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Abstract

Visual exploration of high-dimensional real-valued datasets is a fundamental task in

exploratory data analysis (EDA). Existing projection methods for data visualization

use predefined criteria to choose the representation of data. There is a lack of methods

that (i) use information on what the user has learned from the data and (ii) show patterns

that she does not know yet. We construct a theoretical model where identified patterns

can be input as knowledge to the system. The knowledge syntax here is intuitive,

such as “this set of points forms a cluster”, and requires no knowledge of maths. This

background knowledge is used to find a maximum entropy distribution of the data, after

which the user is provided with data projections for which the data and the maximum

entropy distribution differ the most, hence showing the user aspects of data that are

maximally informative given the background knowledge. We study the computational

performance of our model and present use cases on synthetic and real data. We find that

the model allows the user to learn information efficiently from various data sources

and works sufficiently fast in practice. In addition, we provide an open source EDA

demonstrator system implementing our model with tailored interactive visualizations.

We conclude that the information theoretic approach to EDA where patterns observed

by a user are formalized as constraints provides a principled, intuitive, and efficient

basis for constructing an EDA system.
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1 Introduction

Ever since Tukey’s pioneering work on exploratory data analysis (EDA) (Tukey 1977),

the task of effectively exploring data has remained an art as much as a science. Indeed,

while human analysts are remarkably skilled in spotting patterns and relations in

adequately visualized data, coming up with insightful visualizations is a hard task to

formalize, let alone to automate. As a result, EDA systems require significant expertise

to use effectively. However, with the increasing availability and importance of data,

data analysts with sufficient expertise are becoming a scarce resource. Thus, further

research into automating the search for insightful data visualizations has become

increasingly critical.

Modern computational methods for dimensionality reduction, such as Projection

Pursuit and manifold learning, allow one to spot complex relations from the data

automatically and to present them visually. Their drawback is however that the criteria

by which the views are found are defined by static objective functions. The resulting

visualizations may or may not be informative for the user and task at hand. Often such

visualizations show the most prominent features of the data, while the user might be

interested in other, perhaps subtler, structures. It would therefore be of a great help

if the user could efficiently tell the system what she already knows and the system

could utilize this when deciding what to show the user next. Achieving this is the main

objective of this paper.

In this paper, we present a novel interactive framework for EDA based on solid

theoretical principles and taking into account the updating knowledge of the user. Our

work is motivated by the ideas in (Puolamäki et al. 2016; Kang et al. 2016), and in

Sect. 4 we discuss in detail the differences between the previous approach and our

current one, as well as review several other related approaches, such as iPCA (Jeong

et al. 2009), InVis (Paurat and Gärtner 2013), supervised PCA (Barshan et al. 2011),

and guided locally linear embedding (Alipanahi and Ghodsi 2011).

Our main idea is shown in Fig. 1. (a) The belief state of the user is modeled using

a distribution maintained by the computer (the background distribution), which may

be partially learned from the data. (b) The system computes a projection (the most

informative projection) optimizing a user-picked criterion, while factoring out what is

already modeled/known about the data. The intuitive idea is that the projection com-

puted shows the maximal difference between the data and the background distribution

(i.e., the belief state of the user). (c) The user is shown the data in the most informative

projection. (d) The user explores the visualization. (e) The user marks observed clus-

ters on the projection, and (f) the computer then uses these as constraints to update

the background distribution. The process is iterated until the user is satisfied, i.e., typi-

cally when there are no more notable differences between the data and the background

distribution.

Specifically, the data considered in this work is a set of d-dimensional (d-D) data

points. To illustrate the envisioned data exploration process, we synthesized a 3-D
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Fig. 1 Overview of the interaction process. a The belief state of the user is modeled as the background

distribution. b The system computes the most informative projection with respect to what is known about the

data. c The user is shown the data in the most informative projection. d The user explores the visualization, e

marks observed clusters on the projection. f The computer uses these as constraints to update the background

distribution. The process is iterated until the user is satisfied

dataset with 150 points such that there are two clusters of 50 points and two of 25

points. The smaller clusters are partially overlapping in the third dimension. Looking

at the first two principal components, one can only observe three clusters with 50

points each (similarly to the black points in Fig. 2a).

In our iterative approach, the data analyst will learn not only that there are actually

four clusters, but also that two of the four clusters correspond to a single cluster in

the first view of the data. The visualizations considered are scatterplots of the data

points after projection onto a 2-D subspace, as in Projection Pursuit (Friedman and

Tukey 1974; Huber 1985). The projection chosen for visualization is the one that,

for a specified statistic—the demo system includes variance (PCA) and higher-order

moments (ICA)—is maximally different with respect to the background distribution

that represents the user’s current understanding of the data.

In addition to showing the data in the scatterplot (black points), we display a sample

from the background distribution as gray points, see Fig. 2 for an example. The lines

shown connect a data point to a respective point in the sample from the background

distribution and provide an indication of the displacement in the background distribu-

tion for each data point, see Sect. 3.2 for details. The data analyst’s interaction consists

of informing the system about sets of data points they perceive to form clusters within

this scatterplot (Fig. 2b). The information about the user’s knowledge of the data is then

taken into account and the background distribution is updated accordingly. Figure 2c

shows the same projection but a new sample from the background distribution. This

sample aligns very well with the observed cluster structure, illustrating the updates to

the background distribution were appropriate.

