
Interactive Visibility Ordering and Transparency Computations among

Geometric Primitives in Complex Environments

Naga K. Govindaraju Michael Henson Ming C. Lin Dinesh Manocha

University of North Carolina at Chapel Hill

{naga,henson,lin,dm}@cs.unc.edu

http://gamma.cs.unc.edu/SORT

Abstract

We describe a novel algorithm for visibility ordering among non-
overlapping geometric objects in complex and dynamic environ-
ments. Our algorithm rearranges the objects in a back-to-front or
a front-to-back order from a given viewpoint. We perform com-
parisons between the primitives by using occlusion queries on the
GPUs and exploit frame to frame coherence to reduce the num-
ber of occlusion queries. Our visibility ordering algorithm requires
no preprocessing and is applicable to all kind of models, includ-
ing polygon soups and deformable models. We have used our al-
gorithm for order-independent transparency computations in high-
depth complexity environments and performing N-body collision
culling in dynamic environments. We have implemented our algo-
rithm on a PC with a 3.4 GHz Pentium IV CPU with an NVIDIA
GeForce FX 6800 Ultra GPU and applied it to complex environ-
ments with tens or hundreds of thousands of polygons. Our al-
gorithm can compute a visibility ordering among the objects and
triangles at interactive frame rates.

CR Categories: I.3.1 [Computing Methodologies]: Hardware
Architecture—Graphics Processors; I.3.7 [Computing Methodolo-
gies]: Three-Dimensional Graphics and Realism—Visible sur-
face algorithms, animation, virtual reality; I.3.5 [Computing
Methodologies]: Computational Geometry and Object Modeling—
Geometric algorithms;

Keywords: Visibility ordering, transparency computations, sort-
ing, collision detection, graphics hardware

1 Introduction

The problem of computing a visibility ordering among geomet-
ric objects is important in many interactive 3D graphics applica-
tions. Given a set of disjoint objects in a complex and dynamic
environment, our goal is to compute a front-to-back or a back-
to-front object-level ordering from a given viewpoint. This prob-
lems arises in rendering with transparency [Mammen 1989; Everitt
2001], volume rendering of unstructured grids [Williams 1992;
Cook et al. 2004], collision detection in large environments [Govin-
daraju et al. 2003], special effects generation including motion blur
and depth of field generation [Max and Lerner 1985; Przemyslaw
1993], image-based rendering [Snyder and Lengyel 1998], occlu-
sion culling [Cohen-Or et al. 2001], etc. The underlying objects
in these applications are represented as polygonal models or height
fields or deformable models.

Visibility ordering has been studied in computer graphics and
related areas for almost four decades. Different algorithms can
be classified into object-space and image-space techniques. The
object-space approaches perform a 3D sorting among objects and
compute an object-level ordering. However, the resulting algo-
rithms either perform considerable preprocessing (e.g. BSP-trees)
or are limited to simple shapes (e.g. convex polytopes). The image-
space algorithms rasterize the primitives and compute a visibility
ordering among the resulting pixel fragments, as opposed to an
object-level ordering. As a result, they are not directly applicable
to some applications such as collision detection. Moreover, cur-
rent implementations on commodity graphics processors perform
selection sort at the fragment level and may not be able to exploit
temporal coherence in many interactive applications.

Main Results: We describe a novel algorithm that computes an
object-level visibility ordering in complex and dynamic environ-
ments. We assume that different objects are non-overlapping and
a visibility order exists between them. The sorting algorithm pro-
ceeds over the list of objects in multiple iterations and computes a
sequence of consecutive quantiles based on the ordering between
the objects. The overlap tests and comparison operations between
the objects are performed using occlusion queries on the graphics
processing unit (GPU). Our algorithm utilizes the temporal coher-
ence in interactive applications and performs incremental compu-
tations to reduce the number of occlusion queries used during each
frame. Overall, our algorithm computes an object-level ordering by
performing image-space occlusion computations. The accuracy of
the occlusion computations is governed by the image-space resolu-
tion for rendering applications (e.g. rendering with transparency)
and by object-space precision for geometric applications (e.g. col-
lision detection). We have implemented the algorithm on a PC with
3.4 GHz CPU and NVIDIA GeForce FX 6800 GPU. We have tested
its performance for rendering with transparency and N-body colli-
sion culling on environments with hundreds of thousands of poly-
gons. Our algorithm is able to compute an ordering between the
3D objects at interactive rates. Some of the main benefits of our
approach include:

• Generality: Our algorithm makes no assumptions about the
input objects or their motion and is applicable to all geometric
or sampled primitives.

• Efficiency: The comparison operations between the primi-
tives are performed by using occlusion queries on the GPUs.
As a result, we are able to handle environments with tens or
hundreds of thousands of objects and high depth complexity
at interactive rates.

• Exploitation of Coherence: Our algorithm exploits temporal
coherence between successive frames and reduces the number
of occlusion queries.

Organization: The rest of the paper is organized as follows. We
survey some related work on visibility ordering and related appli-

Figure 2: These images demonstrate the performance of our visibility ordering algorithm on a CAD model with 820K triangles and high depth complexity. The left image shows the

original model rendered with opaque objects. The outer walls and structures (represented with 91K triangles) of the powerplant are rendered with transparency in the right image.

Our algorithm computes a back-to-front ordering of the transparent primitives at 7 − 10 frames on a 3.4 GHz PC with NVIDIA GeForce FX 6800 GPU and renders them with a

vertex shader.

cations in Section 2. Section 3 gives an overview of 1D visibility-
based sorting algorithm and we extend it to sorting 3D objects in
Section 4. We describe our implementation in Section 5 and high-
light its performance on rendering objects with transparency and
N-body collision culling. We compare some features of our algo-
rithm with prior techniques in Section 6 and discuss some of the
limitations.

