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Interactive Visual Analysis of Perfusion Data

Steffen Oeltze, Helmut Doleisch, Helwig Hauser, Philipp Muigg, and Bernhard Preim

Abstract—Perfusion data are dynamic medical image data which characterize the regional blood flow in human tissue. These data
have a great potential in medical diagnosis, since diseases can be better discriminated and detected at an earlier stage compared to
static image data. The wide-spread use of perfusion data is hampered by the lack of efficient evaluation methods. For each voxel,
a time-intensity curve characterizes the enhancement of a contrast agent. Parameters derived from these curves characterize the
perfusion and have to be integrated for diagnosis. The diagnostic evaluation of this multi-field data is challenging and time-consuming
due to its complexity. For the visual analysis of such datasets, feature-based approaches allow to reduce the amount of data and
direct the user to suspicious areas.
We present an interactive visual analysis approach for the evaluation of perfusion data. For this purpose, we integrate statistical
methods and interactive feature specification. Correlation analysis and Principal Component Analysis (PCA) are applied for dimension
reduction and to achieve a better understanding of the inter-parameter relations. Multiple, linked views facilitate the definition of
features by brushing multiple dimensions using non-binary and composite brushes. The specification result is linked to all views
establishing a focus+context style of visualization in 3D. We discuss our approach with respect to clinical datasets from the three
major application areas: breast tumor diagnosis, ischemic stroke diagnosis as well as the diagnosis of the coronary heart disease
(CHD). It turns out that the significance of perfusion parameters strongly depends on the individual patient, scanning parameters and
data pre-processing.

Index Terms—Multi-field Visualization, Visual data mining, Time-varying volume data, Integrating Infovis/Scivis

✦

1 INTRODUCTION

Compared to static image data, where the morphology of anatomic
and pathological structures is represented with high spatial resolu-
tion, dynamic image data characterizes functional processes, such as
metabolism and blood flow, which is often essential to detect diseases
at an early stage or to discriminate pathologies with very similar mor-
phology. Important examples of dynamic medical image data are func-
tional MRI, where activations of brain areas are measured, dynamic
SPECT, where metabolic processes are imaged and perfusion imag-
ing, where the blood flow is represented. We focus on perfusion data
which are acquired to support essential diagnostic tasks, e.g., cerebral
perfusion for stroke diagnosis, the assessment of different types and
stages of tumors, and perfusion of the myocardium (heart muscle) for
CHD diagnosis.

In perfusion imaging, the distribution of contrast agents (CA) is
registered to assess blood flow and tissue kinetics. For each voxel, a
time-intensity curve characterizes the CA enhancement. How long it
takes until the maximum amount of CA is delivered, which maximum
is achieved as well as other parameters are derived from these curves
for medical diagnosis.

The derived parameters represent a special instance of multi-field
data which is becoming more and more important in medicine [13],
[5]. They are substitutes for physiological parameters such as tumor
perfusion and vessel permeability [7]. The integrated analysis of sev-
eral parameters in a suspicious region is essential. For the diagnosis of
ischemic stroke, e.g., if the blood flow is delayed in a particular region,
it is crucial to evaluate if the overall blood flow is also reduced [20].

To streamline the integrated analysis of perfusion parameters, we
present a visual analysis approach incorporating pre-processing and
statistical methods as well as feature specification steps. Motion cor-
rection and noise reduction are fundamental pre-processing issues to
achieve a reliable correspondence of voxels over time. Since the dif-
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ferent parameters are derived from the same time-intensity curve that
characterizes the CA enhancement, it is likely that some parameters
correlate with each other. We apply a correlation analysis and a PCA
to achieve a better understanding of the inter-parameter relations and
to simplify and to speed-up the diagnosis by reducing the complexity
of the multi-field data. Besides its complexity, the non-standardized
parameter domain which depends on the scanning protocol compli-
cates the diagnostic evaluation. For the visual analysis of such data,
feature-based approaches allow to direct the user to suspicious regions
and to reduce the amount of data to a representative subset. Our ap-
proach integrates methods for interactive feature specification of high-
dimensional complex features in multi-field data. Multiple, linked
views facilitate the definition of features which can be complex and/or
hierarchically described by brushing multiple dimensions. Non-binary
brushes account for the uncertainty involved in the inspection of a
non-standardized parameter domain. Furthermore, they represent a
natural mapping of irreversibly damaged or malignant tissue, suspi-
cious or reversibly damaged tissue and healthy tissue to focus, near-
focus and context. The specification result from all views is linked
to a 3D-view, establishing a focus+context style of visualization. The
3D-representation of the perfusion parameters within their anatomic
context allows a localization of the specification result.

Our visual analysis approach primarily addresses medical re-
searchers seeking for a better understanding of which perfusion pa-
rameters are crucial for specific diagnostic tasks and how imaging pa-
rameters influence the expressiveness of perfusion parameters. This
research is motivated by contradictory recommendations in medical
research papers, e.g., [2] and [30] for CHD diagnosis.

This paper is structured as follows: In Sec. 2, we give an overview
on the medical background in perfusion diagnosis and on correlation
analysis and PCA. In Sec. 3, we describe our analysis approach. The
application of the approach to clinical perfusion datasets from breast
tumor diagnosis, ischemic stroke diagnosis, and CHD diagnosis, is
discussed in Sec. 4. Prior and related work on the application of In-
foVis techniques for the analysis of multi-field data as well as on the
visual analysis of perfusion data are presented in Sec. 5. The last sec-
tion will summarize and conclude the paper.

