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ABSTRACT 
One of the most common operations in exploration and analysis of 
various kinds of data is clustering, i.e. discovery and interpretation 
of groups of objects having similar properties and/or behaviors. In 
clustering, objects are often treated as points in multi-dimensional 
space of properties. However, structurally complex objects, such 
as trajectories of moving entities and other kinds of spatio-
temporal data, cannot be adequately represented in this manner. 
Such data require sophisticated and computationally intensive 
clustering algorithms, which are very hard to scale effectively to 
large datasets not fitting in the computer main memory. We 
propose an approach to extracting meaningful clusters from large 
databases by combining clustering and classification, which are 
driven by a human analyst through an interactive visual interface. 
 
KEYWORDS: Spatio-temporal data, movement data, trajectories, 
clustering, classification, scalable visualization, geovisualization. 
 
INDEX TERMS: H.1.2 [User/Machine Systems]: Human 
information processing – Visual Analytics; I.6.9 [Visualization]: 
information visualization. 

1 INTRODUCTION 
Nowadays our civilization faces an explosion of various kinds of 
space-related data, such as measurements from static and mobile 
sensors, GPS tracks, or georeferenced photos put on the Web by 
general people. As potential sources of valuable information and 
knowledge, these data call for scalable methods of analysis, which 
must take into account the particular features of the geographical 
space: its heterogeneity, variety of properties and relationships, 
spatial and temporal autocorrelation, anisotropy, and scale 
dependence. As all these features cannot be adequately modeled 
(yet) for fully automatic processing, the analysis relies heavily 
upon the human analyst’s sense of the space and place and tacit 
knowledge of their inherent properties and relationships  [4]. 
These are incorporated in the analysis through the use of 
appropriate visual representations of the space (in particular, 
maps) and interaction techniques. 

Clustering is one of the general approaches to exploring and 
analyzing large amounts of data since it allows an analyst to 
consider groups of objects rather than individual objects, which 
are too numerous. Clustering associates objects in groups 
(clusters) such that the objects in each group share some 
properties that do not hold (or hold much less) for the other 
objects. Spatial clustering builds clusters from objects being 
spatially close and/or having similar spatial properties (shapes, 
spatial relationships among components, etc.). 

In clustering, objects are often represented by feature vectors 
(in other words, points in multi-dimensional space of properties). 
However, structurally complex objects such as spatial time series, 
trajectories of moving entities, or spatial distributions cannot be 
adequately represented in this way. Therefore, the most widely 
used clustering algorithms, such as K-Means, KD-Tree, or SOM 
(self-organizing map), are not applicable. It is necessary to use 
special methods, which may be very complex computationally. 

A problem of currently existing clustering methods devised for 
structurally complex objects is their lack of scalability with 
respect to the size of the data. Clustering involves numerous 
comparisons between objects, and the comparison of complex 
objects is by itself computationally complex and time-consuming. 
Implementations of clustering algorithms typically work only with 
objects loaded in the main computer memory, which is often 
impossible for real datasets. Out-of-memory implementations are 
technically possible but extremely time-consuming. This might 
not be a very big problem if the clusters they produce were the 
final, unmodifiable outcomes, but this is not the case. Clustering 
results by themselves have no meaning and value until a human 
analyst interprets them. However, all clustering techniques 
involve parameters, and different parameter settings lead to 
diverse results, which may be more or less meaningful to a human 
or may provide different complementary meanings. Hence, the 
analyst needs to run clustering several or even many times with 
different settings, which requires the reaction time to be short. 

We suggest an approach that allows interactive cluster analysis 
of large numbers of structurally complex objects. The essence of 
the approach can be shortly described as follows. First, the analyst 
takes a manageable subset of the objects and applies clustering to 
it. The analyst experiments with the clustering parameters for 
gaining meaningful results with respect to the analysis goals. 
Then, the analyst builds a classifier, which can be used for 
attaching new objects to the existing clusters. The analyst may 
also modify the clusters for their better understandability and/or 
conformance to the goals. The produced classifier is applied to the 
whole dataset. Each object is either attached to one of the clusters 
or remains unclassified, if it does not fit in any cluster. When 
necessary, the analyst may repeat the procedure (take a subset – 
cluster – build a classifier – classify) to the unclassified objects. 

This paper explains what classifier is and how it is built. We 
introduce the concept by example of clustering and classification 
of trajectories of moving entities; however, the approach is 
generic and can be applied to other types of structurally complex 
spatial and non-spatial objects. 

2 RELATED WORK 
There are two main approaches to clustering complex data: (i) 
defining ad hoc notions of clustering and clustering algorithms 
tailored to the specific data type; and (ii) applying generic notions 
of clustering and generic clustering algorithms by defining some 
distance function, which measures the similarity between data 
items. In the second case, the specifics of the data are completely 
encapsulated in the distance function.  
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Both approaches are applied in developing clustering methods 
for trajectories of moving objects. Examples of the first approach 
include grouping together objects which are likely to be generated 
from a common core trajectory by adding Gaussian noise 
[11][13], building (hidden) Markov models that try to explain the 
transitions between positions [2], and methods based on the search 
and measurement of simple (for instance linear) sub-segments of 
trajectories that match sufficiently well [15][16]. 