2 Related Work

In this section, we give a brief overview of related work in visibility
ordering, sorting and their applications. Visibility computation is
a classic problem in computer graphics, computational geometry
and related areas. Many algorithms have been proposed for hidden
surface removal and visible surface computation [Sutherland et al.
1973], before the depth-buffer hardware became widely available.

At a broad level, algorithms for visibility ordering can be classi-
fied into object-space or image-space algorithms. The object-space
algorithms compute an ordering of the primitives in 3D space. Berg

et al. [de Berg et al. 1994] present an O(n(4

3
+ε)) object-space al-

gorithm for any fixed ε > 0 to compute a visibility order of n prim-
itives or to determine the existence of a cycle. However, we are not
aware of any practical implementation of the algorithm. Some of
the earliest object space algorithms were proposed by Schumacker
[1969] and Newell et al. [1972]. Later Fuchs et al. [1980] de-
veloped the binary space partitioning (BSP) tree that represented
a hierarchical convex decomposition of a given space. BSP-trees
can be used for computing a visibility ordering of a set of objects.
Most of these algorithms work well on static environments. A few
algorithms have been proposed for visibility computations in dy-
namic environments. Torres [1990] used dynamic BSP trees to

compute visibility ordering of polygons in the scenes. Sudarsky
and Gotsman [1996] described an output-sensitive algorithm which
minimizes the time required to update a hierarchy for dynamic ob-
jects for visibility culling. Snyder and Lengyel [1998] presented an
efficient algorithm for visibility sorting of geometric primitives in
dynamic scenes. Their main goal is to compute a sequence of im-
age layers which can be composed to produce the final image. The
algorithm works well on environments composed of a few hundred
convex polytopes (or union of convex polytopes). A major limita-
tion of object-space algorithms is that they can’t be used for inter-
active visibility ordering in complex, dynamic scenes.

Image-space algorithms are used for visibility ordering of pixel
fragments as opposed to object fragments. Check out a recent sur-
vey [Cohen-Or et al. 2001]. Image-space algorithms rasterize the
primitives and perform some kind of of per-pixel sorting. Carpenter
[1984] proposed the A-buffer algorithm that saves all the fragments
and their depth values in per-pixel linked lists and uses them for
sorting. Wittenbrink [2001], Jouppe and Chang [1999] and Aila
et al. [2003] have proposed extensions to the A-buffer algorithm
and used the resulting techniques for transparency. Other class
of image-space algorithms for interactive order-independent trans-
parency are based on depth peeling, which is a fragment-level depth
sorting technique described by Mammen [1989] using virtual pixel
maps and by Diefenbach [1996] using a dual depth buffer. Depth
peeling can be implemented using shadow mapping hardware on
commodity GPUs [Everitt 2001]. All these image-space algorithms
are applicable to general models and dynamic environments. How-
ever, they can not be directly used to compute an object-level visi-
bility ordering of primitives.

Many specialized visibility ordering algorithms have been pro-
posed for volume rendering of unstructured grids and polyhedral
cell complexes [Williams 1992; Max 1993; Cignoni et al. 1998].

Figure 3: Occlusion graph and 3-D visibility ordering: This figure illustrates a

simple scene with four mutually overlapping primitives and its occlusion graph. Each

node in the graph corresponds to a 3D primitive. A directed edge exists between the

nodes of two primitives P1 and P2 if P1 occludes P2 from a given viewpoint. 3D

visibility ordering is equivalent to performing topological sorting on the occlusion

graph.

These algorithms sort the cells along a ray direction and compute
the order of the resulting ray segments. Some recent volume render-
ing algorithms use GPUs to generate the fragments based on their
visibility order [Krishnan et al. 2001; Cook et al. 2004; Callahan
et al. 2005].

The algorithms for coarse-grained or N-body collision detection
use sorting techniques to prune away pairs of primitives that are
not in close proximity. The sweep-and-prune incremental algorithm
bounds each object with an AABB (axis-aligned bounding box) and
checks for overlap between them by sorting their projections along
the three axes [Cohen et al. 1995]. Govindaraju et al. [Govindaraju
et al. 2003] have presented a two pass collision culling algorithm
that renders the objects in two passes and checks for collision by
performing occlusion queries. These algorithms only prune the ob-
ject pairs that are not close to each other and do not compute a
visibility ordering between them.

Sorting is a well studied problem in itself and extensive surveys
are given in [Knuth 1973; Estivill-Castro and Wood 1992]. In terms
of using GPUs for sorting, Purcell et al. [2003] described an imple-
mentation of bitonic merge sort on the GPUs. The algorithm is im-
plemented as a fragment program and each stage of the sorting al-
gorithm is performed as one rendering pass. Recently Govindaraju
et al. [2004c] have used blending and texture mapping functionali-
ties of GPUs to implement sorting network algorithms efficiently.

3 Visibility Ordering

In this section, we formulate the problem of visibility ordering and
present an algorithm for sorting 1D elements that maps well to the
GPUs. Our sorting algorithm is based on Vis-sort [Govindaraju
et al. 2004b] that can sort 1D and 3D elements. We show that Vis-
sort can exploit the computational capabilities of the GPUs and can
compute an ordering between 1D objects. We extend it to compute
an ordering between 3D objects in Section 4. Given a collection
of n acyclic 3D primitives, our sorting algorithm rearranges the
geometric primitives either in a front-to-back or a back-to-front or-
der. In order to perform visibility ordering, we define a pairwise
occlusion relation between two 3D primitives P1 and P2 based on
whether P1 occludes P2 or not. More specifically, P1 ! P2 if for
every eye-ray intersecting P1, the eye-ray intersects P1 before P2.
Given n acyclic 3D geometric primitives, P1, P2, . . ., Pn, we as-
sume that a visibility ordering can be defined between the primitives
and there are no cycles.