2 MEDICAL AND TECHNICAL BACKGROUND

This section gives a brief overview on the medical background in per-
fusion diagnosis and further acquaints the reader with the basics of
correlation analysis and PCA.
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2.1 Perfusion Diagnosis

In perfusion imaging, a CA is injected intravenously and its distribu-
tion is measured by a repeated acquisition of subsequent images cov-
ering the volume of interest. The CA provides signal changes in the
acquired 4D-data (3D+time). In case of a perfusion defect, the corre-
sponding region exhibits an abnormal change in signal intensities. The
spatial resolution and quality of perfusion data are worse than those of
static data. High temporal resolution can only be achieved at the ex-
pense of lower spatial resolution and image quality.

Particularly CT, PET, SPECT and MRI data are employed for perfu-
sion imaging. In the following, we only consider MR perfusion since
MRI is the most widespread perfusion imaging technique for breast
tumor diagnosis, it outperforms CT in stroke diagnosis since the en-
tire brain can be scanned (instead of a single slice with CT) and it has
shown to have at least a similar sensitivity and specificity in compar-
ison to PET and SPECT in CHD diagnosis. T1-weighted MR images
are typically used for breast tumor diagnosis, whereas T2-weighted
MR images are employed for the diagnosis of ischemic stroke. In
T1-weighted imaging, a signal enhancement is achieved in areas of
contrast agent accumulation. On the other hand, T2-weighted images
lead to a decrease of signal intensity where the CA accumulates.

Perfusion Parameters. For the diagnosis, regions of interest in
healthy and suspicious tissue are defined, and time-intensity curves –
averaged over all voxels in the selected region – are analyzed. De-
pending on the application area, different sets of parameters, derived
from the curves, are relevant. However, some parameters are of gen-
eral interest for almost all application areas (see Fig. 1). Before we
describe these parameters, we introduce three parameters necessary
for a reliable evaluation.

The CA arrival represents the point in time when the signal en-
hancement actually starts, whereas TimeEnd refers to the end of the
first CA passage. The Baseline represents the average intensity before
CA arrival (see Fig. 1). These parameters are determined to focus the
evaluation of the time-intensity curve to the relevant portion.

Assessing perfusion considering the actual CA arrival, TimeEnd and
the Baseline is essential to compare perfusion analysis results from
different scanning devices and patients. Major diagnostically relevant
perfusion parameters are:

• Peak Enhancement (PE). The maximum value (between CA ar-
rival and TimeEnd) normalized by subtracting the Baseline. The
PE separates the time interval between CA arrival and TimeEnd

into a phase of CA wash-in followed by the CA wash-out.

• Time To Peak (TTP). The point of time where PE occurs, nor-
malized by subtracting CA arrival time. This parameter allows
to assess whether the blood supply is delayed in a particular re-
gion.

• Integral. For a certain time interval (often representing one cy-
cle or pass of blood flow) the area between the curve and the
Baseline – the approximated integral – is computed. Together,
PE and Integral may give a hint on reduced blood flow.

• Mean Transit Time (MTT). In the time interval used for the inte-
gral calculation, MT T specifies the first momentum of the curve.
It is normalized by subtracting CA arrival time.

• The Slope characterizes the steepness of the curve during wash-
in. Depending on the temporal resolution, different regression
methods are used to characterize the curve progression. The term
Up-Slope in cardiac diagnosis relates to the maximum slope be-
tween two or three subsequent time-steps between CA arrival
and T T P. In tumor perfusion studies, the related parameter
MiTR (Maximum intensity to Time Ratio) is determined; it is
computed as PE/T T P and it is thus an average slope in the in-
terval between CA arrival and T T P.

• The DownSlope characterizes the steepness of the descending
curve during wash-out and is computed similar to the Slope.

Fig. 1. A typical time-intensity curve in myocardial perfusion with a sig-
nificant first pass and an alleviated second pass of contrast agent traver-
sal annotated with the essential parameters to evaluate the first pass.
Similar curves are observed in cerebral perfusion.

The parameters are derived per voxel and stored in separate param-
eter volumes (3D). As a major pre-processing step, noise reduction is
often solved by conventional noise reduction filters, such as Gaussian.
Lysaker et al. [24] introduced a filter for 4D data that better preserves
features based on partial differential equations, which simulate a dif-
fusion process. Motion-correction is the second major pre-processing
task, carried out to establish a valid inter-pixel correspondence. Mo-
tion correction is essential when breathing, heartbeat, patient move-
ment, or muscle relaxation occurs. The motion correction algorithm
developed by Rueckert et al. is widely used [31].

2.2 Correlation and Principal Component Analysis

Correlation analysis reveals whether variables vary independently of
each other or are (inversely) proportional. The amount of correlation is
represented by the so-called correlation coefficient (r). In the follow-
ing, we assume a matrix Am×n representing n variables (perfusion pa-
rameters) and m observations (voxels of the parameter volumes). The
symmetric matrix Rn×n of correlation coefficients is then computed
based on the covariance matrix C of A. A value of ri j =−1 indicates a
perfect inversely proportional relationship, whereas a value of ri j = 1
corresponds to a perfect proportional relationship. A value of ri j = 0
relates to non-correlated variables. Besides R, an equally-sized sym-
metric matrix P of p-values is computed for testing the hypothesis of
no correlation. If a particular p-value is < 0.05, the correlation is con-
sidered significant. Müller et al. [26] suggest that the user may exclude
variables from a PCA that strongly correlate with each other. Other-
wise, these variables might misleadingly strengthen certain trends.

The PCA is a technique from multivariate statistics to detect vari-
ables from multi-dimensional data that may be redundant. For the pur-
pose of dimension reduction, these variables may be grouped together
to form a new variable. Furthermore, PCA explains the structure of
relationships between variables and thus provides additional insight
into the data. The PCA results in new variables, the so-called prin-
cipal components. Each principal component (pc) represents a single
axis in a new orthogonal coordinate space (pc-space) – generated by
a variance maximum rotation of the original data space. The first pc
(pc1) explains most of the variance in the original data, the second one
(pc2) most of the remaining variance, and so on.