The second approach is taken, for example, in [18]: a generic 
density-based clustering algorithm is used with a distance function 
computing the average spatial distance between the trajectories 
within a time interval, which is automatically chosen through an 
iterative optimization procedure. Generic clustering algorithms 
can be implemented in such a way that the distance function itself 
becomes a parameter [20]. Hence, the clustering problem is 
reduced to choosing an existing algorithm that satisfies some 
general requirements (for instance scalability, tolerance to noise, 
ability to detect non-convex clusters, etc.) and designing the 
distance function that best suits the specifics of the data and the 
purposes of the analysis. A variety of distance functions have 
been proposed for trajectories, including the basic Euclidean 
distance (assuming that trajectories are represented by vectors of 
fixed length), spatial Euclidean distance average along the time 
[18], time series-inspired functions such as (dynamic) time 
warping distance [8][25] and Least Common Sub-Sequence 
(LCSS) measure [1][9], and direction-oriented distances [19][26].  

Paper [20] describes a clustering tool that includes a density-
based clustering algorithm OPTICS [6] equipped with a library of 
semantically and computationally different distance functions. 
The tool supports a step-wise analytical procedure called 
“progressive clustering”: a simple distance function with a clear 
meaning is applied at each step, while successive application of 
different functions yields sophisticated interpretation of clusters. 
Visualization and interaction techniques play here a crucial role. 

Interactive, visually-aided clustering procedures have been 
suggested also for other purposes [10]. Thus, the analyst may wish 
to tune clustering outcomes to his/her background knowledge by 
interactive post-processing, e.g. moving objects between clusters 
[7][17]. The analyst may direct the work of the algorithm, for 
instance, the training of a self-organizing map [21]. Interactive 
visualization may allow the analyst to compare results of several 
runs of clustering and investigate the sensitivity to parameters 
[23]. Clustering techniques are often included in visualization 
systems and toolkits, so that the analyst may, on the one hand, use 
visualization for examining and interpreting results of clustering, 
on the other hand, use results of clustering for further analysis by 
means of interactive visual techniques [14][22]. 

3 APPROACH 
The approach we suggest involves the use of a generic density-
based clustering algorithm such as OPTICS [6], which belongs to 
the DBSCAN family [12]. Advantages of these methods are 
tolerance to noise and capability to discover arbitrarily shaped 
clusters. A brief description of OPTICS is given in [20]. The 
clustering algorithm is used with a distance function suitable for 
the type of objects under analysis. 

3.1 General procedure 
The basic idea of the approach is to apply the clustering algorithm 
to a small subset of objects and then to attach the remaining 
objects to the clusters that have been discovered at the first stage. 
For this purpose, in each discovered cluster one or several 
prototype objects (or, shortly, prototypes) is (are) selected such 
that the distance of any other cluster member to one of these 
objects is below a certain threshold. The distance is measured by 
the distance function, which has been used for the clustering. The 

prototypes of the clusters, the respective distance thresholds 
(which may be prototype-specific), and the distance function form 
together a classifier. 

Attaching new objects to the so defined clusters is done by 
comparing the objects to the cluster prototypes, i.e. finding the 
distances by means of the distance function. An object is attached 
to a cluster if its distance to one of the prototypes is below the 
respective threshold. If an object is close to prototypes of two or 
more clusters, the closest prototype is chosen. If an object is not 
sufficiently close to any of the prototypes, it remains unclassified. 

Given a database D, the whole process can be formalized as 
follows (Algorithm I): 

1. Extract a subset D′ of objects from D (see Section 3.2). 
2. Apply the density-based clustering algorithm with a suitable 

distance function d and get a set of clusters {C1, C2, . . . ,Cm} 
3. For each cluster Ci 

– Select q prototypes in Ci, with 1 ≤ q < |Ci|, namely { pi
1, pi

2, …, 
pi
q }, with corresponding distance thresholds { εi

1, εi
2, …, εi

q } 
such that the cluster Ci may be described as the set of objects 
in D′  whose distance to one of the prototypes pi

j is less than 
the corresponding threshold εi

j, i.e.  
Ci = { o ∈ D′ | ∃ j, 1 ≤ j ≤ q, such that d(o, pi

j) < εi
j } 

(see Section 3.3 for the details on how to choose prototypes 
for each cluster). 

The set of the prototypes for all clusters pi
j together with their 

distance thresholds εi
j and function d form a classifier. 

4. Visually inspect and refine the classifier; possibly, modify the 
clusters (see Section 3.4).  

5. Apply the classifier to the remaining objects in D: for each object 
o ∈ D, o ∉ D′ 
– Find all close prototypes, i.e. pi

j, 1 ≤ i ≤ m, such that  
d(o, pi

j) < εi
j. If only one close prototype pi

j exists, attach o to 
the cluster Ci represented by pi

j. If two or more close 
prototypes pi1

j1, …, piN
jN exist, select the closest of them, i.e. 

such prototype pik
jk, that d(o, pik

jk) < d(o, pin
jn) for ∀n : 1 ≤ n ≤ N, 

n ≠ k; attach o to the cluster Cik represented by pik
jk. If no close 

prototypes exist, the object remains unclassified. 
6. Possibly, exclude the original and new members of clusters {C1, 

C2, ..., Cm} from D and restart the whole process again. 

