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Abstract—We propose an interactive video completion method aiming for practical use in

a digital production workplace. The results of earlier automatic solutions often require a

considerable amount of manual modifications to make them usable in practice. To reduce

such a laborious task, our method offers an efficient editing tool. Our iterative algorithm

estimates the flow fields and colors in space-time holes in the video. As in earlier

approaches, our algorithm uses an L1 data term to estimate flow fields. However, we

employ a novel L2 data term to estimate temporally coherent color transitions. Our

graphics processing unit implementation enables the user to interactively complete a

video by drawing holes and immediately removes objects from the video. In addition, our

method successfully interpolates sparse modifications initialized by the designer.

According to our subjective evaluation, the videos completed with our method look

significantly better than those with other state-of-the-art approaches.

& VIDEO COMPLETION IS one of the most highly

demanded skills in the digital production work-

place, because postproduction designers must

always complete tasks such as the removal of

objects, logos, annotations, and noise from

videos. As there are few practical methods for

video completion, these tasks rely heavily on

designers’ manual edits to create convincing nat-

ural-looking results. However, such manual video

completion is very demanding. Hence, we set out

to develop a practical method to help designers.

A lot of practical methods have been pro-

posed for image completion rather than video

completion, some of which are widely imple-

mented in commercial image editing software

products. State-of-the-art image completion
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algorithms are computationally efficient, thus

allowing the users to work interactively through

trial and error: this is crucial to obtain satisfac-

tory results, because the image automatically

completed by a computer is often far from

perfect.

However, video completion remains challeng-

ing for the following two reasons:

1) computational complexity increases with the

number of video frames, which makes it diffi-

cult for the user to work interactively by trial

and error;

2) the quality of the completed video is often

not satisfactory due to failures in estimating

the dynamic motion of the camera and

objects.

For example, the previousmethods developed

in previous studies1–7 suffer from these two prob-

lems: they are computationally costly and their

results contain a significant number of visible

artifacts, caused by the loss of temporal coher-

ence. Bokov et al.8 proposed an efficient method

that is more than 100 times faster than the previ-

ous method, which takes 75 seconds to complete

a 90-frame “camel” video with a resolution of

854� 480 pixels. Murase et al.9 recently proposed

a more efficient method that completes a video

with a resolution of 832� 448 pixels in video

rate, e.g., 32 frames per second (FPS). However,

visible artifacts are often found in the results

produced by these efficient algorithms. Further-

more, such artifacts are difficult to modify manu-

ally. Note that given a completed video with such

artifacts, digital artists have to remove them by

typically performing manual image editing frame

by frame.

To address these issues, we propose a novel

algorithm based on a flow-guided color estima-

tion approach, which we demonstrate is useful

for practical usage (see Figure 1). We present

the following three technical contributions.

1) Our iterative algorithm estimates flow fields

and colors in the holes alternately. We pro-

pose to use the L1 data term for flow-field

estimation but the L2 data term for color

estimation. This is a technically simple modi-

fication, but the quality of the completed

video is significantly improved: the L2 data

term successfully removes temporally visible

artifacts caused by the L1 data term [see

Figure 1(a) and (b)].

Figure 1.We removed the flamingo specified by themask from the input video. The time required to process

an 80-frame “flamingo” video at a pixel resolution of 854� 480was 4.3 seconds. The top row shows frames from

the completed videos and the bottom row shows the corresponding x-time slice along the yellow line. The result

based on theL1 data term has artifacts (a), which are clearly visible as seams in the x-time slice. On the other

hand, our result based on theL2 data termhas smoother color transitions (b): our result still suffers fromghosting

artifacts but wasmore desirable for the audience (see the Subjective Evaluations subsection). To remove the

artifacts, wemanuallymodified a frame and reapplied our algorithm. The result based on theL1 data term

still contains artifacts (c), but artifacts were successfully removed from the result based on theL2 data term (d).

Our supplementary video shows the differencesmore clearly, which is available in the IEEEComputer Society

Digital Library at http://doi.ieeecomputersociety.org/10.1109/MCG.2019.2950176.
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2) Our L2 data term also allows the user to mod-

ify the completed video efficiently. We dem-

onstrate that the manual modification on

single or a few frames yields dramatic

improvements in the quality of the com-

pleted video. It is impossible to achieve such

improvements using the L1 data term [see

Figure 1(c) and (d)].

3) Our method is computationally efficient

enough for interactive video completion. The

user interactively draws a mask and our

method immediately removes objects from

the video. Such a user interaction has never

been demonstrated in the previous papers.

We demonstrate the successful completion of

a variety of videos using our prototyping system.

