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Abstract—The exploration of high-dimensional real-valued
data is one of the fundamental exploratory data analysis (EDA)
tasks. Existing methods use predefined criteria for the represen-
tation of data. There is a lack of methods eliciting the user’s
knowledge from the data and showing patterns the user does not
know yet. We provide a theoretical model where the user can
input the patterns she has learned as knowledge. The background
knowledge is used to find a MaxEnt distribution of the data, and
the user is shown maximally informative projections in which the
MaxEnt distribution and the data differ the most. We provide
an interactive open source EDA system, study its performance,
and present use cases on real data.

I. INTRODUCTION

Ever since Tukey’s pioneering work on exploratory data

analysis (EDA) [1], effective exploration of data has remained

an art as much as a science. Human analysts are remarkably

skilled in spotting patterns and relations in adequately visu-

alized data, but coming up with insightful visualizations is a

task hard to formalize, let alone to automate.

Modern computational methods for dimensionality reduc-

tion, such as Projection Pursuit and manifold learning, allow

one to spot complex relations from the data automatically

and to present them visually. Their drawback is however that

the criteria by which the views are found are defined by

static objective functions. The resulting visualizations may

or may not be informative for the user and task at hand.

Often such visualizations show the most prominent features

of the data, while the user might be interested in other subtler

structures. It would therefore be of a great help if the user

could efficiently tell the system what she already knows and

the system could utilize this when deciding what to show the

user next. Achieving this is the main objective of this paper.

To illustrate our idea, we use here a synthetic 3-dimensional

dataset with 150 points with two clusters of 50 points and two

of 25 points. The smaller clusters are partially overlapping in

the third dimension. The computer maintains a distribution,

called the background distribution modelling the belief state

of the user. The visualizations we use are scatter plots of

the data points after projection onto a 2-D subspace, and the

system shows the user projections in which the data and the

background distribution differ the most. Looking at the first

two principal components, we can only observe three clusters

with 50 points each (the black points in Fig. 1 left). In our

interactive approach, the data analyst will learn not only that

there are actually four clusters, but also that two of the clusters

correspond to a single cluster in the first view of the data. In

addition to showing the data in the scatterplot, we display a

sample from the background distribution as gray points (and

lines that connect the respective points, to give an indication

of the displacement in the background distribution).

The user’s interaction consists of informing the system

about sets of data points perceived to form clusters in this

scatter plot. The system takes this information into account

by updating the background distribution accordingly. When the

user has ascertained herself that the background distribution

matches the data in the projection as she thinks it should,

the system can be instructed to find another 2-D subspace

to project the data onto. The new projection displayed is the

one maximally insightful considering the updated background

distribution. In Fig. 1 (right), the new projection reveals that

one cluster from the previous view, in fact, splits into two.

To summarize, our contributions are as follows:

- A background distribution accounting for a user’s knowl-

edge fomalized as a constrained MaxEnt distribution.

- A principled way to obtain projections showing the

maximal difference between the data and the background

distribution for the PCA and ICA objectives.

- An interaction model by which the user can input what

she has learned from the data, in terms of constraints.

- An experimental evaluation of the computational perfor-

mance of the method and use cases on real data.

- A free open source application demonstrating the method.

This paper is a summary of a tech report [2]. Related work

and technical details are discussed in detail in [2].
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Fig. 1. Synthetic 3-D data. Left: Projection of the data onto the first
two principal components together with a sample of background distribution;
Right: The next most informative projection shown to the user.



II. METHODS

Preliminaries. A dataset consists of n d-dimensional real

vectors x̂i ∈ R
d, where i ∈ [n] = {1, . . . , n}. A matrix

X̂ = (x̂1x̂2 . . . x̂n)
T

∈ R
n×d represents the whole dataset.

We use hatted variables (e.g., X̂) to denote the observed

data and non-hatted variables the respective random variables

(e.g., X). We assume that the initial background distribution

equals a spherical Gaussian distribution with zero mean and

unit variance, given by q(X) ∝ exp
(

−
∑n

i=1 x
T
i xi/2

)

.

