
Interactive Visual Clustering of Large Collections of Trajectories

Gennady Andrienko1, Natalia Andrienko1, Salvatore Rinzivillo2, Mirco Nanni2, Dino Pedreschi3, Fosca Giannotti2

1 Fraunhofer Institute IAIS (Intelligent Analysis and Information Systems), Sankt Augustin, Germany
2 KDD Lab –ISTI –CNR, Pisa, Italy

3 University of Pisa, Pisa, Italy

ABSTRACT
One of the most common operations in exploration and analysis of
various kinds of data is clustering, i.e. discovery and interpretation
of groups of objects having similar properties and/or behaviors. In
clustering, objects are often treated as points in multi-dimensional
space of properties. However, structurally complex objects, such
as trajectories of moving entities and other kinds of spatio-
temporal data, cannot be adequately represented in this manner.
Such data require sophisticated and computationally intensive
clustering algorithms, which are very hard to scale effectively to
large datasets not fitting in the computer main memory. We
propose an approach to extracting meaningful clusters from large
databases by combining clustering and classification, which are
driven by a human analyst through an interactive visual interface.

KEYWORDS: Spatio-temporal data, movement data, trajectories,
clustering, classification, scalable visualization, geovisualization.

INDEX TERMS: H.1.2 [User/Machine Systems]: Human
information processing – Visual Analytics; I.6.9 [Visualization]:
information visualization.

1 INTRODUCTION
Nowadays our civilization faces an explosion of various kinds of
space-related data, such as measurements from static and mobile
sensors, GPS tracks, or georeferenced photos put on the Web by
general people. As potential sources of valuable information and
knowledge, these data call for scalable methods of analysis, which
must take into account the particular features of the geographical
space: its heterogeneity, variety of properties and relationships,
spatial and temporal autocorrelation, anisotropy, and scale
dependence. As all these features cannot be adequately modeled
(yet) for fully automatic processing, the analysis relies heavily
upon the human analyst’s sense of the space and place and tacit
knowledge of their inherent properties and relationships [4].
These are incorporated in the analysis through the use of
appropriate visual representations of the space (in particular,
maps) and interaction techniques.

Clustering is one of the general approaches to exploring and
analyzing large amounts of data since it allows an analyst to
consider groups of objects rather than individual objects, which
are too numerous. Clustering associates objects in groups
(clusters) such that the objects in each group share some
properties that do not hold (or hold much less) for the other
objects. Spatial clustering builds clusters from objects being
spatially close and/or having similar spatial properties (shapes,
spatial relationships among components, etc.).

In clustering, objects are often represented by feature vectors
(in other words, points in multi-dimensional space of properties).
However, structurally complex objects such as spatial time series,
trajectories of moving entities, or spatial distributions cannot be
adequately represented in this way. Therefore, the most widely
used clustering algorithms, such as K-Means, KD-Tree, or SOM
(self-organizing map), are not applicable. It is necessary to use
special methods, which may be very complex computationally.

A problem of currently existing clustering methods devised for
structurally complex objects is their lack of scalability with
respect to the size of the data. Clustering involves numerous
comparisons between objects, and the comparison of complex
objects is by itself computationally complex and time-consuming.
Implementations of clustering algorithms typically work only with
objects loaded in the main computer memory, which is often
impossible for real datasets. Out-of-memory implementations are
technically possible but extremely time-consuming. This might
not be a very big problem if the clusters they produce were the
final, unmodifiable outcomes, but this is not the case. Clustering
results by themselves have no meaning and value until a human
analyst interprets them. However, all clustering techniques
involve parameters, and different parameter settings lead to
diverse results, which may be more or less meaningful to a human
or may provide different complementary meanings. Hence, the
analyst needs to run clustering several or even many times with
different settings, which requires the reaction time to be short.

We suggest an approach that allows interactive cluster analysis
of large numbers of structurally complex objects. The essence of
the approach can be shortly described as follows. First, the analyst
takes a manageable subset of the objects and applies clustering to
it. The analyst experiments with the clustering parameters for
gaining meaningful results with respect to the analysis goals.
Then, the analyst builds a classifier, which can be used for
attaching new objects to the existing clusters. The analyst may
also modify the clusters for their better understandability and/or
conformance to the goals. The produced classifier is applied to the
whole dataset. Each object is either attached to one of the clusters
or remains unclassified, if it does not fit in any cluster. When
necessary, the analyst may repeat the procedure (take a subset –
cluster – build a classifier – classify) to the unclassified objects.

This paper explains what classifier is and how it is built. We
introduce the concept by example of clustering and classification
of trajectories of moving entities; however, the approach is
generic and can be applied to other types of structurally complex
spatial and non-spatial objects.

2 RELATED WORK
There are two main approaches to clustering complex data: (i)
defining ad hoc notions of clustering and clustering algorithms
tailored to the specific data type; and (ii) applying generic notions
of clustering and generic clustering algorithms by defining some
distance function, which measures the similarity between data
items. In the second case, the specifics of the data are completely
encapsulated in the distance function.

http://geoanalytics.net/and andrienko@geoanalytics.net

3

IEEE Symposium on Visual Analytics Science and Technology
October 12 - 13, Atlantic City, New Jersey, USA
978-1-4244-5283-5/09/$25.00 ©2009 IEEE

Both approaches are applied in developing clustering methods
for trajectories of moving objects. Examples of the first approach
include grouping together objects which are likely to be generated
from a common core trajectory by adding Gaussian noise
[11][13], building (hidden) Markov models that try to explain the
transitions between positions [2], and methods based on the search
and measurement of simple (for instance linear) sub-segments of
trajectories that match sufficiently well [15][16].