Before applying a PCA, it is often reasonable to standardize the
data. This is necessary, when the variables were not measured in the
same units or when their variance is substantial. For standardization, A
is centered around its mean and then each column of A is divided by its
standard deviation. This step is often referred to as Auto-scaling. One
way to compute the pc’s is to apply a Singular Value Decomposition
(SVD). As a result, the SVD returns matrices PCSn×n, scoresm×n and
a vector containing the eigenvalues λ 1×n of C. Each column of PCS
consists of n loadings representing the weights for the linear combi-
nation of the n original variables. The scores are the coordinates of the
original data transformed into pc− space. The vector λ represents the
variances explained by the n pc’s.

According to Müller et al. [26], the PCA results may be exploited
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in several ways, e.g., to detect prominent trends in the data. These
trends are represented by the pc’s. The loadings indicate how individ-
ual variables correlate with these trends. The eigenvalues of C may be
applied to neglect less significant trends during the analysis (low val-
ues correspond to a low variance explained by the corresponding pc).
A major problem involved in interpreting PCA results is the difficulty
to relate trends to the original variables [26]. Therefore, Müller et al.
[26] suggest to oppose the scores and the original variables in a scat-
terplot. Another approach they recommend is to present the scores in
their spatial frame of reference (the original perfusion data). Further-
more, linking & brushing should be applied to relate the scores to the
original variables.

3 A PERFUSION DATA ANALYSIS APPROACH

This section describes the visual analysis approach independent of a
specific application area. However, the included figures have been
generated based on cerebral perfusion data to illustrate the approach
by means of a real-world example (see Sec. 4.1).

The approach consists of three major components (see Fig. 2): a
pre-processing component, a component for statistical analysis and
a component for interactive feature specification in multi-field data.
For this paper, these components have each been implemented in
MeVisLab1, a platform for medical image processing and visualiza-
tion, MATLAB2 and the framework SimVis3.

Fig. 2. A perfusion data analysis approach consisting of three compo-
nents: pre-processing, statistical analysis and interactive feature speci-
fication.

3.1 Pre-processing

The original 4D-perfusion data serves as input for the pre-processing
component. Here, the data is noise reduced applying a Gaussian kernel
and motion-corrected according to [31] (see Sec. 2.1). Next, the sepa-
rate time-points (3D-data) are exported and may serve, e.g., as context
information during the visual analysis.

1Product of the MeVis Research; www.mevislab.de
2Product of the MathWorks, Inc.; www.mathworks.com
3Developed by the VRVis, Vienna; www.simvis.at

For some applications, such as ischemic stroke or CHD diagnosis, it
is useful to restrict the computation of perfusion parameters to relevant
structures (brain tissue or ventricles of the heart). A variety of seg-
mentation algorithms has been integrated into MeVisLab, e.g., a fast
watershed algorithm for brain segmentation [14]. Once the relevant
structures have been segmented, the perfusion parameters are derived
voxel-wise for these regions and exported separately as parameter vol-
umes. The parameter volumes serve as input for the feature specifica-
tion as well as for the statistical component. The segmentation part
may be skipped if the entire dataset must be analyzed.

3.2 Statistical Analysis

At the beginning of the statistical analysis, the user is presented a list
containing the perfusion parameters which have been approved in his
or her diagnostic field of interest (see Sec. 4.1-4.3). The user may re-
fine this initial set resulting in a new set {Pk} of k parameters. In a
next step, the background voxels within the parameter volumes corre-
sponding to {Pk} are identified to restrict further computations to the
anatomic structures. Based on the histogram of one of these parameter
volumes, the background voxels are identified (the highest peak in the
histogram) and excluded from further analysis (Background removal).
The decision may be refined by defining a threshold. The indices of
the remaining m voxels VOXrelev are stored in a vector IDrelev. Then,

the perfusion parameter matrix Am×k is constructed considering only
the voxels referred to by IDrelev. As discussed in Sec. 2.2, the PCA
may require a standardization of its input to deliver meaningful results.
Since the perfusion parameters have not been measured in the same
units, Auto-scaling is applied to A. The result of this step is referred to

as Am×k
std

.
To evaluate the relationship between several parameters, a correla-

tion analysis is carried out resulting in matrices R and P. In order to
consider only significant correlations, P is examined for values < 0.05.
The correlation coefficients in R corresponding to the remaining values
are set to 0 (no correlation). A visual representation of R now enables
the user to identify parameters that are highly correlated (see Fig. 3). A
scatterplot matrix is generated by plotting all columns in Astd against
each other. The diagonal of the scatterplot matrix shows the histogram
of each parameter. The background color of each plot has been chosen
according to the respective value in R. A color scale has been designed
that visually separates negative and positive coefficients. Furthermore,
it emphasizes correlation coefficients < −0.9 or > 0.9. When drag-
ging the mouse over the plots, the respective correlation coefficient is
displayed. Zooming in and out enables the user to further explore sep-
arate plots. The visualization of R in Fig. 3 shows the following strong
correlations: Integral ↔ PE, PE ↔ MiT R, PE ↔ Slope, Slope ↔
MiT R and Slope ↔ DownSlope (inversely proportional). Since pa-
rameters PE and Slope strongly correlate with three other parameters,
respectively, they may be excluded from further processing. This re-

sults in the Matrix Am×l
corr , where l is the number of remaining parame-

ters.
In a next step, a PCA is carried out based on Acorr resulting in the

matrices PCSl×l , scoresm×l and a vector λ 1×l (recall Sec. 2.2). To de-
tect trends in the pc’s, the loadings in PCS are visualized in a vertical
bar chart (see Fig. 4 (left)). However, the PCA does not only reveal
the trends but it orders them by their significance – expressed by the
variances in λ . To incorporate this significance in the visualization,
the loadings in column i, i ∈ [1, l] of PCS are weighted with λ (1, i)
according to [26] (see Fig. 4 (right)). The plot in Fig. 4 (right) reveals
a major trend represented by pc1. This trend is determined by the
parameters Integral, DownSlope and MiT R. The positive loadings of
Integral and MiT R indicate a direct proportional relationship, whereas
the negative loading of DownSlope indicates an inversely proportional
relationship. A second and a third trend are respectively observed in
pc2 and pc3. To relate the trends to the original perfusion parameters,
the scores are exported for later processing within the feature specifi-
cation component.