According to our subjective evaluation, the qual-

ity of the videos completed by our method is sig-

nificantly better than those completed using

state-of-the-art methods. The result of our sub-

jective evaluation clearly indicates that our L2

scheme proves to be superior to the L1 scheme

of all the other methods.

PREVIOUS WORK
There are two main approaches to automatic

video completion: one is the patch-based

approach and the other is the flow-guided color

estimation approach.

Wexler et al.1 proposed the first patch-based

method for video completion. They used a

5� 5� 5 space-time patch and iterated a pair of

operations: 1) the nearest neighbor patch

searches and 2) the calculation of the weighted

averages to fill in the holes. They showed

that the problem of video completion can be

formalized as a maximum likelihood estimation,

and their iterative optimization is an expectation

maximization like algorithm. Newson et al.4

extended Wexler et. al.’s method by introdu-

cing PatchMatch and developing an efficient

algorithm.

To improve temporal coherence of com-

pleted videos, not only colors but also flow

fields in space-time holes are estimated.10,11 Le

et al.7 extended Newson et al.’s algorithm by

taking flow fields into account. They did not

use a cube-shaped patch, but instead chose a

patch with x--y slices that are varied based on

the flow field. This improves the quality of the

completed video dramatically compared with

the previous methods and often produces the

best results.

Roxas et al.5 proposed a flow-guided color

estimation method. They introduced an energy

function for video completion by extending the

energy function used for optical flow estimation.

Huang et al.6 proposed an energy function that

combines the patch-based approach with flow-

guided color estimation. They proposed an itera-

tive optimization algorithm to minimize the

energy function, where the patch-based

approach, flow-guided color estimation, and

flow-field estimation are iterated until they con-

verge. However, the computational complexity

of this optimization algorithm is high, and it

takes 3 hours to complete a 90-frame video with

a resolution of 854� 480 pixels, thus prohibiting

practical usage. Bokov et al.8 proposed an effi-

cient method that is more than 100 times faster

than Huang et al.’s method. As the bottleneck of

the flow-guided color estimation is the optical-

flow estimation, Bokov et al. efficiently estimated

flow fields by applying a fast optical-flow algo-

rithm to a sparse grid in the image space.12 This

successfully reduced the computational com-

plexity. Instead of an iterative optimization algo-

rithm to minimize the energy function, the flow-

guided color estimation is solved only once.

Recently, Murase et al.9 more efficiently esti-

mated flow fields of occluded background

regions using convolutional neural networks.

This method completes a video with a resolution

of 832� 448 pixels in a video rate of, e.g., 32 FPS.

These methods work well for a variety of videos,

but the completed videos tend to contain visible

artifacts, especially space-time seams in

dynamic regions. To address these issues, we

propose a fast flow-guided color estimation

method that produces significantly better

results.

The approach of estimating colors and flow

fields at the same time is applied to other video-

editing problems: for example, Nandoriya et al.13

removed reflections from a video. The propaga-

tion of colors along the known flow fields of a

video is another issue: Sadek et al.14 propagated

the user’s edit on a frame throughout the video

with less noticeable artifacts.
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FLOW-GUIDED COLOR ESTIMATION
Our goal is to complete space-time holes in

videos and produce natural-looking results. Let

V denote the video, and W , H, and T be its

width, height, and number of frames, respec-

tively, i.e., V is the space-time volume with

dimensions W �H � T voxels. Let p be the

voxel position ðx; y; tÞ.VðpÞ gives the voxel value

at p, which corresponds to a scalar intensity

value from 0 to 1. Let Ff denote the forward

flow field of V. The flow vector at p is

FfðpÞ ¼ ðdx; dy; 1Þ, which indicates that a voxel

position p ¼ ðx; y; tÞ at the tth frame moves to

pþ FfðpÞ ¼ ðxþ dx; yþ dy; tþ 1Þ at the ðtþ 1Þth
frame. Similarly, let Fb denote the backward

flow field, i.e., FbðpÞ ¼ ðdx; dy;�1Þ. Let P ¼
fðx; y; tÞj1 � x � W; 1 � y � H; 1 � t � Tg be the

set of voxel positions in the space-time volume.

Let H be the set of voxel positions in the space-

time holes in V. We describe the naturalness of

a completed video using the following energy

function:

E ¼ Ef þ Eb; (1)

where

Ef ¼
X
p2P

wfðpÞ�jVðpÞ �Vðpþ FfðpÞÞj

þ jrFf;xðpÞj þ jrFf;yðpÞj
(2)

and

Eb ¼
X
p2P

wbðpÞ�jVðpÞ �Vðpþ FbðpÞÞj

þ jrFb;xðpÞj þ jrFb;yðpÞj:
(3)

wfðpÞ and wbðpÞ are weights on the data terms

used when computing the flow fields. Each of

F�;x and F�;y represents x or y component of F�,
respectively, and r represents the gradient

operator ð@=@x; @=@yÞ. We want to compute V,

Ff , and Fb that minimize E, i.e., we want to solve

arg minV;Ff ;Fb
E. We set � to 0.1 in all of our

experiments.