The computational time required for the classification (step 5) 
depends linearly on the number of objects in D: each object is 
compared with a constant number of cluster prototypes (unlike 
clustering, where each object needs to be compared with all 
others). Hence, the algorithm is quite scalable with respect to the 
database size. Although step 5 may take minutes or even hours for 
a very big dataset, it does not require the involvement of a human 
analyst. Since the analyst can previously obtain meaningful, goal-
oriented clusters by running the clustering method with different 
settings at step 2 and interactively refining the outcomes at step 4, 
the results of the following cluster-based classification will also 
be meaningful and conform to the goals of the analysis. 

3.2 Selection of a subset 
Algorithm I starts with a selection of a subset of the original 
dataset. The subset should have a manageable size and at the same 
time be representative of the dataset as a whole. An ideal 
sampling strategy must preserve the actual distribution of the 
objects in the original dataset. This would require the knowledge 
of this distribution, which is not always possible. 

Uniform sampling from the database is a reasonable strategy 
when a density-based clustering algorithm is used: dense regions 
in the original dataset remain (relatively) dense also in the sample, 
and hence can be discovered by the algorithm. In a case when a 
dense region becomes too sparse in the sample, there is still a 
possibility of detecting it in the successive iteration of the process. 
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Specifics of the data and/or goals of the analysis may call for a 
certain way of selecting the subset, as will be seen in the 
description of an example analysis scenario (Section 4). 

3.3 Selection of cluster prototypes 
Selection of prototypes from density-based clusters is a non-trivial 
problem. In a density-based cluster, each object is close to a 
certain minimum number of other objects (this is a parameter of 
the algorithm). However, two arbitrary cluster members may be 
quite distant from each other; therefore, a cluster may have rather 
high internal variation. Fig.1A shows how a cluster of points may 
look like (we use points only for illustration purposes, to make the 
argument, which applies to any kind of objects, easier to 
understand). Fig.2 gives examples of density-based clusters of 
trajectories according to the similarity of their routes (the small 
hollow squares and the larger solid ones mark the starting and 
ending points of the trajectories, respectively).  

  
Figure 1. A) A density-based cluster of points. B) The cluster has 

been divided into “round” subclusters.  

  
Figure 2. Examples of density-based clusters of trajectories 

according to the distance function “route similarity” [5].  

To find appropriate prototypes in a density-based cluster, we 
suggest dividing it into “round” subclusters. A round (sub)cluster 
is a set of objects S={o1, o2, …, ok} for which there is a special 
object o′ and distance ε such that d(oi, o′)<ε, 1 ≤ i ≤ k, and for any 
other object o∉S, d(o, o′)≥ε. The object o′ (real or theoretical) is 
called center of the (sub)cluster S. The maximum distance among 
d(oi, o′), 1 ≤ i ≤ k, is called radius of the (sub)cluster S. In a case 
when the objects are points, as in Fig.1, and the distance function 
d is Euclidean distance, the notions of center, radius, and round 
cluster can be understood literally. In a case of structurally 
complex objects (e.g. trajectories, as in Fig.2) and arbitrary d (e.g. 
a function measuring the similarity between the routes), these 
notions need to be understood metaphorically. 

For complex objects and distance functions, finding the true 
center of a round (sub)cluster is a complex problem, not only 
computationally but also conceptually. However, for the purposes 
of building a classifier, the true centers are not really needed. 

They can be substituted by medoids. A medoid is a member of a 
subcluster having the smallest mean distance to all other 
members. Medoids may be used as cluster prototypes. 

Formally, the problem of selecting cluster prototypes may be 
stated as follows: given a cluster C, a distance function d, and a 
maximum distance threshold εmax, divide C into subclusters {S1, 
S2, …, Sn} where for ∀Si ∃mi∈Si (medoid) and ∃εi≤ε

max such that 
for ∀o∈Si, d(o, mi)<εi. For solving the problem, we suggest the 
algorithm described below (Algorithm II). At each stage, the 
status of the algorithm is represented by a list L where each entry 
consists of a subcluster and its corresponding medoid <Si, mi>. 

1. Create an empty list L. 
2. Take the next object o∈C. Try to find <Si, mi>∈L such that  
d(o, ci)<εmax. If found, go to 3, otherwise go to 4. 

3. Let Si′ = Si ∪ {o}. Find the medoid mi′ of Si′. For each member 
x∈Si′, test the condition d(x, mi′)<εmax. If d(x, mi′)<εmax holds for 
∀x∈Si′, go to 3a, otherwise go to 4. 
a) Remove <Si, mi> from L. 
b) Put < Si′, mi′> in L. Go to 2. 