The set of occlusion relations between the different pairs of ob-
jects form a directed graph between the geometric primitives (see
Fig. 3). The resulting directed graph is also defined as an occlusion

graph [Schumacker et al. 1969; Snyder and Lengyel 1998] and a
directed edge exists in the graph from P1 to P2 if P1 ! P2. Com-
puting a 3D visibility ordering is equivalent to performing topo-
logical sort on the occlusion graph. Our algorithm computes such
an ordering by performing the comparisons using GPUs (graphics
processing units). Furthermore, our algorithm exploits temporal
coherence between successive instances. The rest of the section is
organized in the following manner. We first introduce the terminol-
ogy used in the rest of the paper. Next we highlight some issues in
sorting object-level primitives on GPUs and present the 1D sorting
algorithm.

3.1 Terminology

In this section, we introduce some of the terminology and notation
used in the rest of the paper. We use lower case letters to represent
the elements of sequences and upper case letters to represent the
sequences and 3-D primitives. Moreover, we use bold face sym-
bols to represent a list of elements, like I or O. A sorting algorithm
operates on a list of data values I, and rearranges the data values
in a monotonically increasing order or a monotonically decreas-
ing order. A sequence O is defined as monotonically increasing if
xi ≤ xj for i < j, xi, xj ∈ O. A monotonically decreasing se-
quence is defined in a similar fashion. Without loss of generality,
we assume that our algorithm orders the data values in a mono-
tonically increasing order and computes an ordered sequence S as
the output. Each element in the ordered sequence S is associated
with a rank which indicates its position in S. We use the following
definitions in the rest of the paper.

Quantile: An element with rank k in S is defined as the k-th quan-
tile or the k-th largest number.

Nearly-Sorted Sequence: A nearly-sorted sequence is defined by
measuring the disorder in the sequence. We use Knuth’s measure
of disorder [Knuth 1973]. Given an input sequence I, the measure
of disorder is defined as the minimal number of elements that need
to removed for the rest of the sequence to remain sorted. It can be
trivially proved that if Y is a set of such disordered elements, then
I −Y is a longest ascending sequence. A sequence is nearly sorted
if sizeof(Y) % n.

3.2 Object-Level Sorting using GPUs

One of the major goals of our work is to handle general and dy-
namic environments at interactive rates, without performing any
precomputation. In particular, we would like to use the high com-
putational performance of GPUs for topological sorting and to com-
pute an object-level ordering. There are two main benefits of using
GPUs for sorting:

• Efficient comparison operation: The performance of any
sorting algorithm depends on the cost of the comparison op-
eration between the underlying elements. On a GPU, a com-
parison operation can be performed between a pair of geo-
metric primitives by rasterizing the primitives using occlusion
queries. GPUs are optimized for rasterization and their raster-
ization performance has been increasing at a rate faster than
Moore’s Law. As a result, reducing the comparison operation
to rasterization can result in significant performance gains.

• Number of comparison operations: The performance of a
sorting algorithm depends upon the number of comparison
operations performed to order the input elements. GPUs are
optimized to perform spatial sorting on projections of geo-
metric primitives onto the image space. Therefore, a geomet-
ric primitive is compared only against its overlapping primi-
tives in the screen-space. Moreover, GPUs compute an image-
space fusion of rendered primitives i.e., the representation

generated in the Z-buffer by rendering a group of primitives is
the same as the one obtained by rendering each primitive sep-
arately. Therefore, a new primitive can be compared against
a collective group of spatially coherent primitives that have
been rasterized into the Z-buffer. Effectively, this capability
can be used to reduce the number of pairwise comparison op-
erations on the primitives.

Issues: GPUs offer many advantages in terms of performing 3D
visibility ordering among primitives. However, there are many is-
sues in using them directly for sorting. Although GPUs are well-
suited for performing visibility sorting in image-space, it is difficult
to map current sorting algorithms onto the GPUs. The Z-buffer rep-
resentation used for performing comparison operations stores only
one value at each pixel which represents either the minimum or the
maximum depth value of primitives that project onto the pixel. Fur-
thermore, once a portion of the Z-buffer is updated, it may not be
possible to access the prior stored values. Therefore, the class of
sorting algorithms that can map well to the GPUs are the ones that
perform comparisons between an input value against the current
minimum or the current maximum of a subset of input primitives.
An example of such an algorithm is selection sort [Knuth 1973],
but that has an asymptotically worst-case complexity (O(n2)) for
all input sequences. Some of the most popular algorithms like in-
sertion sort or quick sort do not map well to the GPUs in terms of
performing comparison operations.

3.3 1D Sorting Algorithm

We describe a sorting algorithm that maps well onto the GPUs and
exhibits linear-time performance in environments with high coher-
ence. We first present our algorithm for 1D primitives.

Our sorting algorithm proceeds in multiple iterations. Initially
the input sequence is an unsorted sequence of 1D elements and
the output sequence is an empty set. During each iteration, our
algorithm operates on a list of unsorted data values and computes
a sequence of consecutive quantiles beginning with the minimum
of the unsorted list. We append these sorted values to the ordered
sequence, and iterate on the remaining data values. Thus, the size
of the unsorted list decreases during each iteration, and upon termi-
nation, the output sequence is the sorted list. The set of operations
performed by our algorithm map well to the GPUs.

The consecutive quantiles in each iteration are determined by
computing a monotonically increasing sequence in the first pass. In
the second pass, the first few values in the monotonically increas-
ing sequence are classified as consecutive quantiles. The following
notation is used in the rest of the paper.