The second approach is taken, for example, in [18]: a generic
density-based clustering algorithm is used with a distance function
computing the average spatial distance between the trajectories
within a time interval, which is automatically chosen through an
iterative optimization procedure. Generic clustering algorithms
can be implemented in such a way that the distance function itself
becomes a parameter [20]. Hence, the clustering problem is
reduced to choosing an existing algorithm that satisfies some
general requirements (for instance scalability, tolerance to noise,
ability to detect non-convex clusters, etc.) and designing the
distance function that best suits the specifics of the data and the
purposes of the analysis. A variety of distance functions have
been proposed for trajectories, including the basic Euclidean
distance (assuming that trajectories are represented by vectors of
fixed length), spatial Euclidean distance average along the time
[18], time series-inspired functions such as (dynamic) time
warping distance [8][25] and Least Common Sub-Sequence
(LCSS) measure [1][9], and direction-oriented distances [19][26].

Paper [20] describes a clustering tool that includes a density-
based clustering algorithm OPTICS [6] equipped with a library of
semantically and computationally different distance functions.
The tool supports a step-wise analytical procedure called
“progressive clustering”: a simple distance function with a clear
meaning is applied at each step, while successive application of
different functions yields sophisticated interpretation of clusters.
Visualization and interaction techniques play here a crucial role.

Interactive, visually-aided clustering procedures have been
suggested also for other purposes [10]. Thus, the analyst may wish
to tune clustering outcomes to his/her background knowledge by
interactive post-processing, e.g. moving objects between clusters
[7][17]. The analyst may direct the work of the algorithm, for
instance, the training of a self-organizing map [21]. Interactive
visualization may allow the analyst to compare results of several
runs of clustering and investigate the sensitivity to parameters
[23]. Clustering techniques are often included in visualization
systems and toolkits, so that the analyst may, on the one hand, use
visualization for examining and interpreting results of clustering,
on the other hand, use results of clustering for further analysis by
means of interactive visual techniques [14][22].

3 APPROACH
The approach we suggest involves the use of a generic density-
based clustering algorithm such as OPTICS [6], which belongs to
the DBSCAN family [12]. Advantages of these methods are
tolerance to noise and capability to discover arbitrarily shaped
clusters. A brief description of OPTICS is given in [20]. The
clustering algorithm is used with a distance function suitable for
the type of objects under analysis.

3.1 General procedure
The basic idea of the approach is to apply the clustering algorithm
to a small subset of objects and then to attach the remaining
objects to the clusters that have been discovered at the first stage.
For this purpose, in each discovered cluster one or several
prototype objects (or, shortly, prototypes) is (are) selected such
that the distance of any other cluster member to one of these
objects is below a certain threshold. The distance is measured by
the distance function, which has been used for the clustering. The

prototypes of the clusters, the respective distance thresholds
(which may be prototype-specific), and the distance function form
together a classifier.

Attaching new objects to the so defined clusters is done by
comparing the objects to the cluster prototypes, i.e. finding the
distances by means of the distance function. An object is attached
to a cluster if its distance to one of the prototypes is below the
respective threshold. If an object is close to prototypes of two or
more clusters, the closest prototype is chosen. If an object is not
sufficiently close to any of the prototypes, it remains unclassified.

Given a database D, the whole process can be formalized as
follows (Algorithm I):

1. Extract a subset D′ of objects from D (see Section 3.2).
2. Apply the density-based clustering algorithm with a suitable

distance function d and get a set of clusters {C1, C2, . . . ,Cm}
3. For each cluster Ci

– Select q prototypes in Ci, with 1 ≤ q < |Ci|, namely { pi
1, pi

2, …,
pi
q }, with corresponding distance thresholds { εi

1, εi
2, …, εi

q }
such that the cluster Ci may be described as the set of objects
in D′ whose distance to one of the prototypes pi

j is less than
the corresponding threshold εi

j, i.e.
Ci = { o ∈ D′ | ∃ j, 1 ≤ j ≤ q, such that d(o, pi

j) < εi
j }

(see Section 3.3 for the details on how to choose prototypes
for each cluster).

The set of the prototypes for all clusters pi
j together with their

distance thresholds εi
j and function d form a classifier.

4. Visually inspect and refine the classifier; possibly, modify the
clusters (see Section 3.4).

5. Apply the classifier to the remaining objects in D: for each object
o ∈ D, o ∉ D′
– Find all close prototypes, i.e. pi

j, 1 ≤ i ≤ m, such that
d(o, pi

j) < εi
j. If only one close prototype pi

j exists, attach o to
the cluster Ci represented by pi

j. If two or more close
prototypes pi1

j1, …, piN
jN exist, select the closest of them, i.e.

such prototype pik
jk, that d(o, pik

jk) < d(o, pin
jn) for ∀n : 1 ≤ n ≤ N,

n ≠ k; attach o to the cluster Cik represented by pik
jk. If no close

prototypes exist, the object remains unclassified.
6. Possibly, exclude the original and new members of clusters {C1,

C2, ..., Cm} from D and restart the whole process again.

The computational time required for the classification (step 5)
depends linearly on the number of objects in D: each object is
compared with a constant number of cluster prototypes (unlike
clustering, where each object needs to be compared with all
others). Hence, the algorithm is quite scalable with respect to the
database size. Although step 5 may take minutes or even hours for
a very big dataset, it does not require the involvement of a human
analyst. Since the analyst can previously obtain meaningful, goal-
oriented clusters by running the clustering method with different
settings at step 2 and interactively refining the outcomes at step 4,
the results of the following cluster-based classification will also
be meaningful and conform to the goals of the analysis.