When we have ascertained ourselves that the background distribution matches the

data in the current projection as we think it should, the system can be instructed to

find another 2-D projection. The new projection displayed is the one that is maximally

insightful, considering the updated background distribution. We achieve this through

the use of a whitening operation (Kessy et al. 2018), which is explained in detail in

Sect. 2.5. The underlying idea is that a direction-preserving whitening transformation

of the data using the background distribution results in a unit Gaussian spherical

distribution, if the data follows the background distribution. Hence, we can use the
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24 K. Puolamäki et al.

Fig. 2 Synthetic data with 3 dimensions. a Projection of the data to the first two principal components

together with a sample of background distribution; b the user marks the three clusters that she identified; c

after the user’s knowledge is taken into account, the updated background distribution matches the data in

this projection; d the user is then shown the next most informative projection

deviation from the unit sphere distribution in the whitened data as a signal of difference

between the data and the current background distribution. The next projection for our

example dataset is shown in Fig. 2d and reveals that one of the three clusters from the

previous view can in fact be meaningfully split into two clusters. Notice here that the

knowledge learned from the previous view only partially describes the relations in the

data, and the new view allows the user to update her knowledge.

The user can now add further knowledge to the background distribution by selecting

the two uppermost clusters and the process can be repeated. For our 3-D dataset, after

the background distribution is updated upon addition of the new knowledge, the data

and the background distribution match, and in this case, further projections will not

reveal any additional structure.

Regarding the scope, the focus in this paper is on projection methods that can take

into account background knowledge that is updated iteratively when using the system.
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Interactive visual data exploration with subjective feedback 25

There are important open questions regarding the interface and the interaction pro-

cess, such as how to help (lay) users understand scatterplots based on dimensionality

reduction, see, e.g., Sedlmair et al. (2012) for an overview of associated problems and

Stahnke et al. (2016) for some recent developments to address some of these. However,

the quest to automate the composition of insightful visualizations is important in its

own right, as is illustrated in the remainder of the paper.

1.1 Contributions and outline of the paper

The contributions of this paper are:

– A formalization of an efficiently computed background distribution accounting for

a user’s knowledge in terms of a constrained Maximum Entropy distribution.

– A principled way to obtain projections showing the maximal difference between

the data and the background distribution for the principal component analysis

(PCA) and independent component analysis (ICA) objectives, by whitening the

data with respect to the background distribution.

– An interaction model by which the user can input what she has learned from the

data in terms of sets of data points (e.g., clusters), which translate into constraints

on the background distribution.

– An experimental evaluation of the computational performance of the algorithms

used in our framework and use cases on real data.

– A free open source demonstrator system implementing the method.

The current work extends considerably an earlier short poster paper (Puolamäki

et al. 2018). In addition to extending the discussion throughout the manuscript, the

new material contains (i) a running example using a simple crafted data to illustrate the

main concepts of our exploration framework (Examples 1–6); (ii) a detailed description

how to efficiently solve Problem 1 (Sect. 2.3.1) (iii) an analysis of the convergence

of the optimization (Sect. 2.4); (iv) a section summarizing the exploration flow in our

framework (Sect. 2.6); and (v) a discussion of related work (Sect. 4).

The paper is structured as follows: we describe the methods and the algorithms in

Sect. 2, report the results of the experiments in Sect. 3 together with a proof-of-concept

open source implementation sideR, discuss the related work in Sect. 4, and finally

conclude in Sect. 5.

2 Methods

In this section we present our methods. We start with the preliminaries in Sect. 2.1 and

present then our main concepts, namely the constraints and the background distribution

in Sect. 2.2. We show how we can update the background distribution in Sect. 2.3 and

discuss convergence issues in Sect. 2.4. Finally, we show how to find directions where

the data and the background distribution differ using an advanced whitening operation

in Sect. 2.5 and summarize our framework for interactive visual data exploration in

Sect. 2.6.
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Fig. 3 A pairplot of the synthetic data X̂5. The point types correspond to the cluster identities A, B, C , and

D (the grouping that exists in the first three dimensions). Plot is based on a sample of 250 points from the

data

2.1 Preliminaries

We assume the dataset under analysis consists of n d-dimensional real vectors x̂i ∈ R
d ,

where i ∈ [n] = {1, . . . , n}. The whole dataset is represented by a real-valued matrix

X̂ =
(

x̂1x̂2 . . . x̂n

)T
∈ R

n×d . We use hatted variables (e.g., X̂) to denote the data and

non-hatted variables (e.g., X) to denote the respective random variables.