The end of the statistical analysis constitutes a classification step.
This step has not yet been implemented and will therefore not be dis-
cussed in the paper. However, related work indicates that in particular,

http://www.mevislab.de�
http://www.mathworks.com�
http://www.simvis.at�
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Fig. 3. Scatterplot matrix of perfusion parameters. The background
color of each plot is chosen according to the respective correlation co-
efficient. The color scale is designed such that coefficients < −0.9 or
> 0.9 are emphasized. The diagonal of the matrix shows a histogram
for each parameter.

Fig. 4. Principal components and their loadings for each of the rele-
vant parameters (left). To incorporate the significance of each trend, the
loadings are weighted with the variance explained by the corresponding
pc (right).

techniques to classify Dynamic Contrast-Enhanced MRI Mammogra-
phy (DCE-MRIM) data are promising in detecting suspicious regions
(see Sec. 5). Hence, the statistical analysis incorporates a classifica-
tion of the (pre-processed) perfusion data – possibly restricted to rel-
evant structures–, of the standardized perfusion parameters and of the
scores. The detected classes are exported and may be processed within
the feature specification component.

3.3 Feature Specification

The interactive feature specification of data coming from the pre-
processing as well as from the statistical analysis stage of our ap-
proach is carried out in a framework employing the SimVis technol-
ogy [11][10]. SimVis was previously developed for the analysis of 3D
time-dependent flow simulation data, but has recently been extended
to also cope with multiple other data types, e.g., measured 3D weather
radar data. Here, we extended the technology further to also work with
time-dependent multi-field data from medical applications.

In SimVis, multiple linked views are used to concurrently show, ex-
plore and analyze different aspects of multi-field data. 3D views of the
volume (also over time) can be used next to several types of attribute
views, e.g., scatterplots or histograms. Interactive feature specifica-
tion is usually performed in these attribute views. The user chooses
to visually represent selected data attributes in such a view, thereby
gaining insight into the selected relations within the data. Then, the
interesting subsets of the data are interactively brushed directly on the
screen (compare to the XmdvTool [34] and see Fig. 5(b) for an exam-

ple). The result of such a brushing operation is reintegrated within the
data in the form of a synthetic data attribute DOI j ∈ [0,1] (degree of
interest (DOI) attribution of the data, compare to Furnas [12]). This
DOI attribution is used in the 3D views of the analysis setup to visu-
ally discriminate the interactively specified features from the rest of
the data in a focus+context visualization style which is consistent in
all (linked) views [15].

In the SimVis system smooth brushing [11] (enabling fractional
DOI-values) as well as the logical combination of brushes for the spec-
ification of complex features [10] are supported. A smooth brush re-
sults in a trapezoidal DOI function around the main region of interest
in the attribute views. To enable the integration of a fully flexible de-
rived data concept, a data calculator module with a respective graphi-
cal user interface has been added. New attributes can be derived from
existing ones and thereafter are available for full investigation in all
linked views.

There are several different purposes of the interactive feature spec-
ification process and the resulting exploration and analysis steps, of
which the most important are:

• Feature localization: to search for places in the 3D domain of
the data where certain feature characteristics are present. In
the SimVis approach, the user can brush features in attribute
views and concurrently localize the respective feature in the 4D
(3D+time) volume domain.

• Multi-variate analysis: to investigate multi-variate data proper-
ties by specifying a feature in one attribute view and at the same
time analyzing the DOI distribution with respect to other data
attributes in other attribute views (through view linking).

• Local investigation: to inspect the values of selected data at-
tributes with respect to certain spatiotemporal subsets of the 3D
volume domain. In the SimVis system, the user can also load
spatial as well as temporal data references into attribute views –
brushing these kinds of data attributes then yields features which
are specified according to their spatiotemporal extents.

4 APPLICATION

The perfusion data analysis approach introduced in Sec. 3 has been
applied to 5 datasets so far (1 from ischemic stroke diagnosis, 2 from
breast tumor diagnosis and 2 from CHD diagnosis). These datasets
are representative for the respective diagnostic field concerning spa-
tial and temporal resolution. Due to space restrictions, not all analysis
results can be discussed here. Therefore, the reader is referred to the
following website: wwwisg.cs.uni-magdeburg.de/cv/VAoPD/. It con-
tains additional analysis results, high-resolution versions of all images
included in this paper and a video to illustrate the interactive aspect of
the analysis.

Pre-processing. All datasets have been noise-reduced applying a
Gaussian kernel. To reduce motion artifacts, the datasets from breast
tumor and CHD diagnosis have been motion-corrected according to
[31]. To restrict the motion-correction on the myocardium in CHD di-
agnosis, the datasets have been cropped before. In the dataset from is-
chemic stroke diagnosis, the brain tissue has been segmented by means
of a watershed-algorithm [14] to restrict the parameter derivation to in-
teresting regions. Since the T2-weighted datasets from cerebral perfu-
sion lead to a decrease of signal intensity where the CA accumulates,
the time-intensity curves appear mirrored on the Baseline with respect
to Fig. 1. To achieve a consistent way of analyzing datasets from dif-
ferent application areas throughout the paper, the intensity-values were
inverted. In the datasets from CHD diagnosis, the myocardium has
been semi-automatically segmented in each slice by means of a live-
wire technique [32]. The resulting contours have been propagated over
all time-points. The final parameter derivation has been restricted to
the segmentation results.