3.2 Selection of a subset
Algorithm I starts with a selection of a subset of the original
dataset. The subset should have a manageable size and at the same
time be representative of the dataset as a whole. An ideal
sampling strategy must preserve the actual distribution of the
objects in the original dataset. This would require the knowledge
of this distribution, which is not always possible.

Uniform sampling from the database is a reasonable strategy
when a density-based clustering algorithm is used: dense regions
in the original dataset remain (relatively) dense also in the sample,
and hence can be discovered by the algorithm. In a case when a
dense region becomes too sparse in the sample, there is still a
possibility of detecting it in the successive iteration of the process.

4

Specifics of the data and/or goals of the analysis may call for a
certain way of selecting the subset, as will be seen in the
description of an example analysis scenario (Section 4).

3.3 Selection of cluster prototypes
Selection of prototypes from density-based clusters is a non-trivial
problem. In a density-based cluster, each object is close to a
certain minimum number of other objects (this is a parameter of
the algorithm). However, two arbitrary cluster members may be
quite distant from each other; therefore, a cluster may have rather
high internal variation. Fig.1A shows how a cluster of points may
look like (we use points only for illustration purposes, to make the
argument, which applies to any kind of objects, easier to
understand). Fig.2 gives examples of density-based clusters of
trajectories according to the similarity of their routes (the small
hollow squares and the larger solid ones mark the starting and
ending points of the trajectories, respectively).

Figure 1. A) A density-based cluster of points. B) The cluster has

been divided into “round” subclusters.

Figure 2. Examples of density-based clusters of trajectories

according to the distance function “route similarity” [5].

To find appropriate prototypes in a density-based cluster, we
suggest dividing it into “round” subclusters. A round (sub)cluster
is a set of objects S={o1, o2, …, ok} for which there is a special
object o′ and distance ε such that d(oi, o′)<ε, 1 ≤ i ≤ k, and for any
other object o∉S, d(o, o′)≥ε. The object o′ (real or theoretical) is
called center of the (sub)cluster S. The maximum distance among
d(oi, o′), 1 ≤ i ≤ k, is called radius of the (sub)cluster S. In a case
when the objects are points, as in Fig.1, and the distance function
d is Euclidean distance, the notions of center, radius, and round
cluster can be understood literally. In a case of structurally
complex objects (e.g. trajectories, as in Fig.2) and arbitrary d (e.g.
a function measuring the similarity between the routes), these
notions need to be understood metaphorically.

For complex objects and distance functions, finding the true
center of a round (sub)cluster is a complex problem, not only
computationally but also conceptually. However, for the purposes
of building a classifier, the true centers are not really needed.

They can be substituted by medoids. A medoid is a member of a
subcluster having the smallest mean distance to all other
members. Medoids may be used as cluster prototypes.

Formally, the problem of selecting cluster prototypes may be
stated as follows: given a cluster C, a distance function d, and a
maximum distance threshold εmax, divide C into subclusters {S1,
S2, …, Sn} where for ∀Si ∃mi∈Si (medoid) and ∃εi≤ε

max such that
for ∀o∈Si, d(o, mi)<εi. For solving the problem, we suggest the
algorithm described below (Algorithm II). At each stage, the
status of the algorithm is represented by a list L where each entry
consists of a subcluster and its corresponding medoid <Si, mi>.

1. Create an empty list L.
2. Take the next object o∈C. Try to find <Si, mi>∈L such that
d(o, ci)<εmax. If found, go to 3, otherwise go to 4.

3. Let Si′ = Si ∪ {o}. Find the medoid mi′ of Si′. For each member
x∈Si′, test the condition d(x, mi′)<εmax. If d(x, mi′)<εmax holds for
∀x∈Si′, go to 3a, otherwise go to 4.
a) Remove <Si, mi> from L.
b) Put < Si′, mi′> in L. Go to 2.

4. Put <{o},o> in L (i.e. create a new subcluster with a single
member o, which is also the medoid of the subcluster). Go to 2.

At the end, the list L represents a partitioning of the cluster C into
round subclusters. The medoids of the subclusters become the
prototypes of the original clusters. The maximum distance from a
medoid to the members of its subcluster is taken as the distance
threshold for this prototype. Fig.1B illustrates, by example of
points, a possible outcome of Algorithm II. The subclusters are
indicated by different colors of the circles representing their
members. The medoids are marked by thick black boundaries.

Although the computational complexity of Algorithm II is
O(n2), where n is the number of objects in cluster C, this is not
critical due to the relatively small sizes of density-based clusters
that can usually be discovered in a not so big subset D′ of the
database D. Besides, the distances between the objects, which are
needed for Algorithm II, are computed at the stage of density-
based clustering (step 2 in Algorithm I) and can be later re-used,
which substantially reduces the computation time.

It may seem that a standard clustering method like K-Means
could be used to divide a cluster into round subclusters. There are
two problems here. First, K-Means [24] and some other methods
require computing the mean of multiple objects, which is too
difficult for complex objects. K-Medoids [24] could suit better as
it uses medoids instead of means. However, the second problem,
common for K-Means and K-Medoids, is that the number of
subclusters must be known in advance, which is not the case.

3.4 Visual inspection and refinement
There are at least two motives for revising the automatically built
classifier. First, density-based clusters with high internal variation
are difficult to understand. The analyst may wish to refine them
by dividing into parts with smaller internal variation and/or by
removing some of the members. Second, the analyst may wish to
tune the selection of cluster prototypes and distance thresholds to
his/her understanding of the distinctive properties of the clusters.