Example 1 (Running example, see Fig. 3) To illustrate the central concepts of the

approach, we generated a synthetic dataset X̂5 of 1000 data vectors in five dimensions

(denoted by X1, . . . , X5). The dataset is designed so that along dimensions X1–X3

it can be clustered into four clusters (labeled A, B, C, D) and along dimensions X4

and X5 into three clusters (labeled E, F, G). The clusters in dimensions X1–X3 are

located such that in any 2-D projection along these dimensions cluster A overlaps

with one of the clusters B, C , or D. The cluster structure in dimensions X4 and X5 is

loosely related to the cluster structure in dimensions X1–X3: with 75% probability a
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Interactive visual data exploration with subjective feedback 27

data vector belonging to clusters B, C , or D belongs to one of clusters E and F . The

remaining points belong to cluster G. The pairplot1 in Fig. 3 shows the structure of

the data (the point types correspond to the cluster identities A, B, C , and D).

2.2 Constraints and background distribution

The user interaction consists of selecting a point set (which we refer to as a cluster),

studying the statistics of this cluster, and possible marking this cluster. Subsequently,

the system provides a new visualization showing structure complementary to the struc-

ture encoded in the background distribution. To implement the envisioned interaction

scheme, we wish to define constraints (specifications of the data) and to construct a

background distribution such that the constraints set by the user are satisfied. Intu-

itively, the more constraints we have, the closer the distribution should be to the true

data, since the constraints added are based on the data. Typically, the constraints will

not be sufficient to define a distribution, because there are still many degrees of free-

dom. Arguably, the most neutral distribution is the distribution of maximum entropy

(MaxEnt), because that is the only distribution which does not add any side information

(Cover and Thomas 2005).

We must also define some initial background distribution. A reasonable and conve-

nient assumption is that the initial background distribution equals a spherical Gaussian

distribution with zero mean and unit variance, given by

q(X) ∝ exp

(

−

n
∑

i=1

xT
i xi/2

)

. (1)

This is equivalent to the MaxEnt distribution with known mean and variance (but not

co-variance) for all attributes. If we normalize the data, these statistics are obviously

zero and one respectively, for every attribute.

As illustrated in Fig. 1, the interaction process is such that the user is shown 2-D

projections (Fig. 1c) where the data and the background distribution differ the most.

The initial view shown to the user is a projection of the whitened data (see Sect. 2.5)

onto the first two PCA components or the two ICA components with the highest score,

whichever of these projection methods the user deems more appropriate.

Example 2 Figure 4a shows the projection of the whitened X̂5 onto the two ICA com-

ponents with the highest scores using log-cosh objective function. One can observe

the cluster structure in the first three dimensions X1–X3. The gray points represent

a sample from the background distribution. When shown together with the data, it

becomes evident that the data and the background distribution differ.

Subsequently, we can define constraints on subsets of points in R
n×d for a given pro-

jection by introducing linear and quadratic constraint functions (Lijffijt et al. 2018).

A constraint is parametrized by the subset of rows I ⊆ [n] that are involved and a

projection vector w ∈ R
d . The linear constraint function is defined by

1 A plot with scatterplots for all the pairs of variables together with the distribution of each variable at the

diagonal.
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Fig. 4 a The whitened synthetic data X̂5 projected into the two ICA components with the highest scores

using log-cosh objective function and shown together with a sample of the background distribution (in gray).

With no knowledge about the belief state of the user, the background distribution is Gaussian. b The same

projection with the background distribution updated to take into account cluster constraints for the four

visible clusters. c The next most informative ICA projection for X̂5. d The ICA projection obtained after

further cluster constraints for the three visible clusters in c have been added and the background distribution

has been updated

flin(X, I , w) =
∑

i∈I
wT xi , (2)

and the quadratic constraint function by

fquad(X, I , w) =
∑

i∈I

(

wT
(

xi − m̂I

)

)2
, (3)

where we have used

m̂I =
∑

i∈I
x̂i/|I |. (4)

123



Interactive visual data exploration with subjective feedback 29

These constraint functions specify the mean and variance for a set of points, for

a specific direction w. Notice that m̂I is not a random variable but a constant that

depends on the observed data. If it were a random variable, it would introduce cross-

terms between rows and the distribution would no longer be independent for different

rows. In principle, we could set m̂ to any constant value, including zero. However, for

the numerical algorithm to converge quickly, we use the value specified by Eq. (4).

We denote a constraint by a triplet C = (c, I , w), where c ∈ {lin, quad}, and

the constraint function is then given by fc(X, I , w). We can now use the linear and

quadratic constraint functions to express several types of knowledge a user may have

about the data, e.g., knowledge of a cluster in the data or the marginal distribution of

the data, which we can then encode into the background distribution.

To start with, we can encode the mean and variance, i.e., the first and second moment

of the marginal distribution, of each attribute:

(i) Margin constraint consists of a linear and a quadratic constraint for each of the

columns in [d], respectively, the total number of constraints being 2d.

We can encode the mean and (co)variance statistics of a point cluster for all

attributes:

(ii) Cluster constraint is defined as follows. We make a singular value decomposition

(SVD) of the points in the cluster defined by I . Then a linear and a quadratic

constraint is defined for each of the eigenvectors. This results in 2d constraints

per cluster.