4.1 Ischemic Stroke Diagnosis

In case of an ischemic stroke, the existence and the extent of “tissue
at risk” surrounding the core of the stroke has to be evaluated. Sur-

http://wwwisg.cs.uni-magdeburg.de/cv/VAoPD/�
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Fig. 5. Visual analysis in ischemic stroke diagnosis. In (b), parameters T T P (x-axis) and Integral (y-axis) have been opposed. High T T P- and low
Integral-values (delayed and diminished perfusion) have been brushed in the scatterplot. As a result, the infarction core is revealed in (a) applying
T T P for color-coding. Smooth brushing along both axis of the plot (d) gives a hint on the location of “tissue at risk” (greenish area in (c)). Here, the
perfusion is delayed as well however, enough blood arrives over time. In (e), the brain is rotated to gain a better impression of the over-all extension
of the infarction in 3D. Furthermore, the shape of the brain is indicated by a smooth brushing (f) applied on the gradient magnitude computed from
a single time-point of the perfusion data. Interestingly, a smooth brushing (h) in a scatterplot opposing the scores for pc1 (x-axis) and pc2 (y-axis)
yields a very similar result (g) compared to (c).

gical and medicamentous interventions may salvage at least parts of
the “tissue at risk” [9]. In cerebral perfusion, the first-pass of the CA
(see Fig. 1) through the vessel components is observed. The volume
of blood in each voxel is diagnostically relevant. It is measured by
the Integral of the enhancement curve. Other approved parameters
describing the cerebral blood flow are PE, TTP, MTT and Slope [21].

Case Study. The patient whose dataset will be analyzed here, suf-
fered from an infarction in the right hemisphere (which will appear
left in all subsequent images). The dataset matrix is: 128×128, slice
distance: 7 mm, number of slices: 12, temporal resolution: 40 mea-
surements in 80 seconds.

Statistical analysis. The results of the statistical analysis are illus-
trated in Fig. 3-4. First, the initially suggested set of approved param-
eters has been refined by adding DownSlope and MiT R. The exami-
nation of the correlation coefficients of the refined set revealed three
types of strong correlations (recall Sec. 3.2): correlations between pa-
rameters describing the amount of blood that arrives at a certain region
(Integral ↔ PE), between parameters describing the velocity of the
enhancement (Slope ↔ MiT R, Slope ↔ DownSlope) and in between
these two types (PE ↔ MiT R, PE ↔ Slope). The correlation between
Slope and DownSlope is inversely proportional. Since the DownSlope
is measured in negative values, this indicates that a fast wash-in (high
Slope-values) is likely to be followed by a fast wash-out (high nega-
tive DownSlope-values). Since the parameters PE and Slope strongly
correlate with three other parameters, respectively, they have been ex-
cluded from further processing.

The PCA showed four major trends (pc1-pc4) which account for
52%+29%+11%+7% = 99% of the variance in the data. A problem
when interpreting PCA results is to assign a meaning to the newly
generated coordinate axes. This has an impact, e.g., on brushing in the
newly generated coordinate space. According to Müller et al. [26],
we label the axes with respect to the parameters that determine the
trend in the respective pc. More abstract labels could be “Amount and
Velocity” for pc1 and “Time to Enhancement” for pc2.

Two interesting trends are revealed by pc3 and pc4 which conflict
with pc2 and pc1, respectively (see Fig. 4). The first two pc’s again
describe parameter relationships which are to be expected in cerebral
perfusion, whereas pc3 and pc4 characterize atypical behavior. Hence,
their corresponding scores have been analyzed within the feature spec-
ification component. The results are illustrated on the website.

Visual analysis. A crucial task in stroke diagnosis is to localize
the infarction core and especially the surrounding “tissue at risk”. The
first three columns in Fig. 5 illustrate how visual analysis may guide
this process. In a scatterplot, T T P (x-axis) and Integral (y-axis) are
opposed and a region is brushed that indicates delayed and diminished
perfusion (Fig. 5 (b)). As a result of this feature localization, the in-
farction core appears as a bright region (Fig. 5 (a)). High T T P-values
are mapped to colors from yellow to red. Smooth brushing in both
dimensions now gives a hint on the existence of “tissue at risk” (Fig. 5
(d)). A near-focus region is defined (blue arrows point at its borders)
that incorporates areas where the perfusion is delayed as well, how-
ever, enough blood arrives over time. Candidate areas for “tissue at
risk” appear greenish (medium T T P-values) in Fig. 5 (c). This ob-
servation could be successfully validated with [19] where the same
dataset has been examined. In Fig. 5 (e), the brain has been rotated to
gain a better impression of the over-all extension of the infarction in
3D. Furthermore, the shape of the brain is indicated as context infor-
mation. Latter has been achieved by a smooth brushing of the gradient
magnitude computed based on the intensity values from a single time-
point of the original perfusion data (Fig. 5 (f)). The focus has been
defined such that a smooth brushing assigns small DOI values to the
majority of gradient magnitudes resulting in just a slight indication of
the anatomical context. This technique will be used throughout the
paper. In Fig. 5 (h), pc1 (x-axis) and pc2 (y-axis) have been opposed.
As discussed above, abstract axes labels could be “Amount and Veloc-
ity” and “Time to Enhancement”. Hence, small values on the x-axis
and high values on the y-axis are brushed. The near-focus region is
selected accordingly (blue arrows). A comparison of Fig. 5 (g) and
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Fig. 6. Visual analysis in breast tumor diagnosis. Selection of high intensity differences between original time-points t2 and t0 (b) emphasizes areas
were the CA is absorbed (a). Two suspicious regions are detected (arrows). The analysis is focused on a local region LR around Slarge (c) by
means of brushing small Euclidian distances between its center and the surrounding tissue (d). Areas exhibiting a rapid wash-out are selected in a
histogram depicting DownSlope (f). A negative brush is used to exclude positive and small negative values. The corresponding areas are visualized
in (e) and color-coded according to Slope. Yellow to red areas indicate a rapid wash-in and wash-out. A smooth brushing of Slope within LR (h)
reveals subtle jags along the border of Slarge (g) which are typical for malignant structures.