Furthermore, the analyst needs to make sure that the classifier
will correctly assign new objects to the defined clusters. This can
be tested by applying the classifier to D′. Since the assignment of
objects to clusters is done in different ways in the classification
and in the density-based clustering, the outcomes of the
classification may differ from the original clusters. Some of the
original members of a cluster may not be there any more (such
objects will be called false negatives), and/or some new objects
may be put in the cluster (such objects will be called false
positives). This discrepancy is not necessarily disadvantageous. It
may happen that a false negative is too dissimilar to the other

A B

A B

5

objects in the cluster and should rather not be there, and it may
also happen that a false positive is sufficiently similar to the core
objects of the cluster and should rather be there. Hence, each case
of divergence between the two assignments of the objects to the
clusters needs to be inspected by the analyst. If the analyst is not
satisfied with the new assignment, he/she should be able to refine
the part of the classifier responsible for the misclassification.

To enable the revision and refinement of the classifier, we
suggest the following operations:

1. Exclude one or several subclusters from a cluster and
perform one of the following actions:
a) make a new cluster as a union of these subclusters;
b) turn each subcluster into a new cluster;
c) discard the subclusters, i.e. treat their members as not

belonging to any cluster.
2. Divide a subcluster into two or more smaller subclusters.
3. Merge two or more subclusters into a single larger subcluster.
4. “Dissolve” one or more subclusters, i.e. distribute their

members among the remaining subclusters.
5. Change the distance threshold of a selected prototype.

The operations 2, 3, and 4 involve automatic re-computing of the
medoids of the subclusters. For dividing a subcluster into smaller
subclusters (operation 2), the K-Medoids method may be applied.
It may be modified so that the analyst could select the initial seeds
for the new subclusters.

The process of reviewing and revising the classifier is
supported by appropriate visual representations of the subclusters
and their medoids and interactive facilities for
– focusing on a cluster as a whole or on one or more

subclusters,
– selecting one or more subclusters for a desired operation, and
– selecting candidate seeds for dividing a subcluster.

After any operation, the analyst visually inspects the results
and, possibly, runs the test of the classifier on D′. If the results are
not satisfactory, the analyst may revert to the previous state. All
operations are logged, and it is possible to trace how the current
state of the classifier has been derived. This also helps to explain
the process to others and to re-produce the result when necessary.

4 AN EXAMPLE ANALYSIS SCENARIO

4.1 Analytical environment
The example scenario is about analyzing a large set of trajectories
of moving entities (while the suggested method is generic and
applicable also to other types of data). We use our implementation
of the method, which is incorporated in a visual analytics toolkit
for spatial and spatio-temporal data. The implementation takes
advantage of the general visualization and interaction techniques
available in the toolkit (cartographic visualization, interactive
filtering, interactive selection of objects in a display, etc.) as well
as specific visual and computational techniques and database
queries oriented to trajectories. The data are stored in a standard
relational database (Oracle) in the form of position records
<entity_id, trajectory_id, time, position, {attributes}>, where the
position consists of two coordinates, geographical (longitude and
latitude) or Cartesian (X and Y). When the data are loaded in the
toolkit, position records with the same trajectory_id are used to
construct objects of a special type representing trajectories [5].

The initial clustering of a subset of trajectories is done by our
implementation of the density-based algorithm OPTICS with a set
of trajectory-oriented distance functions [20]. In the scenario, we
use the function “route similarity”, described in [5]. The distance
(amount of disparity) between two trajectories depends on the
similarity of the geometric shapes of their footprints and the
closeness of their spatial positions and orientations. Fig.2 shows

examples of clusters detected by OPTICS with “route similarity”
function. Note that density-based clusters do not necessarily have
so high internal variation as in these specially selected examples.
Another important note is that density-based clustering does not
put every object in some cluster. When an object is not similar
enough to a certain number of other objects, it is treated as
“noise”, i.e. stays outside of any cluster. The required minimum
number of similar objects and the maximum distance to each of
them are the parameters of the clustering method [20].

In Fig.2, clusters of trajectories are visualized by drawing their
individual members on a map. Each cluster is assigned a specific
color, in which its members are painted. There is an interactive
tool allowing the user to choose which clusters will be visible.
Clusters can also be represented in a summarized way, as
described in [5] and [3]. The user may get a visual overview of
clustering results in the form of a panel with multiple small maps
each representing one cluster in a summarized form. This may be
stored as an HTML page. When building a classifier, the user may
document the process using the available logging tools, which
produce a collection of linked HTML pages.

4.2 Data and analysis task
In this imaginary but realistic scenario, we play a role of analysts
who received a task from the mobility and transportation planning
department of a big city. The department has obtained a dataset
collected by tracking about 17,200 cars that moved in the city
during one week. The mobility managers used to do their analyses
and planning with the help of traffic models, which are created on
the basis of costly and time-consuming population surveys carried
out once in several years. Now there is an opportunity to use large
amounts of cheap and up-to-date data, and, consequently, a need
in methods for extracting useful information from these data.

In our scenario, the mobility managers gave us the data with the
task to extract the typical (i.e. frequently occurring) routes of
commuters in the city. The knowledge is needed for planning
improvements in the traffic infrastructure and/or public transport.
The task may be re-formulated as finding big groups of
trajectories following the same or very similar routes. This task
can be accomplished by means of cluster analysis using the
distance function “route similarity”. However, the dataset
consisting of about 176,000 trajectories (over 2 million position
records) is too big for loading RAM and direct application of a
clustering algorithm; hence, this is the case for our Algorithm I.