• I = input list for the sorting algorithm

• S = current sorted sequence

• M = monotonically increasing sequence

The pseudo-code to describe our sorting algorithm is given in Fig.
3.1.

In a companion paper [Govindaraju et al. 2004b], we formally
prove that the algorithm sorts any input sequence. We now show
a simple example of our sorting algorithm operating on a list of 4
values I = {1, 3, 2, 4}. We initialize the monotonically increasing
sequence M and the sorted sequence S to an empty sequence. In
the first iteration, we perform a scan of I from the last element to
the first element in the first pass. Each element is compared against
the minimum and M = {1,2,4} is computed. In the second pass of
the first iteration, we determine that the elements 1 and 2 are sorted
and are appended to the sorted list S = {1, 2}. Similarly, in the
second iteration, the remaining data values are sorted. The series of
sorting operations are indicated in Table 1.

1D HardwareSort
1 M ={}, I= Unsorted input, S ={}
2 while(I is not empty)
3 do

First Pass:
4 min=∞
5 for each element xi ∈ I, i = sizeof(I), . . . , 1
6 if(xi /∈ M and xi ≤ min)
7 append it to the beginning of M
8 if xi ≤ min, min = xi

9 end for
Second Pass:

10 min=∞
11 T = I
12 for each element xi ∈ I, i = 1, ..., sizeof(I)
13 if(xi ∈ M and xi ≤ min)
14 remove xi from M and T, and append it to the end of S
15 if(xi ∈ T)
16 if xi ≤ min, min = xi

17 end for
18 I = T
19 end do
20 return S

ALGORITHM 3.1: Pseudo code for our novel 1D Sorting Algorithm:Given an

input sequence I , our algorithm outputs a sorted output S. During each iteration, we

perform a first pass on the elements in I in the reverse order and compute a monotoni-

cally increasing sequence M. In the second pass of each iteration, we scan the elements

of I in order, and determine the elements in M that can be sorted (lines 12-13). These

elements are appended to S, and at the end of the second pass, removed from I (lines

14 and 18). During each iteration, at least one element is guaranteed to be removed

from I and placed in S. The sorting algorithm terminates when I is empty.

3.4 Analysis

Our sorting algorithm has a best-case run-time complexity of O(n)
and a worst-case run-time complexity of O(n2). In particular, our
algorithm has some properties that are useful for many interactive
applications. These are efficient handling of nearly sorted lists, and
mapping well to the GPUs.

3.4.1 Nearly-sorted sequences and Coherence

Nearly-sorted sequences of primitives occur often in computer
graphics applications due to the coherent motion of the viewer or
the coherent motion of the objects. The depth values as well as the
relative order of the objects do not vary much due to the spatial and
temporal coherence in many interactive applications. If the primi-
tives are ordered in one frame, the sequence remains nearly ordered
in the successive frame. Therefore, if the input is nearly ordered,
our algorithm takes advantage of the low level of disorder in the in-
put sequence and achieves a linear-time performance [Govindaraju
et al. 2004b].

We provide an informal justification that our algorithm sorts
nearly-sorted sequences in linear time. Given an input sequence I,
let Y be the subset of disordered elements. During each iteration,
we can show that our algorithm sorts all the elements in I that are
less than or equal to the min(Y) including min(I), where min(X)
denotes the minimum of a sequence X. Based on this property, it
is easy to see that at most two successive iterations are required to
sort all the elements in I that are less than min(Y). In one iteration,
all the elements in I that are less than min(Y) are sorted, and if
min(I) '= min(Y), a second iteration is required to sort all the el-
ements in I equal to min(Y). Our algorithm removes all the sorted
elements from I. Thus the size of I as well as Y decreases by at
least 1 during two successive iterations, till Y becomes empty. In
the worst case, our algorithm needs (2 ∗ sizeof(Y)) iterations to
sort all the elements in I ≤ max(Y), where max(Y) is the max-

Iteration 1
First Pass

Current Element Scanned in I ={1,3,2,4} 4 2 3 1
min = ∞, M = {} min=4, M={4} min=2, M={2,4} min=2, M={2,4} min=1, M={1,2,4}

Second Pass
Current Element Scanned in I={1,3,2,4} 1 3 2 4

min = ∞,M = {1, 2, 4} min = ∞, M={2,4} min=3, M={2,4} min=3, M={4} min=3, M={4}
S={}, T ={1,3,2,4} T ={3,2,4}, S={1} T={3,2,4}, S={1} T ={3,4}, S={1,2} T ={3,4}, S = {1,2}

Iteration 2
First Pass

Current Element Scanned in I={3,4} 4 3
min = ∞,M = {4} min = 4,M = {4} min=3, M={3,4}

Second Pass
Current Element Scanned in I={3,4} 3 4

min = ∞,M = {3, 4} min = ∞,M = {4} min = ∞,M = {}
T={3,4}, S={1,2} T={4}, S ={1,2,3} T ={} S ={1,2,3,4}

Table 1: In this table, we illustrate our 1D hardware sorting algorithm on an input sequence I = {1, 3, 2, 4}. Initially, the monotonically increasing sequence M and the sorted

sequence S are set to {}. Our algorithm proceeds in multiple iterations and each iteration performs two passes on I. At the beginning of each pass, the current minimum min is

initialized to ∞. In the first pass, we scan the elements in I in the reverse order {4, 2, 3, 1} and compute M. During the scan, we compare the elements not in M against the current

minimum and only those less than or equal to the current minimum are added to the beginning of M. The minimum is updated accordingly, and at the end of the pass, a monotonically

increasing sequence M = {1, 2, 4} is computed. In the second pass, the elements in I are copied into a temporary buffer T, and scanned in order {1, 3, 2, 4}. While scanning, the

elements in M are compared against the current minimum, and if less than or equal to the minimum, are removed from M and T, and placed in S. In this pass, the current minimum

is updated for only the elements in T and not in M. At the end of the second pass, I is set to T. In this example, I = {3, 4}, M = {4}, and S = {1, 2} at the end of the first

iteration. In the second iteration, the remaining values are sorted as shown in the table.