The first terms of (2) and (3) are the data

terms representing the similarity between the

voxel values of adjacent frames. The other terms

are smoothness terms representing the smooth-

ness of the forward and backward flow fields.

Equations (2) and (3) are all derived from the

energy function of the optical flow estimation,

which consists of an L1 data term and the sum of

the total variation (TV) of the flow field.15

The energy function of (1) is nonconvex and

may have an infinite number of local minima. To

complete the video with a good local minimum,

we begin with an initial video and estimate V

iteratively by refining this video to decrease the

energy function. We show our iterative algorithm

in Algorithm 1.

Algorithm 1. Our iterative algorithm

Input:V: an input video,

H: a set of voxel positions in the space-time

holes

Output:V: a completed video

1: DownsampleV to ðL� 1Þ-th pyramid level

2: Initialize Ff and Fb

by setting wfðpÞ and wbðpÞ based on

(4) and (5) and applying TV-L1 algorithm

3: for l from L� 1 to 0 do
4: Set wfðpÞ and wbðpÞ based on (6) and (7)

5: for i from 1 to 3l do
6: Fix Ff and Fb and updateV by minimizing

(10) for all p 2 H
7: FixV and update Ff and Fb by applying

TV-L1 algorithm

8: end for
9: UpsampleV, Ff , and Fb.

10: end for

We compute the initial flow fields Ff and Fb

(line 2 in Algorithm 1). We set wfðpÞ and wbðpÞ as
follows:

wfðpÞ ¼ 0 p 2 H or pþ FfðpÞ 2 H
1 otherwise;

�
(4)

wbðpÞ ¼ 0 p 2 H or pþ FbðpÞ 2 H
1 otherwise:

�
(5)

We then compute the flow fields by applying the

TV-L1 optical-flow estimation algorithm.15 Since

the data terms are ignored in the holes (H),

the flows estimated outside the holes (H) are

interpolated into the holes (H). In the TV-L1

optical-flow estimation algorithm, an iterative

optimization algorithm is applied to the relaxed

version of the problem, where the data and

smoothness terms are minimized alternately

until they converge. We apply the TV-L1 algo-

rithm independently for forward and backward

flow fields: we minimize (2) to initialize Ff ; we

minimize (3) to initialize Fb.
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During each iteration (from line 5 to line 8 in

Algorithm 1), we alternate between the com-

pleted video (V) and the flow fields (Ff and Fb)

as the variable with respect to which E is mini-

mized. We first fix Ff and Fb and minimize E to

update V. We are interested only in the data

terms here, which can be minimized using the

algorithms applied in previous methods.5,6,8

However, the results produced by the previous

methods contain significant visible artifacts,

since minimization of the L1 data terms brings

temporally incoherent solutions. To address this

issue, we estimate the voxel value by minimizing

E based on the L2 data terms rather than the L1

data terms: note that the solution using the L2

data terms is one of the solutions of the L1 data

terms (as described in the Mathematical Discus-

sion subsection), but our results have much less

artifacts. We then fixV andminimizeE to update

Ff andFb. We setwfðpÞ andwbðpÞ as follows:

wfðpÞ ¼ a p 2 H or pþ FfðpÞ 2 H
1 otherwise;

�
(6)

wbðpÞ ¼ a p 2 H or pþ FbðpÞ 2 H
1 otherwise:

�
(7)

where a is the user-specified parameter. We then

apply the TV-L1 optical-flow estimation algo-

rithm. The flow fields are improved with respect

to the previous iteration.

We extend this iterative algorithm to the mul-

tiresolution approach to efficiently obtain the

final result (from line 3 to line 10 in Algorithm 1).

We start with a coarse version of V (line 1 in

Algorithm 1). Ff and Fb are initialized in the

coarse resolution. We then use bilinear interpo-

lation to upsampleV, Ff , and Fb, and switch to a

finer level once the coarser level is finished. We

let L denote the number of pyramid levels. In

our experiments, the number of iterations of

our iterative algorithm for the lth pyramid level

is 3l, where l 2 f0; . . . ; L� 1g, and the 0th and

ðL� 1Þth levels correspond to the finest and

coarsest resolutions, respectively. We have cho-

sen 3l as the number of iterations, since it gives

good convergence of our iterative algorithm.