Fig. 5 (c) shows that the revealed areas match closely. Hence, the
trends expressed by pc1 and pc2 together describe CA enhancement
patterns that are typical in cerebral perfusion.

4.2 Breast Tumor Diagnosis

The major diagnostic task in breast tumor diagnosis is to confirm or re-
ject the hypothesis of a tumor being malignant. Evaluating the shape of
the time-intensity curves has been proven to be effective in the differ-
entiation of enhancing lesions [22]. Parameters that describe the shape
are MTT, MiTR, PE, Slope, DownSlope, TTP and Integral. Curves –
which show a rapid wash-in followed by a rapid wash-out, i.e., a sig-
nificant decrease of signal intensity afterwards – are especially suspi-
cious because they indicate strong perfusion and high permeability of
vessels. Less suspicious are those curves showing a plateau later on,
or those regions which continue to enhance.

Case Study. The described dataset was acquired to examine a
suspicious region in the right mamma that has been detected during
conventional mammography. The dataset matrix is: 458× 204, slice
distance: 3 mm, number of slices: 26, temporal resolution: 6 mea-
surements in 10 minutes. In breast tissue, contrast enhancement lasts
considerably longer than in cerebral blood vessels. Therefore, longer
acquisition times are employed. The reduced temporal resolution al-
lows a significant increase in spatial resolution. Due to space restric-
tions, the analysis results of a second DCE-MRIM dataset will only be
presented on our website (wwwisg.cs.uni-magdeburg.de/cv/VAoPD/).

Statistical analysis. In addition to the initially suggested set of ap-
proved parameters two extra parameters have been added describing
the steepness of the curve during wash-in and wash-out. Each of them
was computed between two particular time-points selected by the user.
The examination of the correlation coefficients revealed a strong cor-
relation between Integral and PE as well as between PE and Slope.
Since PE strongly correlates with two other parameters, it has been
excluded from further processing. The PCA showed four major trends
expressed by pc1-pc4. All together account for ≈ 91% of the variance

in the data. Further details on the interpretation of the pc’s is available
on the website. In the following, the focus is on a streamlined local-
ization and separation of suspicious structures for local investigation.

Visual analysis. Subtraction images emphasize regions where the
CA is absorbed (see Sec. 5). Hence, additional parameters have been
derived based on the original time-points in the perfusion data. Each
parameter describes the intensity difference between two subsequent
time-points t j and ti, where j > i. In Fig. 6 (b), high differences in in-
tensity between time-points t2 and t0 have been selected (Selection1).
The corresponding areas are emphasized in Fig. 6 (a). The structure
Slarge which has already been detected in conventional mammogra-
phy, is pointed at by the lower arrow. Furthermore, a smaller structure
Ssmall is revealed close to the thoracic wall (upper arrow). Besides
these areas, major vessels and the acromastium are emphasized. To
focus the analysis on an area around Slarge for local investigation,
the Euclidean distance between its center and the surrounding tissue
is computed. Then, a range of distance values (Selection11) within
Selection1 is brushed (Fig. 6 (d)) such that the local region LR around
Slarge includes Ssmall (Fig. 6 (c)). In (Fig. 6 (f)), Selection11 (red bars)
is visualized within a histogram of parameter DownSlope for multi-
variate analysis. High negative values indicating a rapid wash-out of
the CA are typical for malignant tumors. Hence, this range has been
selected within Selection11 by excluding positive and small negative
values with the help of a negative brush (the blue line marks the verti-
cal zero-axis). The result is color-coded by means of parameter Slope
in Fig. 6 (e). Slarge and Ssmall both exhibit a rapid wash-in and wash-
out and are thus likely to be malignant. Ssmall partially shows small
Slope values which should be further investigated. Another indication
that confirms the suspicion of malignancy is illustrated in Fig. 6 (g-
h). A smooth brushing of high and medium Slope-values within LR
shows subtle jags (so-called spikulae) along the border of Slarge.

The observations in this section could be validated by means of a
report from an experienced radiologist who supposed that Ssmall forms
a satellite lesion connected to Slarge by one of the spikulae.

http://wwwisg.cs.uni-magdeburg.de/cv/VAoPD/�
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Fig. 7. Visual analysis in CHD diagnosis of datasets Heart1 (a-d) and Heart2 (a, e-h). (a): Plot representing pc1 and pc2 of datasets Heart1 (top)
and Heart2 (bottom). Brushing the scores of pc1 (b) reveals the infarcted region (green area in (c)). The right ventricle (left arrow) and the lumen
(right arrow) are presented as context information. The selection from (b) is transferred to a scatterplot (d) opposing T T P (x-axis) and Up-Slope
(y-axis). T T P is not a reliable parameter to detect the infarcted tissue in this case since the selection is spread over the entire codomain (red dots).
However, this may not be valid for another dataset as illustrated in (e-f) for Heart2. A selection of high T T P-values and small Up-Slope-values (f)
reveals the infarcted tissue (green area in (e)). Brushing of pc2 (h) which represents an atypical enhancement pattern exhibits areas where the
segmentation of the myocardium failed (g).