imum of Y. At this stage, all the elements in Y are sorted in their
proper place. As there are no inversions in the rest of the elements,
the rest of the elements in I remain sorted and our algorithm orders
these elements in a single final iteration. As a result, it requires at
most (2 ∗ sizeof(Y) + 1) iterations to terminate. If the number of
disordered elements is k % n, then the run-time complexity of our
algorithm has an upper bound of (4k + 2)n which is linear in the
number of elements in the input sequence I.

3.4.2 Mapping to GPUs

Our algorithm maps well to the commodity graphics hardware, as
the comparisons of data elements are performed against the current
minimum of a subset of data values. The minimum value is stored in
the depth buffer, and the comparison operation is performed using
the depth test functionality of the GPUs. Unlike prior implemen-
tations of sorting algorithms on the GPU, our algorithm exhibits
linear-time performance on environments with high coherence, thus
enabling us to handle high depth complexity scenes.

4 Object-Level 3D Visibility Ordering

In this section, we show how the 3D version of Vis-sort [Govin-
daraju et al. 2004b] maps well to the GPUs and can be used to com-
pute a visibility ordering between 3D objects. We perform compar-
isons between 3D objects using occlusion queries.

3D sorting is more intricate as compared to 1D sorting. In 1D
sorting all the primitives are overlapping when viewed along the 1D
dimension and ordering is performed on these overlapping primi-
tives. On the other hand, given two non-overlapping 3D objects,
we may need to perform ordering between such objects to compute
a 3D visibility sort. For example, in Fig. 3, primitive O4 is overlap-
ping with primitive O2 but not with O3. In terms of 3D visibility
ordering, O4 must come before O3 in the front-to-back ordering.

Object-level 3D visibility sorting can be performed by construct-
ing the occlusion graph, and applying a depth-first search (DFS)
algorithm on the occlusion graph to compute the finishing time of
each primitive. A 1D sort of the finish times computes the topolog-
ical sort of the occlusion graph. This can be proved easily based
on the following property of the finish times computed by DFS: If

a directed path exists from P1 to P2, then the finish time of P1 is
greater than the finish time of P2.

We do not compute the occlusion graph explicitly but rather use
a variation of the 1D sorting algorithm presented in Section 3 along
with the property listed above. In particular, we incorporate two
overlap constraints between geometric primitives to perform topo-
logical sort on the occlusion graph implicitly. The constraints are:

• Constraint 1: If two primitives P1 and P2 overlap in screen-
space, P1 ! P2 if and only if P1 is fully visible with respect
to P2. That is, for every eye-ray intersecting P1, the eye-ray
intersects P1 on or before P2.

• Constraint 2: If two primitives P1 and P2 overlap in screen-
space, and P1 ! P2, then P1 occurs before P2 in the output
list of the visibility ordering algorithm.

Constraint 1 ensures that a comparison operation is performed be-
tween pairs of overlapping primitives in the scene, thus constructing
the occlusion graph implicitly. A comparison operation between
any two primitives can be implemented on the GPU using an oc-
clusion query. In order to compare P1 against P2, we render P2

into the depth buffer. If P1 is fully visible with respect to P2, then
P1 ! P2. We check for this condition by reversing the depth test to
GL GREATER, disable the depth writes and render P1 using an
occlusion query. If the pixel pass count returned by the occlusion
query is zero, then P1 is fully visible with respect to P2 and we
place it accordingly in the output list.

Constraint 2 classifies a primitive P as sorted if and only if all
the primitives that occlude P are sorted. Intuitively, constraint 2 en-
sures that the finish times of the geometric primitives are properly
ordered. The detailed description of the object-level 3D sorting al-
gorithm is given in [Govindaraju et al. 2004b]. Note that if a cycle
exists in the scene, our algorithm can detect the cycle.

Multi-Stage Ordering: We further improve the performance of the
algorithm by using a multi-stage ordering approach. We assume
that the scene consists of multiple objects and each object is com-
posed of spatially coherent triangles. In the first stage, we compute
the visibility at an object level. After the first stage, several of these
objects are ordered with respect to each other and a local visibility
sort is sufficient to order the triangles within each of these objects.

It is possible that a few objects in the scene may result in cycles
and the algorithm is not able to order all the objects during the first
stage. Our algorithm detects these cycles and resolves the visibil-
ity order by applying our sorting algorithm on the triangles in these
objects. Multi-stage sorting is also useful in scenarios with low
coherence and lets us avoid the worst case scenarios with O(n2)
complexity.

5 Implementation and Applications

In this section, we describe the implementation of our algorithm
and highlight its application to order-independent transparency and
collision culling in large environments.

5.1 Implementation

We have implemented our algorithm on a PC with a 3.4 GHz
Pentium IV CPU running Windows XP operating system. We
have tested the performance of our algorithm using an NVIDIA
GeForce FX 6800 Ultra GPU. The occlusion queries are per-
formed on an offscreen buffer using the OpenGL extension
GL NV occlusion query. The color writes are disabled to reduce
the internal memory bandwidth within the video card to improve
the runtime performance. We increase the rendering throughput
by copying the dynamic geometric primitives into a vertex array
stored in the video memory. We have reduced the stalls due to oc-
clusion queries by batching several queries together. We have mea-
sured the performance of our algorithm using a screen resolution of
1600 × 1200 and with 4X anti-aliasing mode.