Constraints. We can define constraints on subsets of points

in R
n×d for a given projection by introducing linear and

quadratic constraint functions [3]. A constraint is parametrized

by the subset of rows I ⊆ [n] involved and a projection vector

w ∈ R
d. The linear constraint function is defined by

flin(X, I,w) =
∑

i∈I w
Txi, (1)

and the quadratic constraint function by

fquad(X, I,w) =
∑

i∈I

(

wT (xi − m̂I)
)2
, (2)

where m̂I =
∑

i∈I x̂i/|I|. Notice that m̂I is not a random

variable but a constant depending on the observed data.

The linear and quadratic constraint functions can be used to

define several types of knowledge about the data. (i) A margin

constraint consists of a linear and a quadratic constraint for

each column in [d]. (ii) A cluster constraint encodes the mean

and (co)variance statistics of a point cluster as follows: make

a singular value decomposition (SVD) of the points in I ,

and define a linear and a quadratic constraint for each of

the eigenvectors. (iii) A 1-cluster constraint is a special case

of a cluster constraint with I = [n]. (iv) A 2-D constraint

consists of a linear and a quadratic constraint for the two

vectors spanning the current 2-D projection.

Background distribution. A triplet C = (c, I,w), where c ∈
{lin, quad} is a constraint, and the constraint function is then

given by fc(X, I,w). Our main problem is stated as follows.

Problem 1. Given a dataset X̂ and k constraints C =
{C1, . . . , Ck}, find a probability density p over datasets

X ∈ R
n×d such that the entropy defined by

S = −Ep(X) [log (p(X)/q(X))] (3)

is maximized, while satisfying

Ep(X)

[

fct(X, It,wt)
]

= v̂t, (4)

for all t ∈ [k], where v̂t = fct(X̂, It,wt).

The background distribution is the distribution p that is a

solution to the Prob. 1. Intuitively, the background distribu-

tion is the maximally random distribution that preserves the

constraints in expectation. The form of the solution to Prob. 1

is given by the following lemma.

Lemma 1. A solution to Prob. 1 is of the form

p(X) ∝ q(X)× exp
(

∑k
t=1 λ

tfct(X, It,wt)
)

, (5)

where λt ∈ R are real-valued parameters.

See, e.g., Ch. 6 of [4] for a proof. For details of solving Prob. 1

numerically, we refer the reader to the extended version [2].

Whitening out the background distribution. Once we have

found the distribution that solves Prob. 1, the next task is to

find and visualize the maximal differences between the data

and the background distribution defined by Eq. (3). To this

end we sample a dataset from the background distribution,

and produce a whitened version of the data. The direction-

preserving whitening transformation of the data results in a

unit Gaussian spherical distribution, if the data follows the

current background distribution. Thus, any deviation from the

unit sphere distribution is a signal of difference between the

data and the current background distribution.

More specifically, we define new data vectors yi =

UiD
1/2
i UT

i (xi −mi) , where the SVD decomposition of Σ−1
i

is given by Σ−1
i = UiDiU

T
i , where Ui is an orthogonal matrix

and Di is a diagonal matrix. If we used one transformation

matrix for the whole data, this would correspond to the

normal whitening transformation. However, here we may have

a different transformation for each of the rows. Furthermore,

normally the transformation matrix would be computed from

the data, but here we compute it from the constrained model.

PCA and ICA. To find directions where the whitened data

looks different from the unit Gaussian distribution with zero

mean, an obvious choice is to use Principal Component Analy-

sis (PCA) and look for directions in which the variance differs

most from unity. However, it may happen that the variance is

already taken into account in the variance constraints, in which

case PCA is not informative because all directions in whitened

data have equal mean and variance. Instead, we can, e.g.,

use Independent Component Analysis (ICA) and the FastICA

algorithm [5] with log-cosh G function as a default method to

find non-Gaussian directions.