4. Put <{o},o> in L (i.e. create a new subcluster with a single 
member o, which is also the medoid of the subcluster). Go to 2. 

At the end, the list L represents a partitioning of the cluster C into 
round subclusters. The medoids of the subclusters become the 
prototypes of the original clusters. The maximum distance from a 
medoid to the members of its subcluster is taken as the distance 
threshold for this prototype. Fig.1B illustrates, by example of 
points, a possible outcome of Algorithm II. The subclusters are 
indicated by different colors of the circles representing their 
members. The medoids are marked by thick black boundaries.  

Although the computational complexity of Algorithm II is 
O(n2), where n is the number of objects in cluster C, this is not 
critical due to the relatively small sizes of density-based clusters 
that can usually be discovered in a not so big subset D′ of the 
database D. Besides, the distances between the objects, which are 
needed for Algorithm II, are computed at the stage of density-
based clustering (step 2 in Algorithm I) and can be later re-used, 
which substantially reduces the computation time. 

It may seem that a standard clustering method like K-Means 
could be used to divide a cluster into round subclusters.  There are 
two problems here. First, K-Means [24] and some other methods 
require computing the mean of multiple objects, which is too 
difficult for complex objects. K-Medoids [24] could suit better as 
it uses medoids instead of means. However, the second problem, 
common for K-Means and K-Medoids, is that the number of 
subclusters must be known in advance, which is not the case.  

3.4 Visual inspection and refinement 
There are at least two motives for revising the automatically built 
classifier. First, density-based clusters with high internal variation 
are difficult to understand. The analyst may wish to refine them 
by dividing into parts with smaller internal variation and/or by 
removing some of the members. Second, the analyst may wish to 
tune the selection of cluster prototypes and distance thresholds to 
his/her understanding of the distinctive properties of the clusters. 

Furthermore, the analyst needs to make sure that the classifier 
will correctly assign new objects to the defined clusters. This can 
be tested by applying the classifier to D′. Since the assignment of 
objects to clusters is done in different ways in the classification 
and in the density-based clustering, the outcomes of the 
classification may differ from the original clusters. Some of the 
original members of a cluster may not be there any more (such 
objects will be called false negatives), and/or some new objects 
may be put in the cluster (such objects will be called false 
positives). This discrepancy is not necessarily disadvantageous. It 
may happen that a false negative is too dissimilar to the other 

A B 

A B 
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objects in the cluster and should rather not be there, and it may 
also happen that a false positive is sufficiently similar to the core 
objects of the cluster and should rather be there. Hence, each case 
of divergence between the two assignments of the objects to the 
clusters needs to be inspected by the analyst. If the analyst is not 
satisfied with the new assignment, he/she should be able to refine 
the part of the classifier responsible for the misclassification.  

To enable the revision and refinement of the classifier, we 
suggest the following operations: 

1. Exclude one or several subclusters from a cluster and 
perform one of the following actions: 
a) make a new cluster as a union of these subclusters; 
b) turn each subcluster into a new cluster; 
c) discard the subclusters, i.e. treat their members as not 

belonging to any cluster. 
2. Divide a subcluster into two or more smaller subclusters. 
3. Merge two or more subclusters into a single larger subcluster. 
4. “Dissolve” one or more subclusters, i.e. distribute their 

members among the remaining subclusters. 
5. Change the distance threshold of a selected prototype. 

The operations 2, 3, and 4 involve automatic re-computing of the 
medoids of the subclusters. For dividing a subcluster into smaller 
subclusters (operation 2), the K-Medoids method may be applied. 
It may be modified so that the analyst could select the initial seeds 
for the new subclusters.  

The process of reviewing and revising the classifier is 
supported by appropriate visual representations of the subclusters 
and their medoids and interactive facilities for  
– focusing on a cluster as a whole or on one or more 

subclusters,  
– selecting one or more subclusters for a desired operation, and  
– selecting candidate seeds for dividing a subcluster.  

After any operation, the analyst visually inspects the results 
and, possibly, runs the test of the classifier on D′. If the results are 
not satisfactory, the analyst may revert to the previous state. All 
operations are logged, and it is possible to trace how the current 
state of the classifier has been derived. This also helps to explain 
the process to others and to re-produce the result when necessary. 

4 AN EXAMPLE ANALYSIS SCENARIO 

4.1 Analytical environment 
The example scenario is about analyzing a large set of trajectories 
of moving entities (while the suggested method is generic and 
applicable also to other types of data). We use our implementation 
of the method, which is incorporated in a visual analytics toolkit 
for spatial and spatio-temporal data. The implementation takes 
advantage of the general visualization and interaction techniques 
available in the toolkit (cartographic visualization, interactive 
filtering, interactive selection of objects in a display, etc.) as well 
as specific visual and computational techniques and database 
queries oriented to trajectories. The data are stored in a standard 
relational database (Oracle) in the form of position records 
<entity_id, trajectory_id, time, position, {attributes}>, where the 
position consists of two coordinates, geographical (longitude and 
latitude) or Cartesian (X and Y). When the data are loaded in the 
toolkit, position records with the same trajectory_id are used to 
construct objects of a special type representing trajectories [5]. 