5.2 Order-Independent Transparency

We have used our algorithm to generate transparency effects in
complex CAD model and dynamic environments. During each
frame, our algorithm computes a back-to-front order of the prim-
itives in the scene. We exploit frame-to-frame coherence by using
the sorted order of the objects in the previous frame as an input se-
quence of the primitives for the current frame. In most interactive
applications, our algorithm operates on nearly-sorted lists and per-
forms almost a linear number of comparisons. We compute the final
output image by first rendering the opaque portions of the scene.
We then generate a visually accurate transparent effect by blending
the transparent primitives in a strict back-to-front order.

In order to improve the quality of transparency, we have applied
membrane shading on the transparent objects. A simple vertex
shader is used while rasterizing the transparent objects.

5.3 N-Body Collision Culling

We have applied our visibility ordering algorithm to perform fast
collision culling in dynamic environments. Given a large environ-
ment with multiple moving objects, our goal is cull away all pair of
objects that are not in close proximity. Ultimately the exact colli-
sion detection test is applied to those pairs of objects that are almost
colliding. The culling algorithm is used to avoid performing O(n2)
exact collision detection tests.

Given a list of 3D objects, we modify our 3D sorting algorithm,
so that it returns two lists. They are:

• S: It is a sorted list of all non-overlapping and acyclic 3D
objects.

• C: It is a list of all the objects that are either overlapping or
form a cycle.

All the elements in S are non-overlapping and can be culled away
in terms of exact collision tests. On the other hand, the objects in
C are potentially colliding.

Given an environment with multiple static and dynamic objects,
we compute a visibility ordering from different view directions. Ini-
tially, we choose an axis or random direction and compute the two
lists, S and C. We choose a different viewing direction and apply
the algorithm on the objects contained in C. We repeat the proce-
dure until the list of potentially colliding objects does not decrease
any further. Eventually, we use exact collision detection tests on the
set of objects in the potentially colliding set.

We also use temporal coherence to improve the performance of
our algorithm and maintain the sorted order of the objects along the
chosen view directions in each frame. These sorted lists are used
in the next frame to quickly prune non-colliding objects along the
view direction.

The occlusion queries are performed at the image-space resolu-
tion on the GPUs. This can lead to sampling and precision errors.
In order to overcome these errors, we use orthographic projections
along the viewing directions for visibility ordering and use conser-
vative fattened representations of objects. The fattened representa-
tions are computed as a union of the bounding representations of
the triangles of the object. The bounding representation of each
triangle tightly encloses the Minkowski sum of the triangle and a
pixel-sized sphere [Govindaraju et al. 2004a].

In practice, our culling algorithm based on visibility ordering is
less conservative than CULLIDE [Govindaraju et al. 2003] for the
same number of view-directions. As a result, our algorithm results
in fewer false positives and reduces the number of exact collision
tests between the primitives.

5.4 Performance

We have applied our algorithm on two complex benchmarks:

1. CAD Model: We have used a portion of the powerplant
model composed of 91 K transparent polygons and 732 K
opaque triangles (see Fig. 1). This scene exhibits a depth
complexity of 5 − 12 in different view configurations and we
have observed an average frame rate of 7−10 frames per sec-
ond as the user moves around the model. It includes the time
to compute an ordering between the primitives and rendering
the primitives.

2. Dynamic Scene: We applied our algorithm on a dynamic
scene composed of deforming bunnies (see Fig. 4. The overall
geometric complexity is about 25 K triangles and all of them
are rendered with transparency. In this environment, 18 de-
forming bunnies are moving randomly in a cube and colliding
with each other. The depth complexity in the scene varies in
the range 7 − 10 from most view directions. We have tested
its performance in two scenarios: a stationary viewer in the
dynamic environment, and a moving user in the dynamic en-
vironment. We compute an ordering between the triangular
primitives and render the scene with transparency. In both the
scenarios, we have observed a frame rate of 8−10 frames per
second. In addition to transparency computations, we applied
our algorithm to perform N-body collision culling on this dy-
namic environment. On an average, we were able to compute
all the collisions in 40 ms.

5.5 Nearly Sorted Lists and Coherence

The underlying comparison operations in our ordering algorithms
are performed using occlusion queries. The performance of the
overall algorithm is dominated by the number of occlusion queries
and our goal is to minimize the number of queries.

Figure 4: Dynamic Scene: This scene is composed of 18 deforming bunnies moving in a room. The scene consists of 25K triangles and has a high depth complexity of 8 − 10 in

many view directions. One such view is shown in the left image where the scene is rendered with transparency using our visibility ordering algorithm (at 10 frames a second). In the

right image, the same scene rendered with opaque objects is shown. In this dynamic environment, we are able to perform interactive collision computations at 25 frames per second.

Figure 5: Occlusion query count: This graph highlights the near-linear time perfor-

mance of our algorithm on a sample path in the Powerplant model, and the dynamic

scene with a stationary viewer and a moving viewer. Our benchmark scenarios exhibit

high frame-to-frame coherence and our sorting algorithm exhibits an almost linear-

time performance in such benchmarks.

In Fig. 5, we highlight the number of queries performed in dif-
ferent benchmarks. These scenarios exhibit high frame-to-frame
coherence and we observe almost linear time performance in terms
of number of queries.

6 Comparison and Limitations

In this section, we compare some of the features of our approach
with prior approaches and highlight some of its limitations. Several
algorithms have been proposed to perform visibility ordering be-
tween geometric primitives for volume rendering and transparency
computations. We compare the features of our algorithm with other
algorithms.