In the Flow-Guided Color Estimation section,

we describe ourmethod assuming that the input is

a grayscale video, i.e., each voxel ofV has an inten-

sity value. When the input video is multichannel,

e.g., each voxel has red–green–blue color chan-

nels, we apply the method described in the Flow-

Guided Color Estimation section for each color

channel independently. However, since, the flow

fields Ff and Fb must be the same for all the color

channels, we compute the flow fields by applying

the TV-L1 algorithm to the grayscale video whose

intensity value is computed as the average of all

the color channels.

Differences From Previous Methods

Our energy function of (1) is different from any

other energy functions used in the previous meth-

ods. Roxas et al.’s energy function is similar to

ours but they added an energy term to guarantee

the temporal smoothness of flow fields. Also,

whilewfðpÞ andwbðpÞ are constant in ourmethod,

they were unknown variables to be optimized in

Roxas et al.’smethod. As a result, theminimization

required a complex optimization algorithmwhose

computational cost was high. A part of Huang

et al.’s energy function is also similar to ours but

they added an energy term to guarantee the simi-

larity between corresponding local patches. They

minimized the added term by a patch-based tex-

ture-synthesis method but this was computation-

ally expensive. Bokov et al. defined no energy

function, and they used neither an iterative

optimization algorithm nor a multiresolution

approach. As a result, the method was fast but it

produced visible artifacts especially when the

cameramotionwas dynamic.

We design our energy function inspired by

these methods, but it is more simple compared

with the previous methods. Since we compute

only V, Ff , and Fb, our optimization algorithm

has also become simple that can produce signifi-

cantly better results more efficiently than the

previous methods.

Minimizing Data Terms

Since only data terms are related to the

update ofV, we rewrite (1) as follows:

Edata ¼
X
p2H

jVðpÞ �Vðpþ Ff ðpÞÞj

þ
X
p2H

jVðpÞ �Vðpþ FbðpÞÞj:
(8)

pþ FfðpÞ and pþ FbðpÞ do not often point to a

grid point in W �H � T voxels. Hence, it is
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necessary to estimate Vðpþ Ff ðpÞÞ and

Vðpþ FbðpÞÞ by interpolating the values of the

neighboring voxels. As a result, the minimization

of (8) gives a blurry completed video.

To address this issue, the previous methods

tracked the forward and backward flow fields

and sampled the voxel values. Figure 2 shows

how these tracking and sampling are performed

in the x-time slice. Let p0 be equal to p. We define

pu so that puþ1 ¼ pu þ FfðpuÞ for u � 0 and

pu�1 ¼ pu þ FbðpuÞ for u � 0. The method com-

putes the forward and backward trajectories of a

particle starting from p0 until it leaves the holes.

Let pF and pB be the positions of the endpoints

of the trajectories: the suffixes F and B denote

temporal distances from p to the endpoints (see

Figure 2).

Roxas et al.5 and Bokov et al.8 determined the

voxel value VðpÞ so that VðpÞ ¼ VðpF Þ or

VðpÞ ¼ VðpBÞ. Since Huang et al. had an initial

solution computed by their patch-based

approach, VðpÞ was iteratively updated. How-

ever, unless such an initial solution is given,

their method also gives the voxel value near to

either VðpF Þ or VðpBÞ.6 All of these methods

bring temporally incoherent results.

To address this issue, we compute the

weighted average of VðpF Þ and VðpBÞ using 1
F

and 1
B as weights. Our method dramatically

suppresses artifacts caused by temporal

incoherence.

Mathematical Discussion The previous

methods use eitherVðpF Þ orVðpBÞ to determine

the voxel value VðpÞ. This can be considered as

the minimization of the following energy func-

tion consisting of L1 terms:

Edata;L1

p ¼
XF�1

u¼B

jVðpuÞ �Vðpuþ1Þj (9)

where we assume VðpF Þ and VðpBÞ as known

variables and fVðpuÞjB < u < Fg as the set of

unknown variables. This energy function is

derived from (8) by removing spatial relations

between p and its neighboring voxels and intro-

ducing temporal relations along the trajectory

through p. The optimization problem of (9) can

be established independently at each voxel posi-

tion p. Figure 3 illustrates the solutions of the

minimization of (9). All the red, green, and blue

lines minimize (9) but the red and blue lines

have a temporally sudden change in the voxel

values. These cause significant visible artifacts

of temporal incoherence, but all the previous

methods are intended to minimize (9). To

address this issue, we minimize the following

energy function consisting of not L1 but L2

terms:

Edata;L2

p ¼
XF�1

u¼B

jVðpuÞ �Vðpuþ1Þj2: (10)

The minimization of (10) enforces smooth transi-

tions between VðpF Þ and VðpBÞ, i.e., only the

green line in Figure 3 can be the solution. Edata;L2

p

can be minimized exactly by solving the linear

system
dE

data;L2

p

dV ¼ 0: this turns out to be equiva-

lent to the weighted average of VðpF Þ and VðpBÞ
using 1

F and 1
B as weights.