The initial clustering of a subset of trajectories is done by our 
implementation of the density-based algorithm OPTICS with a set 
of trajectory-oriented distance functions [20]. In the scenario, we 
use the function “route similarity”, described in [5]. The distance 
(amount of disparity) between two trajectories depends on the 
similarity of the geometric shapes of their footprints and the 
closeness of their spatial positions and orientations. Fig.2 shows 

examples of clusters detected by OPTICS with “route similarity” 
function. Note that density-based clusters do not necessarily have 
so high internal variation as in these specially selected examples. 
Another important note is that density-based clustering does not 
put every object in some cluster. When an object is not similar 
enough to a certain number of other objects, it is treated as 
“noise”, i.e. stays outside of any cluster. The required minimum 
number of similar objects and the maximum distance to each of 
them are the parameters of the clustering method [20]. 

In Fig.2, clusters of trajectories are visualized by drawing their 
individual members on a map. Each cluster is assigned a specific 
color, in which its members are painted. There is an interactive 
tool allowing the user to choose which clusters will be visible. 
Clusters can also be represented in a summarized way, as 
described in [5] and [3]. The user may get a visual overview of 
clustering results in the form of a panel with multiple small maps 
each representing one cluster in a summarized form. This may be 
stored as an HTML page. When building a classifier, the user may 
document the process using the available logging tools, which 
produce a collection of linked HTML pages. 

4.2 Data and analysis task 
In this imaginary but realistic scenario, we play a role of analysts 
who received a task from the mobility and transportation planning 
department of a big city. The department has obtained a dataset 
collected by tracking about 17,200 cars that moved in the city 
during one week. The mobility managers used to do their analyses 
and planning with the help of traffic models, which are created on 
the basis of costly and time-consuming population surveys carried 
out once in several years. Now there is an opportunity to use large 
amounts of cheap and up-to-date data, and, consequently, a need 
in methods for extracting useful information from these data.  

In our scenario, the mobility managers gave us the data with the 
task to extract the typical (i.e. frequently occurring) routes of 
commuters in the city. The knowledge is needed for planning 
improvements in the traffic infrastructure and/or public transport. 
The task may be re-formulated as finding big groups of 
trajectories following the same or very similar routes. This task 
can be accomplished by means of cluster analysis using the 
distance function “route similarity”. However, the dataset 
consisting of about 176,000 trajectories (over 2 million position 
records) is too big for loading RAM and direct application of a 
clustering algorithm; hence, this is the case for our Algorithm I. 

4.3 Subset selection and clustering 
The initial subset of trajectories must be manageable in terms of 
the size but representative in terms of the probability of finding 
the clusters we are interested in. According to our knowledge, the 
most intensive movement of commuters occurs in the mornings of 
working days. Hence, we take a typical working day such as 
Wednesday (the middle of the week) and extract from the 
database all trajectories that occurred from 6 till 10 AM on that 
day. This gives us 6,591 trajectories, which is quite manageable. 

For the clustering, we use the distance threshold (maximum 
deviation) 500 meters for treating two trajectories as similar and 
set 3 as the required minimum number of neighbors (similar 
trajectories) for each trajectory in a cluster. The first parameter is 
responsible for the amount of internal variation in the clusters. 
The value 500 has been chosen after several experimental runs of 
the tool with different threshold values. The second parameter 
determines the density of the clusters. Although we are interested 
in dense clusters, we keep in mind that we deal now with a small 
subset (about 3.5%) of the whole set. Dense clusters existing in 
the whole dataset may be represented by much sparser clusters in 
the subset. Hence, if we want the clusters to be detected, we 
should not choose a very high value for the second parameter. 
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The application of the clustering tool to the subset of 
trajectories gives us 138 clusters with the sizes ranging from 4 to 
102; 4,708 trajectories (71.48%) are labeled as “noise”. We look 
at the cluster overview display, where the clusters are represented 
in a generalized and summarized form (by arrows with the 
thickness proportional to the number of corresponding moves; see 
Figs. 3 and 4). We notice three major types of routes, illustrated in 
Fig.3: routes that pass the city by a belt road without entering the 
inner city (Fig.3A), very short trajectories (Fig.3B; summarized 
movements within small areas are represented by rings with the 
thickness proportional to the number of the trajectories), and the 
routes entering the city (Fig.3C). Only the latter type of route is 
relevant to the analysis task. 

 
Figure 3. A fragment of the cluster overview panel. 

 
Figure 4. The biggest clusters of trajectories ending in the city. 

To get rid of numerous irrelevant clusters, we apply filtering to 
the subset of trajectories. Interactively (by drawing on the map), 
we define the area of inner city and select only the trajectories 
ending in this area. We also filter the trajectories by their length, 
which must be at least 3 km. 2,028 trajectories satisfy both filters.  
We apply clustering to these trajectories and obtain 21 clusters 
with the sizes ranging from 4 to 68; 1,720 trajectories (84.8%) go 
to “noise”. The routes, presented in the cluster overview panel 
(see a fragment in Fig.4), correspond quite well to our idea of 
possible commuter routes. Now we shall build a classifier to find 
out how frequent these routes are in the entire database.  