4.3 Subset selection and clustering
The initial subset of trajectories must be manageable in terms of
the size but representative in terms of the probability of finding
the clusters we are interested in. According to our knowledge, the
most intensive movement of commuters occurs in the mornings of
working days. Hence, we take a typical working day such as
Wednesday (the middle of the week) and extract from the
database all trajectories that occurred from 6 till 10 AM on that
day. This gives us 6,591 trajectories, which is quite manageable.

For the clustering, we use the distance threshold (maximum
deviation) 500 meters for treating two trajectories as similar and
set 3 as the required minimum number of neighbors (similar
trajectories) for each trajectory in a cluster. The first parameter is
responsible for the amount of internal variation in the clusters.
The value 500 has been chosen after several experimental runs of
the tool with different threshold values. The second parameter
determines the density of the clusters. Although we are interested
in dense clusters, we keep in mind that we deal now with a small
subset (about 3.5%) of the whole set. Dense clusters existing in
the whole dataset may be represented by much sparser clusters in
the subset. Hence, if we want the clusters to be detected, we
should not choose a very high value for the second parameter.

6

The application of the clustering tool to the subset of
trajectories gives us 138 clusters with the sizes ranging from 4 to
102; 4,708 trajectories (71.48%) are labeled as “noise”. We look
at the cluster overview display, where the clusters are represented
in a generalized and summarized form (by arrows with the
thickness proportional to the number of corresponding moves; see
Figs. 3 and 4). We notice three major types of routes, illustrated in
Fig.3: routes that pass the city by a belt road without entering the
inner city (Fig.3A), very short trajectories (Fig.3B; summarized
movements within small areas are represented by rings with the
thickness proportional to the number of the trajectories), and the
routes entering the city (Fig.3C). Only the latter type of route is
relevant to the analysis task.

Figure 3. A fragment of the cluster overview panel.

Figure 4. The biggest clusters of trajectories ending in the city.

To get rid of numerous irrelevant clusters, we apply filtering to
the subset of trajectories. Interactively (by drawing on the map),
we define the area of inner city and select only the trajectories
ending in this area. We also filter the trajectories by their length,
which must be at least 3 km. 2,028 trajectories satisfy both filters.
We apply clustering to these trajectories and obtain 21 clusters
with the sizes ranging from 4 to 68; 1,720 trajectories (84.8%) go
to “noise”. The routes, presented in the cluster overview panel
(see a fragment in Fig.4), correspond quite well to our idea of
possible commuter routes. Now we shall build a classifier to find
out how frequent these routes are in the entire database.

4.4 Building the classifier
A starting version of the classifier is generated automatically. For
this, we specify the maximum distance threshold for a cluster
prototype (1000 meters). The tool divides the clusters into round
subclusters (the number ranges from 1 to 7) and computes the
medoids. Now we shall inspect and refine the classifier.

To have a convenient overview of the classifier, we use the
documenting function, which generates a set of HTML pages

displayed in a browser. The first page includes small images of all
clusters and a summary table informing us about the size of each
cluster, the number of subclusters, and the maximum distance
threshold. An image of a cluster (e.g. Fig.5A) shows all
trajectories of this cluster by thin, neutrally colored lines and the
cluster prototypes (i.e. medoids of the subclusters) by thicker lines
painted in the color of this cluster. The image serves as a
hyperlink to the page describing the division of the respective
cluster. The latter page contains a table listing all cluster
prototypes, their distance thresholds, the subcluster sizes, and the
mean distances from the prototypes to the subcluster members.
The page also includes a bigger image of the whole cluster and
small images of all its subclusters. An image of a subcluster
includes the trajectories of the subcluster and the medoid, which
are shown in the same way as in an image of a cluster. Such an
overview page allows us to grasp immediately how the cluster has
been divided and how the subclusters differ from each other.

By viewing the pages, we find that editing is needed in the parts
of the classifier representing the clusters with high internal
variation. All such clusters have multiple subclusters. Thus,
cluster 1 (Fig.4B) has 7 subclusters. Fig.5A presents the cluster
with its prototypes. We notice spatial separation among the
prototypes: a group of 5 prototypes (Fig.5B) lies northward of the
remaining 2 prototypes (Fig.5C). As these two groups represent
different routes toward the city center, it is reasonable to have
them in two distinct clusters. Hence, we select the two subclusters
representing the southern route and use operation 1a (Section 3.4)
to extract them from cluster 1 and produce a new cluster.

Figure 5. Cluster 1 should be split in two clusters.

Figure 6. Cluster 2 (A) and its singular prototype (B).

Cluster 2 (Fig.4A) has been also divided into 7 subclusters,
which reflects the branching of the tracks inside the city (Fig.6A).
One subcluster consists of a single trajectory (Fig.6B). We find
that this trajectory should rather not be a cluster prototype: it is
not much interesting as a commuter route since it does not enter
the inner city but ends near its boundary. Hence, we remove this
subcluster with a single member from the cluster and discard it
(operation 1c). In a similar way, we edit cluster 5 (Fig.4C). We
discard a subcluster consisting of a single self-intersecting
trajectory that can hardly be treated as a typical commuter route.

In cluster 6 (Fig.7A), one of the 3 prototypes has a notably
higher distance threshold (1000) than the distance thresholds in all
other clusters. To refine the corresponding subcluster (Fig.7B), we
divide it into two subclusters using operation 2. The tool finds a
possible division and presents it to us as a suggestion. The
division takes place after our approval (Fig.7C); the distance
thresholds of the 2 new prototypes are 252 and 262.