Figure 2. Starting from p0, we track the forward and

backward flow fields and sample the voxel values at

pF and pB.

Figure 3. Each of the red, green, and blue lines is

the plot of fVðpuÞjB < u < Fg that minimizes (9).

Only the green line minimizes (10). The red and blue

lines have a sudden change but the green line has

the smooth transition.

Feature Article

132 IEEE Computer Graphics and Applications



Remaining Regions

There often remain voxels whose intensity

value has not been estimated by the process

described previously, because it is impossible to

estimate VðpÞ when the forward and backward

trajectories go out from the space-time volume

V before pF and pB are found. We complete

such remaining regions using the image comple-

tion technique16 similarly to those used in previ-

ous methods.6,8 In the current completed video,

we first find the frame where the area of remain-

ing regions is largest. We then apply image com-

pletion to the found frame and insert it back to

the completed video. The voxels of the inserted

frame belong to H now, and we finally minimize

(10) to update V. We repeat this process while

there exist remaining regions inV.

Contrast Attenuation

The process described above causes artifacts

in some cases. Figure 4 shows an example. After

removing the car from Figure 4(a), we see arti-

facts of many undesirable edges on the road in

Figure 4(b). We explain about the situation

where such an edge tends to be produced. Let q

be the voxel position spatially neighboring to p.

Let qF 0 and qB0 be the positions where the for-

ward and backward trajectories through q first

go outside the holes. Edges on the road shown

in Figure 4(b) tend to be produced when F and

F 0 are very different or B and B0 are very differ-

ent. To solve the problem, we attenuate the con-

trast between p and q in such a situation. We

compute the desirable contrast between them

as follows:

gp;q ¼ ðVðpÞ �VðqÞÞ
� expð�bðjF � F 0j þ jB�B0jÞÞ (11)

where b is the user-specified parameter that con-

trols the strength of attenuation. We then mini-

mize the following energy function to updateV:

Econtrast ¼
X
p2P

X
q2Np

jVðpÞ �VðqÞ � gp;qj2 (12)

where Np represents fpþ ð1; 0; 0Þ;pþ ð0; 1; 0Þg.
We solve this minimization per frame using a

Poisson solver,17 and it takes 10 milliseconds for

a 854� 480 frame. The number of Jacobi itera-

tions is 200 per frame. At each Jacobi iteration,

we do not update VðpÞ at p 2 H. The result is

shown in Figure 4(c), where artifacts are suc-

cessfully removed. We apply this contrast atten-

uation not always but when required.

RESULTS AND DISCUSSION
We applied our method to 33 videos. We

downloaded pairs of videos of inputs and space-

time holes from the project pages of the previ-

ous methods.4,6–8 All videos are from the DAVIS

dataset.18 The results and comparisons are

shown in the supplementary video and material,

available online. The values of the open parame-

ters (L and a) and the time required to produce

each result are shown in the video of the supple-

mentary material, available online.

Computational Complexity

We used a desktop personal computer with

an Intel(R) Core(TM) i7 4.0 GHz central process-

ing unit (CPU), 32.0 GB of memory, and an NVI-

DIA GeForce GTX 1080 Ti graphics processing

unit (GPU). We implemented our method so that

almost all of the computations were performed

by the GPU. The TV-L1 optical-flow estimation is

therefore suitable for GPU implementation,

which enables us to develop a computationally

efficient system. It took 4.1 seconds to complete

the “camel” video, which has a resolution of

854� 480 pixels and a duration of 90 frames. We

set L and a to 1 and 0.0, respectively. Table 1

shows a comparison between the computation

time required using our method and those of

previous methods. We did not measure the com-

putation time for each previous method; rather,

we referred to the values quoted in each article.

The optical-flow estimation is the most time-

consuming task in our algorithm. For example, it

took 88% of the total computation time to esti-

mate the flow fields in the case of the “camel”

Figure 4. After removing the car from (a), we see artifacts

of many undesirable edges on the road in (b), which are

successfully removed by our contrast attenuation in (c).

January/February 2020 133



video. The computational complexity of the TV-

L1 optical-flow algorithm is proportional to the

number of iterations in it. We usually use 50 or

100 iterations at each pyramid level in the opti-

cal-flow algorithm, but 1000 iterations are used

to compute flow fields more carefully for

“elephant,” “goat,” and “kite-surf,” because they

have complex motions and occlusions.

The computational complexity of our method

is also affected by the number of pyramid levels

L. In the case of the “parkour” video, it took

5.4 seconds for L ¼ 1 [see Figure 10(a)], 6.7 sec-

onds for L ¼ 2 [see Figure 10(b)], and 11 sec-

onds for L ¼ 3 [see Figure 10(c)]. Another open

parameter a does not affect the computational

complexity.