Object-space algorithms: These algorithms perform ordering of
primitives in object-space. Williams [Williams 1992] proposed a
visibility ordering algorithm for arbitrary acyclic polyhedral mod-
els. However, the algorithm is limited to connected convex poly-
hedra. Several authors have proposed algorithms to handle non-
convex disconnected meshes [Silva et al. 1998]. In practice, these
algorithms work well on static scenes and could involve consider-
able overhead in handling dynamic environments. BSP-tree-based
algorithms order fragments of primitives in a back-to-front or a
front-to-back order and also work well in static environments.

Image-space algorithms: Many of these algorithms are based on

Figure 6: Comparison with Depth Peeling: This graph compares the performance of

our algorithm (Vis-sort) in a dynamic scene with depth peeling algorithm as a function

of the scene depth complexity. The timings were gathered at a resolution of 1600 ×

1200. Vis-sort does not have the overhead of texture copy operations.

depth peeling or A-buffer functionalities within the GPUs to order
the fragments of primitives in a front-to-back or back-to-front order.
These algorithms may not be able to perform visibility ordering of
geometric primitives efficiently, and therefore, may not extend well
to applications such as collision computations where primitive-level
ordering is essential. Depth peeling [Everitt 2001] performs selec-
tion sort on the fragments of primitives on each pixel, and does not
exploit temporal coherence or the near-sorted order of these prim-
itives. Therefore, it may not work well in environments with high
depth complexity (see Fig. 5). Several issues exist in the archi-
tectural implementation of A-buffer [Molnar et al. 1992] and many
graphics vendors currently do not support A-buffer functionality
in the hardware. Recently, Callahan et al. [Callahan et al. 2005]
implemented a fixed-size A-buffer, called k-buffer, using the pro-
grammable pipeline and multiple render target functionality (MRT)
of the current graphics cards. However, the current GPU imple-
mentation of MRT limits the A-buffer size to six and it may not be
sufficient for environments with large depth complexity. In prac-
tice, these implementations can be texture-bandwidth limited and
there is considerable overhead of using supersampling. Moreover,
current GPUs do not support supersampling of depth textures. On
the other hand, our algorithm is a hybrid algorithm and uses image-
space computations for object-level ordering instead of fragment-
level ordering. Our algorithm uses the supersampling functionality
of frame buffers to generate higher quality images and exploits both
spatial and temporal coherence to order nearly-sorted sequences in

almost linear time. Our algorithm involves no preprocessing and
can directly handle dynamic environments.

Limitations: Our visibility ordering algorithm has some limita-
tions. First of all, we assume that the input objects are non-
overlapping and there is a sorting order among them. Our algo-
rithm can detect cycles in the input but does not split the objects
to resolve the cycles. A possible solution is to use other known al-
gorithms to resolve these cycles. Secondly, the occlusion queries
used for the comparison operations have additional overhead. The
current implementation of occlusion queries on the GPUs is not op-
timized and reading back the result of an occlusion query from the
GPU can stall the pipeline. Finally, the comparison operations for
object-level ordering are performed at image-precision for render-
ing applications.

7 Conclusions and Future Work

We have presented a novel algorithm for computing an object-level
visibility ordering among geometric primitives in complex environ-
ments. Our algorithm is general and makes no assumptions re-
garding input models or their motion. We describe a novel sort-
ing algorithm that performs comparisons among objects by per-
forming image-space occlusion computations on the GPUs. Our
algorithm exploits temporal coherence between successive frames
to improve its performance. We demonstrate its application to ren-
dering with transparency and N-body collision culling in complex
environments.

There are several avenues for future work. We would like a more
detailed evaluation and comparison of our algorithm with image-
based techniques. In order to handle render complex environments
with transparency, we would like to combine our algorithm with
LOD techniques and also develop techniques to handle cycles in
the input. Finally, we would like to use our algorithm for other
applications including volume rendering of unstructured grids and
image-based reconstruction.

Acknowledgements

Our work was supported in part by ARO Contracts DAAD19-02-
1-0390 and W911NF-04-1-0088, NSF awards 0400134, 0429583,
0404088 and 0118743, ONR Contract N00014-01-1-0496, DARPA
Contract N61339-04-C-0043 and Intel. We would like to thank
NVIDIA corporation for their hardware and driver support. We
would like to acknowledge Avneesh Sud for video editing, Bran-
don Lloyd for lighting shaders, and members of UNC Walkthrough
and GAMMA groups for useful discussions.

References

AILA, T., MIETTINEN, V., AND NORDLUND, P. 2003. Delay streams for graphics

hardware. ACM Trans. on Graphics 22, 792–800.

CALLAHAN, S. P., IKITS, M., COMBA, J., AND SILVA, C. 2005. Hardware-assisted

visibility sorting for unstructured volume rendering. IEEE Trans. on Visualization

and Computer Graphics. to appear.

CARPENTER, L. 1984. The A-buffer, an antialiased hidden surface method. In Com-

puter Graphics (SIGGRAPH ’84 Proceedings), H. Christiansen, Ed., vol. 18, 103–

108.

CIGNONI, P., C.MONTANI, AND SCOPIGNO, R. 1998. Tetrahedra based volume visu-

alization. In Mathematical Visualization - Algorithms, Applications and Numerics,

3–18.

COHEN, J., LIN, M., MANOCHA, D., AND PONAMGI, M. 1995. I-COLLIDE: An

interactive and exact collision detection system for large-scale environments. In

Proc. of ACM Interactive 3D Graphics Conference, 189–196.