4.4 Building the classifier 
A starting version of the classifier is generated automatically. For 
this, we specify the maximum distance threshold for a cluster 
prototype (1000 meters). The tool divides the clusters into round 
subclusters (the number ranges from 1 to 7) and computes the 
medoids. Now we shall inspect and refine the classifier.  

To have a convenient overview of the classifier, we use the 
documenting function, which generates a set of HTML pages 

displayed in a browser. The first page includes small images of all 
clusters and a summary table informing us about the size of each 
cluster, the number of subclusters, and the maximum distance 
threshold. An image of a cluster (e.g. Fig.5A) shows all 
trajectories of this cluster by thin, neutrally colored lines and the 
cluster prototypes (i.e. medoids of the subclusters) by thicker lines 
painted in the color of this cluster. The image serves as a 
hyperlink to the page describing the division of the respective 
cluster. The latter page contains a table listing all cluster 
prototypes, their distance thresholds, the subcluster sizes, and the 
mean distances from the prototypes to the subcluster members. 
The page also includes a bigger image of the whole cluster and 
small images of all its subclusters. An image of a subcluster 
includes the trajectories of the subcluster and the medoid, which 
are shown in the same way as in an image of a cluster. Such an 
overview page allows us to grasp immediately how the cluster has 
been divided and how the subclusters differ from each other. 

By viewing the pages, we find that editing is needed in the parts 
of the classifier representing the clusters with high internal 
variation. All such clusters have multiple subclusters. Thus, 
cluster 1 (Fig.4B) has 7 subclusters. Fig.5A presents the cluster 
with its prototypes. We notice spatial separation among the 
prototypes: a group of 5 prototypes (Fig.5B) lies northward of the 
remaining 2 prototypes (Fig.5C). As these two groups represent 
different routes toward the city center, it is reasonable to have 
them in two distinct clusters. Hence, we select the two subclusters 
representing the southern route and use operation 1a (Section 3.4) 
to extract them from cluster 1 and produce a new cluster. 

      
Figure 5. Cluster 1 should be split in two clusters. 

  
Figure 6. Cluster 2 (A) and its singular prototype (B). 

Cluster 2 (Fig.4A) has been also divided into 7 subclusters, 
which reflects the branching of the tracks inside the city (Fig.6A). 
One subcluster consists of a single trajectory (Fig.6B). We find 
that this trajectory should rather not be a cluster prototype: it is 
not much interesting as a commuter route since it does not enter 
the inner city but ends near its boundary. Hence, we remove this 
subcluster with a single member from the cluster and discard it 
(operation 1c). In a similar way, we edit cluster 5 (Fig.4C). We 
discard a subcluster consisting of a single self-intersecting 
trajectory that can hardly be treated as a typical commuter route. 

In cluster 6 (Fig.7A), one of the 3 prototypes has a notably 
higher distance threshold (1000) than the distance thresholds in all 
other clusters. To refine the corresponding subcluster (Fig.7B), we 
divide it into two subclusters using operation 2. The tool finds a 
possible division and presents it to us as a suggestion. The 
division takes place after our approval (Fig.7C); the distance 
thresholds of the 2 new prototypes are 252 and 262. 

A B C 

A B C 
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Figure 7. A) Cluster 6 with its 3 prototypes. B) The subcluster with a 

big radius. C) The subcluster has been refined. 

The remaining parts of the classifier do not seem to require 
editing. We run the automatic test of the classifier, in which the 
classifier is applied to the subset of 2,028 trajectories used in the 
initial clustering. In the test, the classifier assigns the trajectories 
to the clusters, and the assignment is compared with the original 
membership of the trajectories in the clusters. As mentioned 
earlier, two types of discrepancy are possible: false negative and 
false positive. The documenting tool produces a summary table 
with test results, where we can see that 11 out of 22 clusters have 
from 1 to 7 false positives and 2 clusters have 1 false negative 
each. These cases need to be inspected. The interactive facilities 
allow us to focus on the false positives or false negatives of each 
cluster and to compare them with the cluster prototypes and the 
true members of the cluster. We see that in all but one cases the 
false positives are quite similar to the original members of the 
clusters. For example, Fig.8 presents the false positives of clusters 
1 and 6 (portrayed by thin dark grey lines) together with the 
prototypes of these clusters (shown by thick colored lines). The 
false positives are consistent with the cluster prototypes and the 
other cluster members (visible in Fig.5B and Fig.7A). These and 
other cases do not require any corrective means. 

  
Figure 8. The false positives of clusters 1 (A) and 6 (B) shown 

together with the prototypes of these clusters. 

    
Figure 9. A) Cluster 17 with 2 original prototypes; B) the false 

positives; C) cluster 17 with 3 prototypes after a refinement; D) 
the false positives after the refinement. 