Comparison of Completed Videos

Our method estimates the color by minimiz-

ing E based on the L2 data terms rather than

the L1 data terms. Technically, this is a simple

extension, but it dramatically improves the qual-

ity of the completed videos. Figure 5 shows typi-

cal examples. As the L1 data terms bring

temporally incoherent solutions, the colors of

the voxels change suddenly, producing visible

artifacts. The top row of Figure 5 shows frames

from the results for the “parkour” video. The

wall is broken in the result from the article by

Huang et al.,6 but is successfully reconstructed

by our L2 data terms. The bottom row of Figure 5

shows frames from the results for the “kite-surf”

video. There are clearly visible seams between

the blue water and the white splash in the result

in the work by Bokov et al.,8 but these are suc-

cessfully smoothed by our L2 data terms. Such

visible artifacts occur more often when the

motions in the completed holes are more

dynamic. Note that such artifacts have to be

removed to produce satisfactory digital con-

tents: digital artists often have to perform man-

ual image editing frame by frame. The results

based on our L2 data terms can significantly

reduce their burden.

Interactive Video Completion

Our method is computationally efficient,

which means that we can provide an effective

interactive tool. Figures 6 and 7 show examples.

The user interactively selects a frame and draws

a mask to specify the objects that they want to

remove. Once the drawing operation is com-

plete, our system immediately interpolates

between the user-drawn masks to create the

space-time holes H and achieve video comple-

tion. It took 1 minute in total to remove the roll-

erblader from the 35-frame video with a

resolution of 854� 480 pixels in Figure 6. It took

2.5 minutes in total to remove the bike from the

80-frame video with the same resolution in

Figure 7. Such a user interaction has never been

demonstrated in the previous papers.

The reason why the user can remove the

object from the video in such a short time is that

the user can draw rough masks. As shown in Fig-

ures 6 and 7, the drawn masks specify not only

pixels of the target object but also pixels outside

it. However, our method can efficiently complete

such outside pixels by sampling corresponding

pixels from the other frames.

Table 1. Computation times required
to complete the “camel” video.

Method Time

Huang et al.6 3 hours

Le et al.7 50 minutes

Bokov et al.8 75 seconds

Our method 4.1 seconds

Figure 5. Comparison between the results based on the L1

data terms (left) and those based on the L2 data terms (right).

The L1 data terms produce visible artifacts, which are

successfully removed by our L2 data terms.
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Roughly drawn masks are often sufficient for

video completion; hence, we computed the

interpolation with a quarter of the original reso-

lution for efficiency. We compute this interpola-

tion by extending the image colorization

method19 to the spatio-temporal volume. Let M

denote the interpolated mask that is the space-

time volume with dimensions W �H � T vox-

els. Each voxel of M has an intensity value from

0 to 1. We minimize the following energy func-

tion to compute M:

Emask ¼
X
p2P

X
q2Np

gðp;qÞjMðpÞ �MðqÞj2

þ 0:5gðp;pfÞjMðpÞ �MðpfÞj2

þ 0:5gðp;pbÞjMðpÞ �MðpbÞj2
(13)

where Np represents fpþ ð1; 0; 0Þ;pþ ð0; 1; 0Þg,
pf ¼ pþ FfðpÞ, and pb ¼ pþ FbðpÞ. We use the

weighting function gðp;qÞ ¼ expð� jVðpÞ�VðqÞj2
s2

Þ to
preserve the spatio-temporal edges of V during

the interpolation. We solve this minimization

using a Poisson solver. At each Jacobi iteration,

we do not updateMðpÞ in frames where the user

has drawn a mask. Finally, we compute the set of

voxel positions of the holesH as

H ¼ fpjMðpÞ > 0:5g (14)

and apply our method to complete the video.

Manual Modification of Completed Videos

We now demonstrate that our approach

based on the L2 data terms is useful for both

automatic video completion and manual modi-

fication of the results. There are visible arti-

facts in the results based on the L1 data term

[see Figure 1(a)], which are clearly visible as

seams in the x-time slice. The results for the L2

data term also contain artifacts, i.e., the fla-

mingo has double legs [see Figure 1(b)]. To

remove these artifacts, we modified frame 40

using the clone stamp tool in Adobe Photo-

shop. We inserted the modified frame into the

input and reapplied our algorithm. Figure 1(c)

and (d) shows frame 28 of the results. The

results based on the L1 data term still contain

artifacts that are visible as temporal discon-

nections in the x-time slice [see Figure 1(c)].