We can also encode the mean and (co)variance statistics of the full data for all

attributes:

(iii) 1-cluster constraint is a special case of a cluster constraint where the full dataset

is assumed to be in one single cluster (i.e., I = [n]). Essentially, this means

that the data is modeled by its principal components and the correlations are

taken into account, unlike with the marginal constraints, again resulting to 2d

constraints.

Finally, we can encode the mean and variance of a point cluster or the full data as

shown in the current 2-D projection:

(iv) 2-D constraint consists of a linear and a quadratic constraint for the two eigen

vectors spanning the 2-D projection in question, resulting to 4 constraints.

2.3 Updating the background distribution

Having formalized the constraints, we are now ready to formulate our main problem,

i.e., how to update the background distribution given a set of constraints.

Problem 1 Given a dataset X̂ and k constraints C = {C1, . . . , Ck}, find a probability

density p over datasets X ∈ R
n×d such that the entropy defined by

S = −E p(X)

[

log (p(X)/q(X))
]

(5)
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is maximized, while the following constraints are satisfied for all t ∈ [k]:

E p(X)

[

fct (X, I t , wt )
]

= v̂t , (6)

where v̂t = fct (X̂, I t , wt ) and q(X) ∝ exp
(

−
∑n

i=1 xT
i xi/2

)

.

The distribution p that is a solution to the Problem 1 is the background distribution

taking into account C . Intuitively, the background distribution is the maximally ran-

dom distribution such that the constraints are preserved in expectation. Due to our

choice of the initial background distribution and the constraint functions, the MaxEnt

solution to Problem 1 is a multivariate Gaussian distribution. The form of the solution

to Problem 1 is given by the following lemma.

Lemma 1 The probability density p that is a solution to Problem 1 is of the form

p(X) ∝ q(X) × exp

(

∑k

t=1
λt fct (X, I t , wt )

)

, (7)

where λt ∈ R are real-valued parameters.

See, e.g., Cover and Thomas (2005, Chapter 12) for a proof.

We make an observation that adding a margin constraint or 1-cluster constraint to

the background distribution is equivalent to transforming the data to zero mean and

unit variance or whitening of the data, respectively.

Equation (7) can also be written in the form

p(X | θ) ∝ exp
(

−
∑n

i=1
(xi − mi )

T Σ−1
i (xi − mi ) /2

)

, (8)

using the natural parameters collectively denoted by

θ = {θi }i∈[n] =
{(

Σ−1
i mi ,Σ

−1
i

)}

i∈[n]
.

By matching the terms linear and quadratic in xi in Eqs. (7) and (8), we can write Eq. (8)

as sums of the terms of the form λt fct (X, I t , wt ). The dual parameters are given by

µ = {µi }i∈[n] = {(mi ,Σi )}i∈[n] and can be obtained from the natural parameters by

using matrix inversion and multiplication operations.

Problem 1 can be solved numerically as follows. Initially, we set the lambda

parameters to λ1 = · · · = λk = 0, with the natural dual parameters then given

by θi = µi = (0, 1) for all i ∈ [n]. Given a set of constraints, the lambda parame-

ters are updated iteratively as follows. Given some values for the lambda parameters

and the respective natural and dual parameters, we choose a constraint t ∈ [k] and

find a value for λt such that the constraint in Eq. (6) is satisfied for this chosen t .

We then iterate this process for all constraints t ∈ [k] until convergence. Due to the

convexity of the problem, we are always guaranteed to eventually end up in a globally

optimal solution. For a given set of lambda parameters, we can then find the natural

parameters in θ by simple addition, and the dual parameters µ using θ . Finally, the
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expectation in Eq. (6) can be computed by using the dual parameters and the identities

E p(X|θ)

[

xixi
T
]

= Σi + mi m
T
i and E p(X|θ) [xi ] = mi .

Example 3 After observing the view in Fig. 4a the user can add a cluster constraint

for each of the four clusters visible in the view. The background distribution is then

updated to take into account the added constraints by solving Problem 1. In Fig. 4b

a sample of the updated background distribution (gray points) is shown together with

the data (black points).

2.3.1 Update rules

A straightforward implementation of the above-mentioned optimization process is

inefficient because we need to store parameters for n rows and the matrix inversion is

an O(d3) operation, resulting to a time complexity of O(nd3). We can, however, sub-

stantially speed up the computations using two observations. First, two rows affected

by the exactly same set of constraints will have equal parameters, i.e., we have θi = θ j

and µi = µ j for such rows i and j . Thus, we need only to store and compute values

of the parameters θi and µi for “equivalence classes” of rows, whose number depends

on the number and the overlap of the constraints, but not on n. Second, if we store

both the natural and dual parameters at each iteration, the update due to each con-

straint corresponds to a rank-1 update to the covariance matrix Σ−1
i . We can then use

the Woodbury Matrix Identity taking O(d2) time to compute the inverse, instead of

O(d3).