However, cluster 17 (Fig.9A) has acquired 7 false positives 
(Fig.9B), some of which deviate quite much from the original 
cluster members. To improve the situation, we try a different 
division of cluster 17 into subclusters. We merge the original 2 
subclusters (operation 3) and divide the cluster into 3 subclusters 
(operation 2). The resulting prototypes are in Fig.9C. We run the 
test again, and the cluster acquires only 3 false positives (Fig.9D), 
which are consistent with the original cluster members. 

The cases with false negatives can be handled in two possible 
ways: (1) by increasing the distance thresholds of the prototypes 

of the subclusters in which these trajectories have been originally; 
(2) by refining the subclusters so that the false negatives become 
additional cluster prototypes. We choose the second approach and 
use the possibility to select candidate prototypes for the resulting 
subclusters. In both cases of false negatives, we obtain additional 
subclusters with singular members and radii equal to 0. We have 
to specify explicitly the desired distance thresholds for the 
respective prototypes. We choose 200m, which equals the 
minimum threshold among the other prototypes. Then we run the 
test once again and see that there are no false negatives any more 
and no additional false positives have appeared.  

Now we are satisfied with the classifier. We use the 
documenting tool for producing a set of HTML pages presenting 
the final state of the classifier and the results of the test. We also 
save the classifier in a file in a special XML format, so that the 
classifier can be loaded and used in another session. 

 
Figure 10. The graphical summaries of the biggest clusters 

obtained by applying the classifier to the entire dataset. 

4.5 Applying the classifier to the whole database 
A classifier is applied to the whole database in the following way. 
We remind that our database does not contain trajectories as 
special constructs but only position records. These records are 
loaded in the visual analytics system by small portions. The 
system constructs trajectories from the loaded records and applies 
the classifier to each trajectory. To store the results, the system 
creates a lookup table in the database, where it makes a record for 
each trajectory with its identifier and the number of the cluster it 
has been attached to or -1 if it does not fit in any cluster. During 
the classification process, the system also incrementally builds 
graphical summaries of the clusters, analogous to those of the 
initial clusters (Fig.4). When a trajectory is attached to a cluster, 
the graphical summary of this cluster is updated. The processed 
trajectories are discarded. 

A B C 

A B 
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In our scenario, we apply the classifier to the whole database, 
which defines 175,890 trajectories. Although it is possible to 
exclude the initial subset of trajectories from the classification, we 
do not use this option since we want the lookup table to contain 
records for all trajectories. The classification together with the 
graphical summarization takes about 14.5 minutes. Fig.10 
presents a fragment of the display with the graphical summaries of 
the clusters. Fig.11 shows the table display of the statistics about 
the clusters including the initial and new sizes and the original and 
new mean distances of the cluster members to the prototypes.  

 
Figure 11. The statistics about the classification results. 

  
Figure 12. Clusters 25 (left) and 27 (right). 

As may be seen, the biggest clusters discovered in the subset of 
trajectories remain among the biggest ones in the entire set. The 
graphical summaries of the clusters extracted from the whole set 
(Fig.10) are consistent with those of the original clusters (Fig.4). 
The small clusters from the subset mostly remain small in the 
whole set, but a few exceptions require investigation. Thus, the 
graphical summaries of clusters 27 and 25 (left and middle in the 
second row in Fig.10) make us think that the clusters may include 
trajectories that do not end in the inner city. The system allows us 
to load the trajectories belonging to selected clusters (the lookup 
table is used for this purpose). We load the trajectories of clusters 
25 and 27 (Fig.12). Indeed, very many trajectories of cluster 25 
and some trajectories of cluster 27 end outside of the city. We 
apply the spatial filtering, like we did for the initial subset 
(Section 4.3), and see that only 107 of the 414 trajectories (25%) 
of cluster 25 end in the inner city. The reason is that the cluster is 
represented in the classifier by a single prototype trajectory 
ending close to the boundary of the inner city. This prototype 
turns out to be similar to many trajectories ending outside. Hence, 
it is appropriate to choose another prototype or set of prototypes 
for the route represented by cluster 25. For cluster 27, the ratio is 
347 to 417 (83%), which is not as bad; however, the choice of the 
prototypes can also be improved. 

4.6 Further iterations 
To continue the analysis, we create a new database table with the 
data for the unclassified trajectories, as indicated in the lookup 
table. From the new table, we extract the trajectories from the 
morning of another working day (Tuesday). We handle this new 
subset like the initial subset (Section 4.3). Clustering of the new 
subset gives us only 7 clusters with the sizes from 4 to 6, which 
makes us think that the most significant clusters have been 
discovered in the previous iteration. Still, we build a classifier and 
apply it to the table with the unclassified trajectories. This time, 
two biggest clusters contain 126 and 86 trajectories, and the 
remaining clusters are much smaller. We repeat the procedure also 
for Monday. The subset contains 6 clusters with sizes from 4 to 7, 
but one of them grows to 204 in the result of the cluster-based 
classification. A closer look at these trajectories reveals that they 
mostly occur in the afternoons, which explains why the cluster 
was so small in the subset composed from morning trajectories. 

