45,7				
	Anisotropic	5,0	7,8				
CAD Specimen (32 kTri)	Isotropic	6,9	6,9				
	Anisotropic	2,7	3,0				

Solutions considered

Progressive pencil step computation + intermediary US field images

Solution 1

Iterative geometrical method

For each field point and each mode, find pencils reaching the probe surface via a reverse beam tracer. Pencil solid angles are then gradually decreased, and occlusion or surface discontinuities are processed via an adaptive algorithm (like AD-Frustum [4]). At each iteration, for pencils reaching the surface probe, Fresnel coefficients are computed.

Solution 2

Perform a MC light tracing (or MCMC) with importance sampling, and possibly regularization (like in [5]) following ray paths starting from the probe until they reach the field area and contribute to the field points impulse responses. Pbm : coherent sources !

Find paths between field point and probe surface + costly computation of divergence factor, Fresnel coefficients...

Perspectives and Conclusion

- Interactive ultrasonic field simulation for simple configurations can be performed on recent CPUs
- Tests on AVX, AVX2 CPUs and Intel MIC shall be performed for this method.
- A fast Cuda-based **GPU** implementation shall be carried-out.
- Non-planar surfaces or longer paths with wave conversion shall have to be taken into account.
- For complex cases (heterogeneous specimen with anisotropic materials, complex geometry and long ray paths) another method based on fast ray tracing shall be developed.
- Fast ultrasonic field simulations shall be derived to perform interactive computations of echoes on defects or specimen boundaries.
- These interactive tools shall be available in next Civa software commercial releases.
- As different codes developed for different hardware (CPUs and GPUs) will be available, an auto-tuning mechanism will be settled in order to choose automatically the best one for a given ultrasonic field configuration. Another mechanism might be developed to automatically tune computation options in order to keep a satisfactory level of interactivity ([6]).

References

[1] N. Gengembre, "Pencil method for ultrasonic beam computation", in Proc. Of the 5th World Congress on Ultrasonics, pp 1533-1536, (2003).

[2] B. Walter, S. Zhao, N. Holzschuch, and K. Bala, "Single scattering in refractive media with triangle mesh boundaries.", ACM Trans. Graph. 28, 3, Article 92 (July 2009), 8 pages.

[3] W. Jakob, S. Marschner, "Manifold exploration: a Markov Chain Monte Carlo technique for rendering scene with difficult specular transport", ACM Transactions on Graphics (TOG) - SIGGRAPH 2012 Conference, Vol. 31, Issue 4, July 2012, article No. 58

[4] A. Chandak, C. Lauterbach, M. Taylo, Z. Ren and D. Manocha, "AD-Frustum: Adaptive Frustum Tracing for Interactive Sound Propagation", IEEE Transactions on Visualization and Computer Graphics, Vol. 14, Issue 6, November 2008, pp 1707-1722.

[5] A. Kaplanyan, C. Dachsbacher, "Path Space Regularization for Holistic and Robust Light Transport.", Comput. Graph. Forum 32, (2): 63-72 (2013).

[6] P. Ganestam, M. Doggett, "Auto-tuning Interactive Ray Tracing using an Analytical GPU Architecture Model", Proceedings of the 5th Annual Workshop on General Purpose Processing with Graphics Processing Units, 2012, pp 94-100

jason.lambert@cea.fr, hamza.chouh@cea.fr, gilles.rougeron@cea.fr, vincent.bergeaud@cea.fr, lionel.lacassagne@lri.fr, jean-claude.iehl@univ-lyon1.fr, jean-philippe.farrugia@univ-lyon1.fr, victor.ostromooukhov@univ-lyon1.fr