These artifacts are more noticeable in the sup-

plementary video, available online. On the

other hand, the double legs artifacts were suc-

cessfully removed by the method based on the

L2 data term [see Figure 1(d)].

Our method is also useful to modify multiple

frames to remove artifacts. For example, the

fence in the completed “parkour” video was bro-

ken by artifacts at frame 65 [see Figure 8(a)]. To

fix the fence, we manually modified frames 62,

70, 73, and 75 and reapplied our algorithm.

While the fence in the result based on the L1

Figure 6. It took 1 minute in total to remove the rollerblader from

the 35-frame video with a resolution of 854� 480 pixels. The top

row shows the user-drawn masks, and the bottom row shows the

frames of the completed video.

Figure 7. It took 2.5 minutes in total to remove the bike from the

80-frame video with a resolution of 854� 480 pixels. The top row

shows the user-drawn masks, and the bottom row shows the

frames of the completed video.

Figure 8. Our method, based on the L2 data term, better fixes

the broken fence after modification of multiple frames.
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data term is still broken [see Figure 8(b)], that

based on the L2 data term is better fixed [see

Figure 8(c)].

Manual Modification on Remaining Regions

Our method automatically completes the

remaining regions by applying an image comple-

tion technique (see the Remaining Regions sub-

section). However, this technique often fails to

produce an aesthetically pleasing result. Figure 9

shows examples of such failures in the remaining

regions. The rail in the “train” video is broken

[see Figure 9(a)]. The synthesized textures

around the fallen tree look unnatural in the

“rhino” video [see Figure 9(c)]. We then selected

a single frame from the completed video and

manually modified it using the clone stamp tool.

We inserted the modified frame into the input

video, and then reapplied our algorithm to pro-

duce better results, such as Figure 9(b) and (d).

Since our method is fast, the user can easily

repeat such manual modifications.

Open Parameters

Our iterative algorithm has two open parame-

ters: the number of pyramid levels L and a that

affects weights for the data terms in (1). The

larger L and a bring temporally smoother color

transitions. Figure 10(a) shows the result based

on L ¼ 1, where many ghosting artifacts are visi-

ble. This is because the images sampled by

tracking Ff and Fb, which correspond to VðpF Þ
and VðpBÞ, look so different. On the other hand,

when we set L to 3, Ff and Fb are optimized so

that VðpF Þ and VðpBÞ produce similar images,

which results in a more natural-looking com-

pleted video [see Figure 10(c)].

Contrast Attenuation

We applied contrast attenuation (see the previ-

ous section) to “bmx-bumps,” “breakdance-flare,”

“car-shadow,” and “motorbike.” We set b to 1 for

the “breakdance-flare” video and 10 for the other

videos. It successfully removes artifacts in some

cases, as shown in Figure 4. On the other hand,

since it does not take temporal coherence into

account but processes each frame independently,

flickering artifacts often appear, which are clearly

visible in the completed “breakdance-flare” video.

To avoid such artifacts,we apply contrast attenua-

tion only to sparsely selected frames, insert them

back to the input video, and reapply our algo-

rithm. The modified version of the completed

“rhino” video was produced in such a way that,

after the manual modification (see the Manual

Modification on Remaining Regions subsection),

we applied the contrast attenuation to 0th, 20th,

60-th, 75th, and 89th frames. We then inserted

them back into the corresponding frames of the

original video and our video completion algorithm

was reapplied.

Subjective Evaluations

We subjectively evaluated the visual quality

of the completed videos. This evaluation clearly

indicates that our L2 scheme proves to be supe-

rior to the L1 scheme of all the other previous

methods. The researchers seem to believe that

the L1 scheme is the best. However, this evalua-

tion reveals that this belief is not true, and our

L2 scheme is actually better.

We used 24 students (19 males and 5 females)

as participants, all of whom major in computer

science or engineering and are not familiar with

video completion. First, we evaluated our

method (without any manual modification) and

the three methods presented in the previous

methods,4,6,8 as the experimental results

Figure 9.Manual modifications on automatically completed

remaining regions (a) and (c) produce better results (b) and (d).

Figure 10. Effects of the number of pyramid levels. Ghosting

artifacts are visible in the result on L ¼ 1 (a), which are removed

in the result on L ¼ 3 (c).
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obtained using these methods were produced

using the space-time holes on the project page

for the article by Huang et al.6 We used 25 input

videos; hence, there were four completed videos

for each input video, i.e., each subject evaluates

100 (¼ 25� 4) videos. We did not include

“dance-twirl” in this subjective evaluation, since

the completed videos had a different duration.

We dilated the space-time holes for the

“elephant” result of our method to avoid the

influence of sand and dust.