A further observation is that by storing the natural and dual parameters at each

step, we do not need to explicitly store the values of the lambda parameters. At each

iteration we are only interested in the change of λt instead of its absolute value. After

these speedups, we expect the optimization process to take O(d2) time per constraint

and to be asymptotically independent of n. For simplicity, in the following description,

we retain the sums of the form
∑

i∈I t . However, in the implementation we replace

these by the more efficient weighted sums over the equivalence classes of rows. To

simplify and clarify the notation we use parameters with a tilde (e.g., Σ̃) to denote

them before the update and parameters without (e.g., Σ) to denote the values after the

update, and λ to denote the change in λt .

For a linear constraint t the expectation is given by

vt = E p(X|θ)

[

flin(X, I t , wt )
]

=
∑

i∈I t
wtT mi .

The update rules for the parameters are given by θi1 = θ̃i1 + λwt and µi1 = Σiθi1.

Solving for vt = v̂t gives the required change in λt as

λ =
(

v̂t − ṽt
)

/

(

∑

i∈I t
wtT Σ̃i w

t
)

, (9)

where ṽt denotes the value of vt before the update. Notice the change in λt is zero if

ṽt = v̂t , as expected.
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For a quadratic constraint t the expectation is given by

vt = E p(X|θ)

[

fquad(X, I t , wt )
]

= wtT
∑

i∈I t

(

Σi + qi q
T
i

)

wt ,

where qi = mi − m̂I t . The update rules for the parameters are

θi1 = θ̃i1 + λδwt ,

θi2 = θ̃i2 + λwt wtT ,

µi1 = Σiθi1, and

µi2 = Σ̃i − λgi g
T
i /

(

1 + λwtT gi

)

,

where have used the short-hands δ = m̂T
I t w

t and gi = Σ̃i w
t . We use the Woodbury

Matrix Identity to avoid explicit matrix inversion in the computation of µi2. Again,

solving for vt = v̂t gives an equation

φ(λ) =
∑

i∈I t

(

Λi c
2
i − f 2

i c2
i + 2 fi ci (δ − ei )

)

+ v̂t − ṽt = 0, (10)

where we have used the following shorthands

bi = Σ̃i θ̃i1,

ci = bT
i wt ,

Λi = λ/ (1 + λci ) ,

di = bT
i θ̃i1,

ei = m̃T
i wt , and

fi = λδ − Λi di − Λiλδci .

Notice that Λi and fi are functions of λ. We conclude with the observation that φ(λ) is

a monotone function, whose root can be determined efficiently with a one-dimensional

root-finding algorithm.

2.4 About convergence

In the runtime experiment (Sect. 3.1, Table 2) we define the optimization to be con-

verged when the maximal absolute change in the lambda parameters is 10−2 or when

the maximal change in the means or square roots of variance constraints is at most

10−2 times the standard deviation of the full data. We describe in this section a situa-

tion where the convergence is very slow, and a fixed time cutoff becomes useful. The

iteration is guaranteed to converge eventually, but in certain cases—especially if the

size of the dataset (n) is small or the size of some clusters (|I t |) is small compared to

the dimensionality of the dataset (d)—the convergence can be slow, as shown in the

following adversarial example.
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(a) (b)

Fig. 5 a Adversarial toy data and 1σ confidence ellipsoids (expanded a bit for visual clarity in zero variance

directions) for the background distribution. b Convergence of (Σ1)11 for two sets of constraints CA (black

line) and CB (gray line)

Example 4 Consider a dataset of three points (n = 3) in two dimensions (d = 2),

shown in Fig. 5a and given by

X̂ =

⎛

⎝

1 0

0 1

0 0

⎞

⎠ , (11)

and two sets of constraints:

(A) The first set of constraints consists of the cluster constraints related to the first

and the third row and is given by CA = {C1, . . . , C4}, where c1 = c3 = lin,

c2 = c4 = quad, I 1 = · · · = I 4 = {1, 3}, w1 = w2 = (1, 0)T , and w3 = w4 =

(0, 1)T .

(B) The second set of constraints has an additional cluster constraint related to the

second and the third row and is given by CB = {C1, . . . , C8}, where C1, . . . , C4

are as above and c5 = c7 = lin, c6 = c8 = quad, I 5 = · · · = I 8 = {2, 3},

w5 = w6 = (1, 0)T , and w7 = w8 = (0, 1)T .

Next, we consider convergence when solving Problem 1 using these two sets of con-

straints.

Case A The solution to Problem 1 with constraints in CA is given by m1 = m3 =

( 1
2
, 0)T , m2 = (0, 0)T ,

Σ1 = Σ3 =

(

1
4

0

0 0

)

, and Σ2 =

(

1 0

0 1

)

. (12)

Note that if the number of data points in a cluster constraint is at most the number of

dimensions in the data, there are necessarily directions in which the variance of the
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background distribution is zero, see Fig. 5a. However, since we have here a single

cluster constraint with no overlapping constraints, the convergence is very fast and, in

fact, occurs after one pass over the lambda variables as shown in Fig. 5b (black line).