We do a couple of additional iterations to be sure that we have 
not missed any significant clusters. At the end, we take the largest 
clusters discovered during the whole process (17 clusters with the 
sizes from 95 to 890) as representing the most frequent routes. For 
these routes, we compute the frequencies of their occurrence by 
days of the week and by times of the day and visualize them by 
segmented histograms. We make a final report using the HTML 
pages generated in the course of the analysis. 

Classifiers created in different iterations can be combined into 
one classifier, which can be stored externally for further uses. It 
may be sensible to re-apply the combined classifier to the whole 
dataset for having continuous numbering of the clusters and one 
lookup table with all results. 

5 DISCUSSION 
The suggested approach is generic, i.e. applicable to different 
types of structurally complex objects. However, to make it work 
for a particular type of objects, certain type-specific components 
are necessary: (1) a database representation of the objects; (2) a 
distance function; (3) a visual representation of the objects; (4) 
optionally, methods for graphical summarization of clusters. This 
is demonstrated by the example scenario of analyzing a large set 
of trajectories. The visual representation of the objects should 
correspond to the distance function, i.e. exhibit the properties of 
the objects accounted for in the distance function. The same 
applies to the summarized representation. Thus, in the example 
scenario, the distance function compares trajectories according to 
their routes; hence, the visualization should exhibit the routes. The 
cartographic representations of individual trajectories and clusters 
that we have used are suitable for this purpose. However, in a case 
of distance function that takes into account also the temporal 
aspect of the trajectories, these representations are inadequate. It 
is necessary to exhibit the temporal component, for example, by 
involving an additional display dimension to represent time. 

An essential feature of the approach is the division of labor 
between computer and human and a true synergy where each side 
helps the other. Not only the computer gives its computational 
power to the human but also human’s knowledge and reasoning 
capabilities help the computer. Thus, clustering algorithms do not 
scale to very large sets of structurally complex objects. In our 
approach, cluster analysis of very large datasets becomes possible 
owing to the human analyst, who directs the work of the computer 
to the discovery of meaningful, relevant clusters. The direction is 
realized through the following activities: (1) selection of a subset 
for the initial clustering on the basis of the analyst’s knowledge of 
the domain, data, and problem to be solved; (2) selection of 
appropriate clustering parameters, by trying different variants and 
evaluating the results; (3) editing of the automatically built 
classifier, which involves interpretation, evaluation, and 
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adaptation to the goals of analysis (it may be said that the analyst 
imbues the classifier with meaning). The computer, from its side, 
supports these activities by visualization and tools for interaction. 
The computer also helps in producing reports by documenting 
states, operations, and results. 

However, not only a report is the outcome of the analysis. The 
classifier itself is a valuable material result, which can be used for 
further analyses. Thus, the classifier can be applied to a different 
dataset (e.g. from another time period). It can efficiently classify 
new data coming in real time. Furthermore, the distance function 
in the classifier can be modified so as to be able to assess the 
similarity of an object to a prototype having only partial 
information about the object (e.g. a fragment of a trajectory). With 
such a distance function, the classifier can be used for real-time 
prediction (e.g. prediction of the future movement). 

Editing of a classifier may require significant human’s effort. 
More specifically, the editing effort is high for big clusters with 
high internal variation. Usually, such clusters need to be refined 
by splitting and/or by removing inconsistent objects. The reward 
is “clean”, easily understandable clusters extracted from the whole 
dataset. When a cluster is originally coherent, little or no editing 
of the respective part of classifier is needed. Our experience 
shows that, with an appropriate subset selection, big and “dirty” 
clusters mostly appear at the first iteration of the analysis. At the 
following iterations, the discovered clusters tend to become much 
smaller due to the decreasing density of the data. The internal 
variation in the clusters is also small. The number of discovered 
clusters also decreases. Hence, the editing effort significantly 
lessens with each iteration. Thus, in our experiments, we typically 
spent 30-45 minutes for reviewing and editing the classifier at the 
first iteration and only 5-10 minutes at the following iterations 
(mainly reviewing, almost no editing was required). 

It might be appropriate to compare the clusters built by means 
of our interactive and iterative method with results of automated 
clustering of the complete dataset. However, this is currently not 
possible because of the lack of a scalable clustering algorithm 
suitable for trajectories. As noted in the introduction, the existing 
scalable methods like KD-Tree or SOM can only be applied to 
feature vectors while trajectories of moving objects cannot be 
adequately represented in this form. 

6 CONCLUSION 
Finding clusters in very large sets of structurally complex objects, 
such as spatial and spatio-temporal objects, is a complex problem. 
Existing clustering algorithms are not scalable to very large 
datasets. We suggest a visual analytics approach to solving this 
problem at the cost of involving a human analyst, who directs the 
work of the computer towards the discovery of meaningful, 
relevant clusters. The approach is generic, i.e. can be applied to 
different types of complex objects. By an example analysis 
scenario, we have demonstrated a possible use of the approach for 
the analysis of trajectories of moving objects. 
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