A B C

A B C

D E F

A B C

A B

7

Figure 7. A) Cluster 6 with its 3 prototypes. B) The subcluster with a

big radius. C) The subcluster has been refined.

The remaining parts of the classifier do not seem to require
editing. We run the automatic test of the classifier, in which the
classifier is applied to the subset of 2,028 trajectories used in the
initial clustering. In the test, the classifier assigns the trajectories
to the clusters, and the assignment is compared with the original
membership of the trajectories in the clusters. As mentioned
earlier, two types of discrepancy are possible: false negative and
false positive. The documenting tool produces a summary table
with test results, where we can see that 11 out of 22 clusters have
from 1 to 7 false positives and 2 clusters have 1 false negative
each. These cases need to be inspected. The interactive facilities
allow us to focus on the false positives or false negatives of each
cluster and to compare them with the cluster prototypes and the
true members of the cluster. We see that in all but one cases the
false positives are quite similar to the original members of the
clusters. For example, Fig.8 presents the false positives of clusters
1 and 6 (portrayed by thin dark grey lines) together with the
prototypes of these clusters (shown by thick colored lines). The
false positives are consistent with the cluster prototypes and the
other cluster members (visible in Fig.5B and Fig.7A). These and
other cases do not require any corrective means.

Figure 8. The false positives of clusters 1 (A) and 6 (B) shown

together with the prototypes of these clusters.

Figure 9. A) Cluster 17 with 2 original prototypes; B) the false

positives; C) cluster 17 with 3 prototypes after a refinement; D)
the false positives after the refinement.

However, cluster 17 (Fig.9A) has acquired 7 false positives
(Fig.9B), some of which deviate quite much from the original
cluster members. To improve the situation, we try a different
division of cluster 17 into subclusters. We merge the original 2
subclusters (operation 3) and divide the cluster into 3 subclusters
(operation 2). The resulting prototypes are in Fig.9C. We run the
test again, and the cluster acquires only 3 false positives (Fig.9D),
which are consistent with the original cluster members.

The cases with false negatives can be handled in two possible
ways: (1) by increasing the distance thresholds of the prototypes

of the subclusters in which these trajectories have been originally;
(2) by refining the subclusters so that the false negatives become
additional cluster prototypes. We choose the second approach and
use the possibility to select candidate prototypes for the resulting
subclusters. In both cases of false negatives, we obtain additional
subclusters with singular members and radii equal to 0. We have
to specify explicitly the desired distance thresholds for the
respective prototypes. We choose 200m, which equals the
minimum threshold among the other prototypes. Then we run the
test once again and see that there are no false negatives any more
and no additional false positives have appeared.

Now we are satisfied with the classifier. We use the
documenting tool for producing a set of HTML pages presenting
the final state of the classifier and the results of the test. We also
save the classifier in a file in a special XML format, so that the
classifier can be loaded and used in another session.

Figure 10. The graphical summaries of the biggest clusters

obtained by applying the classifier to the entire dataset.

4.5 Applying the classifier to the whole database
A classifier is applied to the whole database in the following way.
We remind that our database does not contain trajectories as
special constructs but only position records. These records are
loaded in the visual analytics system by small portions. The
system constructs trajectories from the loaded records and applies
the classifier to each trajectory. To store the results, the system
creates a lookup table in the database, where it makes a record for
each trajectory with its identifier and the number of the cluster it
has been attached to or -1 if it does not fit in any cluster. During
the classification process, the system also incrementally builds
graphical summaries of the clusters, analogous to those of the
initial clusters (Fig.4). When a trajectory is attached to a cluster,
the graphical summary of this cluster is updated. The processed
trajectories are discarded.

A B C

A B

A B C D

8

In our scenario, we apply the classifier to the whole database,
which defines 175,890 trajectories. Although it is possible to
exclude the initial subset of trajectories from the classification, we
do not use this option since we want the lookup table to contain
records for all trajectories. The classification together with the
graphical summarization takes about 14.5 minutes. Fig.10
presents a fragment of the display with the graphical summaries of
the clusters. Fig.11 shows the table display of the statistics about
the clusters including the initial and new sizes and the original and
new mean distances of the cluster members to the prototypes.

Figure 11. The statistics about the classification results.

Figure 12. Clusters 25 (left) and 27 (right).

As may be seen, the biggest clusters discovered in the subset of
trajectories remain among the biggest ones in the entire set. The
graphical summaries of the clusters extracted from the whole set
(Fig.10) are consistent with those of the original clusters (Fig.4).
The small clusters from the subset mostly remain small in the
whole set, but a few exceptions require investigation. Thus, the
graphical summaries of clusters 27 and 25 (left and middle in the
second row in Fig.10) make us think that the clusters may include
trajectories that do not end in the inner city. The system allows us
to load the trajectories belonging to selected clusters (the lookup
table is used for this purpose). We load the trajectories of clusters
25 and 27 (Fig.12). Indeed, very many trajectories of cluster 25
and some trajectories of cluster 27 end outside of the city. We
apply the spatial filtering, like we did for the initial subset
(Section 4.3), and see that only 107 of the 414 trajectories (25%)
of cluster 25 end in the inner city. The reason is that the cluster is
represented in the classifier by a single prototype trajectory
ending close to the boundary of the inner city. This prototype
turns out to be similar to many trajectories ending outside. Hence,
it is appropriate to choose another prototype or set of prototypes
for the route represented by cluster 25. For cluster 27, the ratio is
347 to 417 (83%), which is not as bad; however, the choice of the
prototypes can also be improved.