Case B The solution to Problem 1 with constraints in CB are given by m1 = (1, 0)T ,

m2 = (0, 1)T , m3 = (0, 0)T , and

Σ1 = Σ2 = Σ3 =

(

0 0

0 0

)

. (13)

Here we observe that adding a second overlapping cluster constraint, combined with

the small variance directions in both of the constraints restricts the variance of the third

data point to zero. Because both of the clusters have only one additional data point,

it follows that the variance of all data points is then zero. The small variance and the

overlapping constraints for data points cause the convergence here to be substantially

slower, as shown in Fig. 5b (gray line). The variance scales roughly as (Σ1)11 ∝ τ−1,

where τ is the number of optimization steps, the global optimum being in singular

point at (Σ1)11 = 0.

The slow convergence in the above example is due to the overlapping of constraints

and the quadratic constraints with a small variance (caused here by the small num-

ber of points per cluster). A way to speed up the convergence would be—perhaps

unintuitively—to add more data points: e.g., to replicate each data point 10 times with

random noise added to each replicate. When a data point would be selected to a con-

straint, then all of its replicates would be included as well. This would set a lower limit

on the variance of the background model and hence, would be expected to speed up

the convergence. Another way to solve the issue is just to cut off the iterations after

some time point leading up to a larger variance than in the optimal solution. The latter

approach appears to be typically acceptable in practice.

2.5 Whitening operation for finding themost informative visualization

Once we have found the distribution that solves Problem 1, the next task is to find and

visualize the maximal differences between the data and the background distribution

defined by Eq. (5).

Here we use a whitening operation which is similar to ZCA-Mahalanobis whitening

(Kessy et al. 2018) to find the directions in which the current background distribu-

tion p and the data differ the most. The underlying idea is that a direction-preserving

whitening transformation of the data with p results in a unit Gaussian spherical distri-

bution, if the data follows the current background distribution p. Thus, any deviation

from the unit sphere distribution in the data whitened using p is a signal of difference

between the data and the current background distribution.

More specifically, let the distribution p solving Problem 1 be parametrized by µ =

{(mi ,Σi )}i∈[n] and consider X = (x1x2 . . . xn)T ∈ R
n×d . We define new whitened

data vectors yi as follows,
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(a) (b) (c)

Fig. 6 A pairplot of the whitened data Ŷ5. a Initially, i.e., without constraints, Ŷ5 = X̂5. b After the cluster

constraints are added for the four clusters visible in Fig. 4a. c After further cluster constraints are added for

the three clusters visible in Fig. 4c

yi = Σ
−1/2
i (xi − mi ) , (14)

where Σ
−1/2
i = Ui D

1/2
i U T

i with the SVD decomposition of Σ−1
i given by Σ−1

i =

Ui DiU
T
i , where Ui is an orthogonal matrix and Di is a diagonal matrix. Notice that

if we used one transformation matrix for the whole data, this would correspond to

the normal whitening transformation (Kessy et al. 2018). However, here we may have

a different transformation for each of the rows. Furthermore, normally the transfor-

mation matrix would be computed from the data, but here we compute it from the

constrained model, i.e., using the background distribution.

It is easy to see that if xi obeys the distribution of Eq. (8), then D
1/2
i U T

i (xi − mi )

obeys unit spherical distribution. Hence, any rotation of this vector obeys a unit sphere

distribution as well. We rotate this vector back to the direction of xi so that after the

final rotation, the vectors yi for different rows i have a comparable direction.

Now, we apply the whitening transformation on our data matrix X̂ and use Ŷ =
(

ŷ1ŷ2 . . . ŷn

)T
to denote the whitened data matrix. Notice that when there are no

constraints, that is mi = 0 and Σ−1
i = 1, the whitening operation reduces to identity

operation, i.e., Ŷ = X̂.

Example 5 To illustrate the whitening operation, we show in Fig. 6 pairplots of the

whitened data matrix Ŷ5 for the synthetic data X̂5 and different background distri-

butions (i.e., sets of constraints). Initially, i.e., without any constraints (Fig. 6a) the

whitened data matches X̂5. Figure 6b shows the whitened data after the background

distribution has been updated to take into account the addition of a cluster constraint

for each of the four clusters in Fig. 4a. Now, in the first three dimensions X1–X3 the

whitened data does not anymore significantly differ from Gaussian distribution, while

in dimensions X4 and X5 it does.

In order to find directions where the data and the background distribution differ,

i.e., the whitened data Ŷ differs from the unit Gaussian distribution with zero mean, an

obvious choice is to use Principal Component Analysis (PCA) and look for directions
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Table 1 ICA scores (sorted by

absolute value) for all five

components computed by

FastICA for each of the iterative

steps in Fig. 4

Projection ICA scores

Figure 4a, b 0.041 0.037 0.035 0.034 − 0.015

Figure 4c 0.037 0.017 0.004 − 0.003 − 0.002

Figure 4d − 0.008 0.004 −0.003 0.003 − 0.002

It can be seen that after the first set of constraints there are only two sig-

nificantly non-Gaussian components left (both loadings on the fourth

and fifth attribute of the data), while after the second set of constraints

there is no substantial structure left in the data

in which the variance of Ŷ differs most from unity.2 However, it may happen that the

variance is already taken into account in the variance constraints. In this case, PCA

becomes non-informative because all directions in Ŷ have equal mean and variance.