COHEN-OR, D., CHRYSANTHOU, Y., DURAND, F., GREENE, N., KOLTUN, V., AND

SILVA, C. 2001. Visibility, problems, techniques and applications. SIGGRAPH

Course Notes # 30.

COOK, R., MAX, N., SILVA, C., AND WILLIAMS, P. 2004. Image-space visibility

ordering for cell projection volume rendering of unstructured data. IEEE Trans. on

Visualization and Computer Graphics.

DE BERG, M., OVERMARS, M., AND SCHWARZKOPF, O. 1994. Computing and

verifying depth orders. In sicomp, 437–446.

DIEFENBACH, P. 1996. Multi-pass pipeline rendering: Interaction and realism

through hardware provisions. PhD thesis, University of Pennsylvania.

ESTIVILL-CASTRO, V., AND WOOD, D. 1992. A survey of adaptive sorting

agorithms. ACM Computing Surveys.

EVERITT, C. 2001. Interactive order-independent transparency. Technical report,

NVIDIA. http://developer.nvidia.com/object/Interactive Order Transparency.html.

FUCHS, H., KEDEM, Z., AND NAYLOR, B. 1980. On visible surface generation by a

priori tree structures. Proc. of ACM SIGGRAPH 14, 3, 124–133.

GOVINDARAJU, N., REDON, S., LIN, M., AND MANOCHA, D. 2003. CULLIDE: In-

teractive collision detection between complex models in large environments using

graphics hardware. Proc. of ACM SIGGRAPH/Eurographics Workshop on Graph-

ics Hardware, 25–32.

GOVINDARAJU, N., LIN, M., AND MANOCHA, D. 2004. Fast and reliable collision

detection using graphics hardware. Proc. of ACM VRST.

GOVINDARAJU, N., LIN, M., AND MANOCHA, D. 2004. Vis-sort: Fast visibility

ordering of 3-d geometric primitives. Tech. rep., Department of Computer Science,

University of North Carolina.

GOVINDARAJU, N., RAGHUVANSHI, N., AND MANOCHA, D. 2004. Fast and ap-

proximate stream mining of quantiles and frequencies using graphics processors.

Tech. rep., University of North Carolina at Chapel Hill.

JOUPPE, N. P., AND CHANG, C. F. 1999. An economical hardware technique for

high-quality antialiasing and transparency. ACM SIGGRAPH/Eurographics Work-

shop on Graphics Hardware, 85–93.

KNUTH, D. E. 1973. Sorting and Searching, vol. 3 of The Art of Computer Program-

ming. Addison-Wesley, Reading, MA.

KRISHNAN, S., SILVA, C., AND WEI, B. 2001. A Hardware-Assisted Visibility-

Ordering algorithm with applications to volume rendering. In Proc. of Data Visu-

alization, 233–242.

MAMMEN, A. 1989. Transparency and antialiasing algorithms implemented with

the virtual pixel maps technique. IEEE Computer Graphics and Applications 9, 4

(July), 43–55.

MAX, N. L., AND LERNER, D. M. 1985. A two-and-a-half-D motion-blur algorithm.

In Computer Graphics (SIGGRAPH ’85 Proceedings), vol. 19, 85–93.

MAX, N. L. 1993. Sorting for polyhedron compositing. Focus on Scientific Visualiza-

tion, 259–268.

MOLNAR, S., EYLES, J., AND POULTON, J. 1992. PixelFlow: High-speed rendering

using image composition. In Computer Graphics (SIGGRAPH ’92 Proceedings),

E. E. Catmull, Ed., vol. 26, 231–240.

NEWELL, M. E., NEWELL, R. G., AND SANCHA, T. L. 1972. A solution to the

hidden surface problem. In Proc. ACM Nat. Mtg.

PRZEMYSLAW, R. 1993. Fast genration of depth of field effects in computer graphics.

Computer and Graphics 17, 5, 593–595.

PURCELL, T., DONNER, C., CAMMARANO, M., JENSEN, H., AND HANRAHAN,

P. 2003. Photon mapping on programmable graphics hardware. ACM SIG-

GRAPH/Eurographics Conference on Graphics Hardware, 41–50.

SCHUMACKER, R., BRAND, B., GILLILAND, M., AND SHARP, W. 1969. Study for

applying computer-generated images to visual generation. Tech. rep., AFHRL-TR-

69-74, US Air Force Human Resources Lab.

SILVA, C. T., MITCHELL, J. S. B., AND WILLIAMS, P. L. 1998. An exact inter-

active time visibility ordering algorithm for polyhedral cell complexes. In IEEE

Symposium on Volume Visualization, 87–94.

SNYDER, J., AND LENGYEL, J. 1998. Visibility sorting and compositing without

splitting for image layer decompositions. Proc. of ACM SIGGRAPH.

SUDARSKY, O., AND GOTSMAN, C. 1996. Output sensitive visibility algorithms for

dynamic scenes with applications to virtual reality. Computer Graphics Forum 15,

3, 249–58. Proc. of Eurographics’96.

SUTHERLAND, I. E., SPROULL, R. F., AND SCHUMACKER, R. A. 1973. Sorting

and the hidden-surface problem. In Conf. Proc. Natl. Computer Conf.

TORRES, E. 1990. Optimization of the binary space partition algorithm (BSP) for

the visualization of dynamic scenes. In Eurographics ’90, North-Holland, C. E.

Vandoni and D. A. Duce, Eds., 507–518.

WILLIAMS, P. L. 1992. Visibility-ordering meshed polyhedra. ACM Trans. on Graph-

ics 11, 2, 103–126.

WITTENBRINK, C. 2001. R-buffer: A pointerless a-buffer hardware architecture.

ACM SIGGRAPH/Eurographics Workshop on Graphics Hardware, 73–80.