4.6 Further iterations
To continue the analysis, we create a new database table with the
data for the unclassified trajectories, as indicated in the lookup
table. From the new table, we extract the trajectories from the
morning of another working day (Tuesday). We handle this new
subset like the initial subset (Section 4.3). Clustering of the new
subset gives us only 7 clusters with the sizes from 4 to 6, which
makes us think that the most significant clusters have been
discovered in the previous iteration. Still, we build a classifier and
apply it to the table with the unclassified trajectories. This time,
two biggest clusters contain 126 and 86 trajectories, and the
remaining clusters are much smaller. We repeat the procedure also
for Monday. The subset contains 6 clusters with sizes from 4 to 7,
but one of them grows to 204 in the result of the cluster-based
classification. A closer look at these trajectories reveals that they
mostly occur in the afternoons, which explains why the cluster
was so small in the subset composed from morning trajectories.

We do a couple of additional iterations to be sure that we have
not missed any significant clusters. At the end, we take the largest
clusters discovered during the whole process (17 clusters with the
sizes from 95 to 890) as representing the most frequent routes. For
these routes, we compute the frequencies of their occurrence by
days of the week and by times of the day and visualize them by
segmented histograms. We make a final report using the HTML
pages generated in the course of the analysis.

Classifiers created in different iterations can be combined into
one classifier, which can be stored externally for further uses. It
may be sensible to re-apply the combined classifier to the whole
dataset for having continuous numbering of the clusters and one
lookup table with all results.

5 DISCUSSION
The suggested approach is generic, i.e. applicable to different
types of structurally complex objects. However, to make it work
for a particular type of objects, certain type-specific components
are necessary: (1) a database representation of the objects; (2) a
distance function; (3) a visual representation of the objects; (4)
optionally, methods for graphical summarization of clusters. This
is demonstrated by the example scenario of analyzing a large set
of trajectories. The visual representation of the objects should
correspond to the distance function, i.e. exhibit the properties of
the objects accounted for in the distance function. The same
applies to the summarized representation. Thus, in the example
scenario, the distance function compares trajectories according to
their routes; hence, the visualization should exhibit the routes. The
cartographic representations of individual trajectories and clusters
that we have used are suitable for this purpose. However, in a case
of distance function that takes into account also the temporal
aspect of the trajectories, these representations are inadequate. It
is necessary to exhibit the temporal component, for example, by
involving an additional display dimension to represent time.

An essential feature of the approach is the division of labor
between computer and human and a true synergy where each side
helps the other. Not only the computer gives its computational
power to the human but also human’s knowledge and reasoning
capabilities help the computer. Thus, clustering algorithms do not
scale to very large sets of structurally complex objects. In our
approach, cluster analysis of very large datasets becomes possible
owing to the human analyst, who directs the work of the computer
to the discovery of meaningful, relevant clusters. The direction is
realized through the following activities: (1) selection of a subset
for the initial clustering on the basis of the analyst’s knowledge of
the domain, data, and problem to be solved; (2) selection of
appropriate clustering parameters, by trying different variants and
evaluating the results; (3) editing of the automatically built
classifier, which involves interpretation, evaluation, and

9

adaptation to the goals of analysis (it may be said that the analyst
imbues the classifier with meaning). The computer, from its side,
supports these activities by visualization and tools for interaction.
The computer also helps in producing reports by documenting
states, operations, and results.

However, not only a report is the outcome of the analysis. The
classifier itself is a valuable material result, which can be used for
further analyses. Thus, the classifier can be applied to a different
dataset (e.g. from another time period). It can efficiently classify
new data coming in real time. Furthermore, the distance function
in the classifier can be modified so as to be able to assess the
similarity of an object to a prototype having only partial
information about the object (e.g. a fragment of a trajectory). With
such a distance function, the classifier can be used for real-time
prediction (e.g. prediction of the future movement).

Editing of a classifier may require significant human’s effort.
More specifically, the editing effort is high for big clusters with
high internal variation. Usually, such clusters need to be refined
by splitting and/or by removing inconsistent objects. The reward
is “clean”, easily understandable clusters extracted from the whole
dataset. When a cluster is originally coherent, little or no editing
of the respective part of classifier is needed. Our experience
shows that, with an appropriate subset selection, big and “dirty”
clusters mostly appear at the first iteration of the analysis. At the
following iterations, the discovered clusters tend to become much
smaller due to the decreasing density of the data. The internal
variation in the clusters is also small. The number of discovered
clusters also decreases. Hence, the editing effort significantly
lessens with each iteration. Thus, in our experiments, we typically
spent 30-45 minutes for reviewing and editing the classifier at the
first iteration and only 5-10 minutes at the following iterations
(mainly reviewing, almost no editing was required).

It might be appropriate to compare the clusters built by means
of our interactive and iterative method with results of automated
clustering of the complete dataset. However, this is currently not
possible because of the lack of a scalable clustering algorithm
suitable for trajectories. As noted in the introduction, the existing
scalable methods like KD-Tree or SOM can only be applied to
feature vectors while trajectories of moving objects cannot be
adequately represented in this form.

6 CONCLUSION
Finding clusters in very large sets of structurally complex objects,
such as spatial and spatio-temporal objects, is a complex problem.
Existing clustering algorithms are not scalable to very large
datasets. We suggest a visual analytics approach to solving this
problem at the cost of involving a human analyst, who directs the
work of the computer towards the discovery of meaningful,
relevant clusters. The approach is generic, i.e. can be applied to
different types of complex objects. By an example analysis
scenario, we have demonstrated a possible use of the approach for
the analysis of trajectories of moving objects.