Instead, we can use, e.g., Independent Component Analysis (ICA) and the FastICA

algorithm (Hyvärinen 1999) with log-cosh G function as a default method to find

non-Gaussian directions. To find the best two ICA components, we compute a full

set of d components, and then take the two components that score best on the log-

cosh objective function. Clearly, when there are no constraints, our approach equals

standard PCA and ICA on the original data, but when there are constraints, the output

will be different.

To be able to visualize the background distribution together with the data in the

found projection, we use a random dataset that can be obtained by sampling a data

point for each i ∈ [n] from the multivariate Gaussian distribution parametrized by θi .

Example 6 The directions in which the whitened data Ŷ5 in Fig. 6b differs the most

from Gaussian (using ICA) are shown in Fig. 4c. The user can observe the cluster struc-

ture in dimensions X4 and X5, which would not be possible to find with non-iterative

methods. Furthermore, it is clear that the sample from the background distribution (the

points shown in gray in Fig. 4) is different from the data in this projection. After adding

a cluster constraint for each of the three visible clusters, the updated background dis-

tribution becomes a faithful representation of the data, and thus the whitened data

shown in Fig. 6c resembles a unit Gaussian spherical distribution in all dimensions.

This is also reflected in a visible drop in ICA scores in Table 1.

2.6 A summary of the proposed interactive framework for EDA

Now, we are ready to summarize our framework. Initially, we have the dataset X̂,

the set of constraints C is empty, and the background distribution equals a spherical

Gaussian distribution with zero mean and unit variance (Eq. 1). At each iteration, the

following steps are performed, and the exploration continues as long as the user is

convinced that she has observed relevant features of the data (i.e., there is now visible

difference between the background distribution and the data).

2 Here we measure the difference of variance from unity to the direction of each principal component by

(σ 2 − log σ 2 − 1)/2, where σ 2 is the variance to the direction of the principal component, and show in the

scatterplot the two principal components with the largest differences from unity.
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1. The data X̂ is whitened with respect to the background distribution (Eq. 14).

2. The first two PCA or ICA components of the whitened data Ŷ are computed to

obtain the most informative projection with respect to the current knowledge.

3. The data X̂ and a sample from the background distribution are projected into the

directions found in Step 2.

4. In the projection, the user may observe differences between the data and the back-

ground distribution. She then formulates the observations in terms of constraints

{C1, . . . , Ck}, and the set of constraints is updated to C = C ∪ {C1, . . . , Ck}.

5. The background distribution is updated to take into account the added constraints,

i.e., Problem 1 is solved with respect to the updated C .

6. The process continues from Step 1.

Remark 1 If the user has prior knowledge about the data, this can represented using a

set of constraints C �= ∅. Then, one should use the distribution p that is a solution to

Problem 1 with respect to C as the initial background distribution instead of using a

spherical Gaussian distribution with zero mean and unit variance.

Remark 2 Throughout the process the background distribution has the form of a multi-

variate Gaussian distribution with mean and co-variance that may differ from point to

point. This is not by assumption, but it is the result of the MaxEnt principle along with

constraints that specify the mean and variance, which leads to a Gaussian distribution.

3 Experiments

In this section, we demonstrate the use of our framework in exploratory data analysis.

The implementation of steps needed for the exploration flow described in Sect. 2.6 is

done using R 3.4.0 (R Core Team 2017) and fastICA (Marchini et al. 2013). In addi-

tion, we have implemented an interactive proof-of-concept system sideR (Puolamäki

2019), see Sect. 3.4, using shiny (Chang et al. 2017) for the user interface. The code

implementing our framework and the sideR system together with the code to run the

experiments (Sects. 2.4, 3) has been released as a free open source software under the

MIT license at https://github.com/edahelsinki/sideR (Last Accessed: 28 Aug 2019).

Our focus here is to show how our approach is able to provide the user with insightful

projections of data and reveal the differences between the background distribution and

the data. We start by a runtime experiment in which we test the model with data set

sizes typical for interactive systems and visual exploration, i.e., there are on the order

of thousands of data points. If there are more data points, it often makes sense to

downsample the data first. Following the runtime experiment, we use real datasets

to illustrate how we are able to find relevant projections for the user and display

differences between the background distribution and the data.