4.3 CHD Diagnosis

In CHD diagnosis, the detection and localization of a perfusion deficit
as well as the assessment of the severity are directly relevant for treat-
ment decisions. Major diagnostic tasks to be performed are to evaluate
whether the patient suffers from CHD, to evaluate the severity of the
disease and to assess the vascular supply of less perfused tissue. At an
early stage, CHD is characterized by a perfusion defect caused by a
stenosis (an abnormal vessel narrowing). The localization of the per-
fusion defect with respect to the myocardium combined with anatom-
ical knowledge about the supplying coronary arteries is essential in
detecting stenosis as well as in early CHD diagnosis [28]. For CHD
diagnosis, the parameters Up-Slope, PE, TTP and Integral have been
approved [2],[30], and [29].

Case Study. The two patients, whose datasets will be analyzed
in this subsection, both suffered from a heart attack. The matrix of
dataset Heart1 is: 144×192, slice distance: 18 mm, number of slices:
4, temporal resolution: 40 measurements in 2seconds. The matrix of
dataset Heart2 is: 144×192, slice distance: 18 mm, number of slices:
3, temporal resolution: 40 measurements in 2 seconds.

Statistical analysis. In a first step, MiT R has been added to the ini-
tially suggested set of approved parameters. The examination of the
correlation coefficients for Heart1 and Heart2 revealed a strong cor-
relation between Integral and PE. Since the variance of the Integral-
values had been higher than the variance of the PE-values, in both
cases, PE was excluded from the subsequent PCA.

The PCA of Heart1 showed two major trends expressed by pc1 and
pc2, respectively (Fig. 7 (a, upper plot)). Both pc’s together explain
≈ 91% of the variance in the data. However, pc1 describes an atypi-
cal enhancement pattern. In damaged tissue, the blood flow is delayed
(high T T P-values) and diminished (e.g. low Integral-values). How-
ever, pc1 indicates a proportional relationship. This will be further
examined in the visual analysis stage (see below).

The PCA of Heart2 showed three major trends expressed by pc1
to pc3. All together account for 51% + 25% + 17% = 93% of the

variance in the data. For the sake of brevity, only the first two pc’s
are examined here (Fig. 7 (a, lower plot)). A typical enhancement
pattern is represented by pc1. However, pc2 shows an atypical pattern.
As in pc1 of Heart1, T T P is proportional to Integral and Up-Slope.
Furthermore, MiT R is inversely proportional to Up-Slope though both
parameters describe the steepness of the curve during wash-in.

Visual analysis. To examine the atypical enhancement pattern rep-
resented by pc1 of Heart1, the scores of pc1 have been brushed in a
histogram (Fig. 7 (b)). A selection of high values reveals the infarcted
tissue (green region in Fig. 7 (c)) within the ring-shaped myocardium.
Color mapping has been applied to encode the Up-Slope. Since the
circular shape of the myocardium hampers the orientation, context in-
formation has been added. Two arrows point at the right ventricle (left
arrow) and the lumen of the left ventricle (right arrow). Only now,
anatomical knowledge about the correspondence between myocardial
regions and supplying coronary arteries may be exploited. The selec-
tion from Fig. 7 (b) has been transferred for multi-variate analysis to a
scatterplot opposing T T P (x-axis) and Up-Slope (y-axis) (red dots in
Fig. 7 (d)). Interestingly, the infarcted tissue is spread over all time-
points. Probing the time-intensity curves within the infarcted region
showed that the acquisition time of the scan was too short to deter-
mine a reliable T T P. In the infarcted region, no CA arrived at all
over time. However, a PE and therefore a TPP always exist no matter
if the time-intensity curve represents CA enhancement or only noise.
After all, it seems that in spite of the unreliable T T P-values a brush-
ing of pc1 still delivers meaningful results. This might be due to the
low loading of T T P (Fig. 7 (a, upper plot)). However, the high load-
ing of the unreliable T T P-values in pc2 prevents meaningful brushing
results there.

One major difficulty in analyzing perfusion data is that a parameter
that has been evaluated as unreliable in one case may turn out to be re-
liable in another case and vice versa. As illustrated in Fig. 7 (a, lower
plot and e-f), T T P might be a reliable parameter for feature localiza-
tion in Heart2. Brushing of high T T P-values (x-axis) and small Up-
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Slope-values (y-axis) reveals the infarcted region (green). Here, pc1
describes a typical enhancement pattern. In contrast, pc2 describes an
atypical pattern: T T P and Integral are proportional, and Up-Slope and
MiT R are inversely proportional related. Brushing of extreme values
of pc2 (red bars in Fig. 7 (h)) reveals areas at the transition between
myocardium and lumen and myocardium and pericardium (arrows in
Fig. 7 (g)). Further examination of these areas showed that the propa-
gation of the segmented myocardial contours over time did not match
the myocardium at all time-points (recall Sec. 4). A prerequisite for
a correct matching is a working motion-correction which failed par-
tially.

5 PRIOR AND RELATED WORK

This section describes prior and related work on the application of
InfoVis techniques for the analysis of multi-field data as well as on the
visual analysis of perfusion data.

Visual Exploration of Multi-field Data. Our visualization con-
cepts extend ideas from general systems for analyzing and exploring
multidimensional image data such as [1]. Due to the absence of stan-
dardized intensity values and the high variability of image scanners
and patient data, the analysis of perfusion is a typical exploratory anal-
ysis task where visual data mining techniques are essential [18].