For each input video, we asked the subject to

watch both the input and completed videos. We

then asked the subject to sort the completed vid-

eos based on quality, i.e., whether the completed

video looks natural and is free from visible arti-

facts. We asked the subjects to repeat this task

for all 25 input videos, which were presented in

a random order. We allowed each subject to

freely change the size of the video player and

watch each video as many times as they liked.

Thus, we obtained 600 (¼ 24 subjects × 25 input

videos) rankings. Figure 11 shows the number of

being ranked first for each input video.

The videos completed by our method were

evaluated as the best, i.e., they were ranked first

most often, for 21 of the 25 input videos. The

input videos that were ranked higher when com-

pleted using other methods were the bottom

four in Figure 11, i.e., “motorbike,” “breakdance,”

“rollerblade,” and “breakdance-flare,” Our

results of “motorbike” and “breakdance” were

2nd ranked, but they are almost comparable to

those of the other methods.

We performed manual modifications on the

results that were unsatisfactory, and asked sub-

jects to watch these modified versions. Figure 12

shows the result. Our manual modifications for

“flamingo” (see Figure 1) and “parkour” (see

Figure 8) successfully improve the quality of the

completed videos. The reason for our poorer per-

formance on the “elephant,” “rhino,” and “train”

videos in Figure 11 was that the quality of our

image completion on the remaining regions (see

the Remaining Regions subsection) was poor [see

Figure 9(a) and (c)]. We then modified each result

by manually modifying a specific frame and reap-

plied our algorithm. These modified videos [as in

Figure 9(b) and (d)] were ranked highest, i.e., they

were ranked first most often. Our result for the

“rollerblade” video was not as good as those

obtained using the other methods. We then asked

each participant to evaluate the interactive video

completion result, inwhich the rollerblader’s shad-

ows were better removed (see Figure 6), and it was

ranked the highest.

We also evaluated our method and the

method presented in the article by Le et al.7 inde-

pendent of the other three methods, as Le et al.

used different space-time holes. We used 32

input videos, and there were two completed vid-

eos for each input video, which we asked the

subjects to rank.

The videos completed by our method were

ranked first for 25 of the 32 videos. The remaining

seven videos were “blackswan,” “breakdance,”

“drift-chicane,” “kite-walk,” “mallard-water,”

Figure 11. Results of the subjective evaluation. Each

bar represents the number of subjects who ranked the

corresponding method first.

Figure 12. Results of the subjective evaluation for the manually

modified versions. Each bar represents the number of subjects

who ranked the corresponding method first.
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“motorbike,” and “rollerblade.” As Le et al.’s

method uses a patch-based approach, it is good

at synthesizing dynamic textures, e.g., repetitive

motion of clapping hands, smoke, and water sur-

face, which our method fails to complete.

Our method did not remove the shadows for

the “rollerblade” as efficiently as Le et al.’s

method.We then asked each participant to evalu-

ate the interactive video completion result again

(see Figure 6), and it was ranked the highest.

CONCLUSION AND FUTURE WORK
We have proposed a practical video com-

pletion method. Our method is computation-

ally efficient that allows the user to perform

video completion by interactively drawing

masks. Our method minimizes the energy func-

tion based on the L2 data terms to estimate

temporally coherent color transitions, which

not only produces natural-looking results but

is also useful for manual modifications on sin-

gle or multiple selected frames. The subjective

evaluation results also illustrate very well that

our method has superiority over previous

video completion approaches.

However, there still exist lots of avenues for

making our method a production-ready tool for

video completion.

1) Since the success of video completion relies

on the quality of masks to specify space-time

holes, we are also interested in extraction of

good masks from the input video such as

that presented in the article by Le et al.20 To

address these issues, we are interested in

exploiting more semantic information, e.g.,

that would be provided by deep learning

based approaches for image and video

understanding.

2) Theoretically, our method works on high-res-

olution videos, such as 4 K or 8 K, but it often

becomes inefficient due to memory con-

straints. Our method consumes a large

amount of memory, especially to keep the

forward and backward flow fields at the same

time. For example, we require 3.2 GB of mem-

ory to keep them for a 100-frame video at 2 K

resolution. This will be problematic when

completing a longer, higher resolution video.

We want to investigate the way to use mem-

ory more efficiently.

3) We want to fix our failure cases of repetitive

motions, fluid motions, etc. The patch-based

approach is good at synthesizing such

dynamic textures, but the methods based on

it are usually computationally expensive. We

want to explore an efficient patch-based

approach that enables the user to interac-

tively edit completed videos.

4) The current contrast attenuation is not

easy to use for two reasons: 1) it does not

take temporal coherence into account,

which often causes flickering artifacts; 2) as

the result, this is currently an optional tool,

i.e., the user has to decide whether it

should be applied or not. We want to

improve the algorithm and propose an

easier-to-use tool.
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