REFERENCES
[1] Agrawal, R., Lin, K.-I., Sawhney, H. S., and Shim, K.: Fast

similarity search in the presence of noise, scaling, and translation in
time-series databases. In Proc. VLDB 1995, 490–501.

[2] Alon, J., Sclaroff, S., Kollios, G., and Pavlovic, V. Discovering
clusters in motion time-series data. In Proc. Conf. on Computer
Vision and Pattern Recognition (CVPR’03), IEEE, 2003, 375–381.

[3] Andrienko, G., and Andrienko, N.: Spatio-temporal aggregation for
visual analysis of movements. In Proc. IEEE VAST 2008, 51-58.

[4] Andrienko, G., Andrienko, N., Dykes, J., Fabrikant, S., and
Wachowicz, M.: Geovisualization of dynamics, movement and
change: key issues and developing approaches in visualization
research. Information Visualization, 2008, v.7 (3/4), 173-180.

[5] Andrienko, G., Andrienko, N., and Wrobel, S.: Visual analytics tools
for analysis of movement data, ACM SIGKDD Explorations, 9(2),
2007, 38-46

[6] Ankerst, M., Breunig, M., Kriegel, H.-P., and Sander, J. Optics:
Ordering points to identify the clustering structure. In Proc. ACM
SIGMOD 1999, 49–60.

[7] Assent, I., Krieger, R., Müller, E., and Seidl, T. VISA: visual
subspace clustering analysis. ACM SIGKDD Explorations, 9(2),
2007, 5-12

[8] Berndt, D., and Clifford, J. Using dynamic time warping to find
patterns in time series. In Proc. Knowledge Discovery and Delivery
Workshop, 1994, 359–370.

[9] Bozkaya, T., Yazdani, N., and Özsoyoglu, Z. M. Matching and
indexing sequences of different lengths. Proc. CIKM 1997, 128–135.

[10] Ceglar, A., Roddick, J.F., and Calder, P. Guiding knowledge
discovery through interactive data mining. In Pendharkar, P.C. (ed.)
Managing data mining technologies in organizations: techniques
and applications, Idea Group Publishing, 2003, 45-87

[11] Chudova, D., Gaffney, S., Mjolsness, E., and Smyth, P. Translation-
invariant mixture models for curve clustering. In ACM KDD 2003,
79–88.

[12] Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. A density-based
algorithm for discovering clusters in large spatial databases with
noise. In Proc. ACM KDD 1996, 226-231.

[13] Gaffney, S., and Smyth, P. Trajectory clustering with mixture of
regression models. In Proc. ACM KDD 1999, 63–72.

[14] Guo, D., Chen, J., MacEachren, A.M., and Liao, K. A visualization
system for spatio-temporal and multivariate patterns (VIS-STAMP),
IEEE TVCG, 12(6), 2006, 1461-1474

[15] Hwang, S.-Y., Liu, Y.-H., Chiu, J.-K., and Lim, E.-P. Mining mobile
group patterns: A trajectory-based approach. In Proc. 9th Pacific-
Asia Conf. on Knowledge Discovery and Data Mining (PAKDD’05),
Springer, 2005, 713–718.

[16] Li, Y., Han, J., and Yang, J. Clustering moving objects. In Proc.
ACM KDD 2004, 617–622.

[17] Nam, E.J., Han, Y., Mueller, K., Zelenyuk, A., & Dan, I.
ClusterSculptor: A visual analytics tool for high-dimensional data. In
Proc. IEEE VAST 2007, 2007, 75-82

[18] Nanni, M., and Pedreschi, D. Time-focused density-based clustering
of trajectories of moving objects. Journal of Intelligent Information
Systems, 27(3), 2006, 267–289.

[19] Pelekis, N., Kopanakis, I., Marketos, G., Ntoutsi, I., Andrienko, G.,
and Theodoridis, Y. Similarity search in trajectory databases. In
TIME, 2007, 129–140.

[20] Rinzivillo, S., Pedreschi, D., Nanni, M., Giannotti, F., Andrienko,
N., and Andrienko, G.: Visually–driven analysis of movement data
by progressive clustering, Information Visualization, 7(3/4), 2008,
225-239.

[21] Schreck, T., Bernard, J., Tekusova, T., and Kohlhammer, J. Visual
cluster analysis in trajectory data using editable Kohonen maps. In
Proc. IEEE VAST 2008, 2008, 3-10.

[22] Seo, J., and Shneiderman, B. Interactively exploring hierarchical
clustering results. IEEE Computer, 35(7), 2002, 80-86

[23] Sharko, J., Grinstein, G., Marx, K. A., Zhou, J., Cheng, C.,
Odelberg, S., and Simon, H.-G. Heat map visualizations allow
comparison of multiple clustering results and evaluation of dataset
quality: application to microarray data. In Proc. International
Conference Information Visualization, 2007, 521-526

[24] Tan, P.-N., Steinbach, M., and Kumar, V. Introduction to Data
Mining. Addison-Wesley, 2006

[25] Vlachos, M., Hadjieleftheriou, M., Gunopulos, D., and Keogh, E. J.
Indexing multi-dimensional time-series with support for multiple
distance measures. In Proc. ACM KDD 2003, 216–225.

[26] Vlachos, M., Kollios, G., and Gunopulos, D. Discovering similar
multidimensional trajectories. In Proc. 18th Int. Conf. on Data
Engineering (ICDE’02), IEEE, 2002, 673–684.

10