Closely related concepts were presented by Gresh and Rogowitz in
the WEAVE system [13]. In particular, we employ their concept of
tightly integrating a 3D-visualization with multiple statistical repre-
sentations, connected by brushing facilities applied to scatterplot rep-
resentations. Similar to their exploratory scenarios, we also attempt to
quickly compare and correlate variables. Inspired by their approach,
Doleisch et al. developed the SimVis framework for interactive fea-
ture specification for CFD data in previous work [11][10]. In [5], the
concepts of Gresh and Rogowitz have been optimized for interactive
work with very large medical multi-field datasets and extended by the
integration of analysis techniques from pattern classification. Henze
[17] analyzed time-varying CFD data by multiple linked views. How-
ever, instead of analyzing the time-dependent data directly, we em-
ploy the perfusion parameters derived from them. Among the typical
exploration techniques, linking and brushing is of crucial importance.
Brushing refers to the graphical selection of data subsets which are
emphasized and operated in various ways. The first comprehensive
realization of this concept was presented in [3].

Visual Exploration of Perfusion Data. Basic visualization tech-
niques for exploring perfusion data were described by [4] (focus on
tumor perfusion) and [20] (focus on cerebral perfusion). The cine-
matic depiction of gray scale images in a movie loop gives an impres-
sion of the enhancement pattern [7]. Subtraction images depict the
intensity difference between two selected points in time, thus, empha-
sizing regions where the CA is absorbed. However, they do not pro-
vide quantitative temporal and spatial information, which could make
the diagnostic results more reproducible. Color-coded parameter maps
[20] reveal the regional distribution of selected perfusion parameters.
However, the analysis of parameter combinations in a tiled visualiza-
tion requires a mental integration of suspicious regions.

Multiparameter visualizations, integrating several perfusion param-
eters in one image, were introduced in [19] and [28]. Different kinds
of multivariate color scales, color icons and colored height fields are
discussed. Flexible lenses were also used to integrate the visualiza-
tion of a foreground parameter (in the lens region) with a background
parameter. In particular for DCE-MRIM with its high spatial reso-
lution, direct volume rendering techniques have been explored. A
color-coded Closest Vessel Projection especially suitable for explor-
ing DCE-MRIM data was presented in [19]. Coto et al. [8] employ
Two-level volume rendering and importance driven volume rendering
to focus volume rendered images to previously segmented breast le-
sions. This work is the closest to our work since also linking and
brushing was employed to select regions of interest. However, they
did not consider the perfusion parameters, described in Sect. 2.1. In-
stead, they considered only the intensity and the enhancement in a
subtraction image. Also, their approach is dedicated to DCE-MRIM
data. A rather general technique to support the visual exploration of

high dimensional data was presented by [25]. Their application pro-
file flags may be used to integrate time-intensity curves immediately
in a visualization, thus supporting the mental integration of the curve
parameters and the display of the original perfusion data. Finally, [16]
describe highly interactive 3D visualizations of DCE-MRIM data in a
virtual reality environment.

Analysis of Perfusion Data. Another venue of analyzing perfusion
data relates to a statistical analysis as well as mining and knowledge
discovery techniques. In particular, the classification of DCE-MRIM
data by means of artificial neural networks and clustering techniques
is an active research area [23, 6, 33]. As an example, Twellmann et
al. [33] applied an artificial neural network (ANN) architecture which
combines unsupervised and supervised techniques for voxel-by-voxel
classification of temporal kinetic signals derived from DCE-MRIM
data. Chen et al. [6] investigated and developed a fuzzy c-means
(FCM) clustering-based technique for automatically identifying char-
acteristic kinetic curves from segmented breast lesions in DCE-MRIM
data. Nattkemper and Wissmueller [27] described the application of
self-organized maps to time curve features of DCE-MRIM data and
discussed how the results may be visually represented as color-coded
cross-sections. Automatic classification may be useful in a screening
setting in order to replace the opinion of a second radiologist or to
direct a radiologist to suspicious regions.

6 SUMMARY AND CONCLUSION

We presented the integration of pre-processing techniques, statistical
methods and interactive feature specification for the analysis of the
multi-dimensional space of perfusion parameters, derived from medi-
cal perfusion data. The visual analysis strategy presented here allows
to assess the reliability of specific perfusion parameters, the correla-
tion of perfusion parameters in a particular case and thus enables an
efficient evaluation focused on a significant subset of perfusion param-
eters. Compared to the prevailing purely visually and highly subjective
evaluation methods, our approach enables a more reproducible evalu-
ation supported by quantitative analysis results. Our research con-
tributes to answering questions with respect to the diagnostic value of
a certain combination of perfusion parameters. Such questions are de-
bated in the medical research literature and they are difficult to treat,
since the choice of specific imaging parameters strongly influences the
diagnostic results. Thus, our visual analysis approach may be used to
investigate the effects of a new contrast agent, a new scheme of con-
trast agent administration or changes in other imaging parameters on
the diagnostic value of perfusion parameter combinations.

The most important work to be done relates to a thorough evalua-
tion of the presented analysis strategy for a larger number of specific
cases in cerebral, tumor, and myocardial perfusion. Within such an
evaluation, the perfusion data analysis and clinical parameters charac-
terizing the progress of the respective disease have to be integrated to
better understand the diagnostic value of perfusion parameters. Based
on such an evaluation, dedicated software systems for routine clinical
diagnosis may be developed. Such systems must be fine-tuned to par-
ticular applications and should hide most of the analytical processes
and instead present primarily the results of analytic processes together
with a set of standardized visualizations.

With respect to the analysis strategy, the incorporation of clustering
techniques which classify regions according to the similarity of time-
intensity curves, deserves a systematic investigation. Based on recent
progress, e.g., in kidney perfusion studies, such a classification may
strongly enhance the user’s task of selecting regions of interest.
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