III. IMPLEMENTATION AND EXPERIMENTS

We have implemented an interactive demo system SIDER

using R 3.4.0 with SHINY and FASTICA. SIDER runs in

the web browser using R as a back-end, and is published

as a free open source system under the MIT license at

TABLE I
MEDIAN WALL CLOCK RUNNING TIMES, BASED ON 10 RUNS FOR EACH

SET OF PARAMETERS FOR FINDING THE CORRECT PARAMETERS (OPTIM)
AND RUNNING THE ICA ALGORITHM (ICA) WITHOUT TIME CUTOFF.

seconds, k ∈ {1, 2, 4, 8}
n d OPTIM ICA

2048 16 {0.0, 0.2, 0.3, 0.5} {0.6, 0.6, 0.6, 0.6}
2048 32 {0.0, 0.6, 1.0, 2.1} {1.5, 1.5, 1.6, 1.6}
2048 64 {0.1, 2.7, 5.2, 11.0} {5.1, 5.2, 4.9, 4.9}
2048 128 {1.2, 21.4, 48.1, 124.6} {17.8, 17.6, 17.4, 17.0}
4096 16 {0.0, 0.2, 0.3, 0.5} {1.1, 1.1, 1.1, 1.1}
4096 32 {0.0, 0.6, 1.0, 2.0} {3.1, 3.4, 3.0, 3.1}
4096 64 {0.2, 2.5, 6.0, 11.6} {9.8, 9.3, 9.5, 9.6}
4096 128 {1.2, 23.4, 56.4, 121.3} {34.2, 34.7, 34.4, 34.4}
8192 16 {0.0, 0.2, 0.3, 0.6} {2.6, 2.2, 2.5, 2.1}
8192 32 {0.0, 0.6, 1.0, 2.0} {6.5, 6.0, 5.9, 5.9}
8192 64 {0.2, 2.7, 6.0, 12.2} {20.7, 20.4, 19.8, 20.1}
8192 128 {1.2, 21.9, 44.1, 110.3} {67.9, 67.5, 67.1, 67.6}



Fig. 2. A use case with the BNC data. Left: Selection of points for a cluster constraint in the first PCA projection; Right: Selection of points for the second
cluster constraint. The view is the next most informative PCA projection obtained after adding a cluster constraint for the previous selection and updating of
the background distribution.

http://www.iki.fi/kaip/sider.html. The user can add data points

to a selection by directly marking them, by using pre-defined

classes in the dataset, or previously saved groupings. The

time-consuming operations are executed only by a direct

command of the user, which makes the system responsive and

predictable. For further details of SIDER, see [2].

Our focus in the experimental part is to show how SIDER

is able to provide the user with insightful projections of data

and reveal the differences between the background distribution

and the data. Additionally, the user interface makes it easy to

explore various statistics and properties of selections of data.

We test the system with data set sizes typical for interactive

systems (on the order of thousands of data points); if there are

more it often makes sense to downsample the data first.

Runtime experiment. We generated synthetic datasets

parametrized by the number of data points (n), dimensionality

(d), and the number of clusters (k) by randomly sampling k
cluster centroids and allocating data points around each of the

centroids. We added column constraints (2d constraints) for

each dataset, and for the sets with k > 1, a cluster constraint

for each cluster in the data (2dk constraints). In Table I

the median wall clock running times are provided without

any cutoff, based on 10 runs for each set of parameters, ran

on a Apple MacBook Air (2.2 GHz Intel Core i7) and a

single-threaded R 3.4.0 implementation of the algorithm.

The algorithm has the following steps: (1) Initialization,

(2) optimization for the correct parameters, (3) preprocessing

for sampling and whitening, producing (4) a whitened dataset

and (5) a random sample of the MaxEnt distribution, and (6)

running the PCA and ICA algorithms. Step (2) takes most

time. As expected (see Table I) the time consumed does not

depend on the number of rows n. Each optimization step takes

O(d2) time per constraint and there are O(kd) constraints.

In SIDER the default is to stop the optimization after a time

cut-off of 10 seconds, even when convergence has not been

achieved. For larger matrices the time consumed by ICA

becomes significant, scaling roughly as O(nd2). All the other

steps always take less than 2 seconds each and are not reported.

BNC data. The British National Corpus (BNC) [6] is one

of the largest annotated text corpora freely available in full-

text format. As a high dimensional use case we explore

the high-level structure of the corpus. For preprocessing, we

compute the vector-space model (word counts) using the first

2000 words from each text belonging to one the four main

genres (‘prose fiction’, ‘transcribed conversations’, ‘broadsheet

newspaper’, ‘academic prose’) as in [7]. After preprocessing

we have 1335 texts and use the 100 words with highest counts

as the dimensions and the main genres as the class information.

The most informative PCA projection of the BNC data is

shown in Fig. 2 (left). In the upper right corner there is a group

of points (red selection) that appear to form a group. These

points are mainly from ‘transcribed conversations’ (Jaccard-

index to class 0.928). After we added a cluster constraint

for this selection, updated the background distribution and

computed a new PCA projection, we obtained the projection

in Fig. 2 (right). The next selection shows another set of

points (mainly from classes ‘academic prose’ and ‘broadsheet

newspaper’; Jaccard-indices 0.63 and 0.35) differing from the

background distribution. After adding a cluster constraint for

this selection, we updated the background distribution and

computed another PCA projection. There was no apparent dif-

ference to the background distribution (as reflected in low PCA

scores), and we conclude that the identified clusters explain the

data well wrt. variation in counts of the most frequent words.

Notice class labels were only used retrospectively.

UCI Image Segmentation data. As a second use case, we

have the Image Segmentation dataset from the UCI machine

learning repository [8] with 2310 samples. Initially, the back-

ground distribution has a much larger variance than the data

in the first PCA projection. Thus, we first added a 1-cluster

constraint for the data (overall covariance) and updated the

background distribution. After this, in Fig. 3 (left), we can

observe ≥ 3 sets of points quite clearly separated in the

projection. The selection of points in red contains solely points

from the class ‘sky’, while the points clustered in the lower

left corner are mainly from the class ‘grass’ (with Jaccard-



Fig. 3. A use case with the UCI Image Segmentation data. Left : Initially the scale of background distribution significantly differs from that of the data,
after a 1-cluster constraint is added and the background distribution updated, there is visible structure present. Cluster constraints are added for the three sets
of points clustered in this view, and the background distribution is updated accordingly; Right: The next PCA projection shows mainly outliers.

index 0.964). The set of points clustered in the middle are

mainly from classes ‘brickface’, ‘cement’, ‘foliage’, ‘path’,

and ‘window’ (with Jaccard-index approx. 0.2 each). We add

a cluster constraint for each of these sets of points, and update

the background distribution, after which the the background

distribution matches the data rather well with the exception

of some outliers. The next PCA projection (Fig. 3 (right))

reveals that indeed there are outliers. For brevity, we did not

continue the analysis, but the data obviously contains a lot

more structure that we could explore in subsequent iterations.

IV. CONCLUSIONS

There have been many efforts in analysis of multivariate

data in different contexts, e.g., using Projection Pursuit and

manifold learning methods for compressing the data into a

lower dimensional—typically 2-D—presentation while pre-

serving features of interest. The drawback is that the criteria

for dimensionality reduction are defined typically in advance

and it may or may not fit the user’s need. It may be that

a visualization shows only the most prominent features of

the data already known for the user, or features that are

irrelevant for the task at hand. A natural alternative to static

visualizations using pre-defined criteria is the addition of

interaction. The drawback of such interactions is, however,

that they lack the sheer computational power utilized by the

dimensionality reduction methods.

Our method fills the gap between automated dimensionality

reduction methods and interactive systems. We propose to

model the knowledge of a domain expert by a probability

distribution computed by using the Maximum Entropy criteria.

Furthermore, we propose powerful and yet intuitive inter-

actions for the user to update the background distribution.

Our approach uses Projection Pursuit methods and shows the

directions in which the data and the background distribution

differ the most. In this way, we utilize the power of Projection

Pursuit at the same the allowing the user to adjust the criteria

by which the computers chooses the directions to show her.

The current work presents a framework and a system for

real-valued data and the background distribution modeled

by multivariate Gaussian distributions. The ideas could be

generalized to other data types (e.g., categorical or ordinal

data), or to higher-order statistics, likely in a straightforward

manner, as the mathematics of exponential family distribution

would lead to similar derivations. For concrete applications

for our approach and the SIDER tool there is potential in,

e.g., computational flow cytometry. Initial experiments with

samples up to tens of thousands rows from flow-cytometry

data [9] has shown the computations in SIDER to scale up well

and the projections to reveal structure in the data potentially

interesting to the application specialist.
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