3.1 Runtime experiment

We generated synthetic datasets parametrized by the number of data points (n), the

dimensionality of the data (d), and the number of clusters (k). Each dataset was created
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Table 2 Median wall clock running times, based on 10 runs for each set of parameters for finding the correct

parameters (optim) and running the ICA (ica) algorithm without time cutoff

n d optim ica

2048 16 {0.0, 0.2, 0.3, 0.5} {0.6, 0.6, 0.6, 0.6}

2048 32 {0.0, 0.6, 1.0, 2.1} {1.5, 1.5, 1.6, 1.6}

2048 64 {0.1, 2.7, 5.2, 11.0} {5.1, 5.2, 4.9, 4.9}

2048 128 {1.2, 21.4, 48.1, 124.6} {17.8, 17.6, 17.4, 17.0}

4096 16 {0.0, 0.2, 0.3, 0.5} {1.1, 1.1, 1.1, 1.1}

4096 32 {0.0, 0.6, 1.0, 2.0} {3.1, 3.4, 3.0, 3.1}

4096 64 {0.2, 2.5, 6.0, 11.6} {9.8, 9.3, 9.5, 9.6}

4096 128 {1.2, 23.4, 56.4, 121.3} {34.2, 34.7, 34.4, 34.4}

8192 16 {0.0, 0.2, 0.3, 0.6} {2.6, 2.2, 2.5, 2.1}

8192 32 {0.0, 0.6, 1.0, 2.0} {6.5, 6.0, 5.9, 5.9}

8192 64 {0.2, 2.7, 6.0, 12.2} {20.7, 20.4, 19.8, 20.1}

8192 128 {1.2, 21.9, 44.1, 110.3} {67.9, 67.5, 67.1, 67.6}

The columns optim and ica list the running times in seconds for k ∈ {1, 2, 4, 8}

by first randomly sampling k cluster centroids and then allocating data points around

each of the centroids. We added column constraints (2d constraints) for each dataset

and for the datasets with k > 1 we additionally used cluster constraints for each of the

k clusters in the data (2dk constraints). In Table 2 the median wall clock running times

are provided without any cut-off, based on 10 runs for each set of parameters, ran on

a Apple MacBook Air with 2.2 GHz Intel Core i7 processor and a single-threaded R

3.4.0 implementation of the algorithm.

The algorithm is first initialized (init) which is typically very fast, after which the

correct parameters are found (optim). Then preprocessing is done for sampling and

whitening (preprocess) after which we produce a whitened dataset (whitening) and

a random sample of the MaxEnt distribution (sample). These are then used to run the

PCA (pca) and ICA (ica) algorithms. We found that init, preprocess, whitening,

sample, and pca always take less than 2 s each and they are not reported in the table.

Most of the time is consumed by optim. We observe in Table 2 that, as expected, the

time consumed does not depend on the number of rows n in the dataset. Each of the

optimization steps takes O(d2) time per constraint and there are O(kd) constraints,

hence the time consumed scales as expected roughly as O(kd3). In our following

experiments with the real-world datasets, we stop the optimization after a time cut-off

of 10 s, even when convergence has not been achieved. For larger matrices the time

consumed by ICA becomes significant, scaling roughly as O(nd2).

3.2 British National Corpus data

The British National Corpus (BNC 2007) is one of the largest annotated text corpora

freely available in full-text format. The texts are annotated with information such as

author gender, age, and target audience, and all texts have been classified into genres
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Fig. 7 A use case with the BNC data. The data (solid black/red points) projected into the first two PCA

components for the whitened data (i.e., the most informative PCA projection with respect to the initial

background distribution) shown together with a sample from the background distribution (gray/pink circles),

with a gray/pink line connecting the data points with the corresponding sampled background points. The

selection of points in red appears to form a cluster different from the rest of the data (Color figure online)

(Lee 2001). As a high dimensional use case, we explore the high-level structure of the

corpus. For a preprocessing step, we compute the vector-space model (word counts)

using the first 2000 words from each text belonging to one the four main genres

in the corpus (‘prose fiction’, ‘transcribed conversations’, ‘broadsheet newspaper’,

‘academic prose’) as done in Lijffijt and Nevalainen (2017). After preprocessing, we

have word counts for 1335 texts and we use the 100 words with the highest counts as

the dimensions and the main genres as the class information.

The initially most informative PCA projection to the BNC data is shown in Fig. 7.

Here, in addition to data, a sample from the background distribution is shown by gray

circles, with a gray line connecting the data points with the corresponding sampled

background points. One should notice that the gray points and lines only provide a

proxy for the difference between the data and the background distribution, since in

reality the background distribution has a specified mean and covariance structure for

every point. Nonetheless, this should illustrate broadly the density structure of the

background distribution for the current projection, which we think is helpful to under-

stand why the current visualization may provide new insights about the differences of

the background distribution and the dataset.

Now, in the upper right corner, there is a group of points (red selection) that appears

to form a cluster. We further visualize the points in the sample from the background
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Table 3 Distribution of the class

labels (genres) for the selections

in the use case with the

exploration of the BNC data

Genre Selection

Figure 7 Figure 8a All

‘prose fiction’ 9 17 426

‘transcribed conversations’ 142 0 144

‘broadsheet newspaper’ 0 267 280

‘academic prose’ 0 484 485

All 151 768 1335

distribution corresponding to the data points in the red selection using pink color

(both for the circles and the connecting lines). The selected 151 points are mainly

texts from ‘transcribed conversations’ (Jaccard-index to class 0.94), see Table 3 for

the detailed distribution of genres in the selection. We also show in Fig. 7 in blue the

95% confidence ellipsoids for the distribution of the selection (solid blue ellipsoid)

and the respective background samples (dotted blue ellipsoid) to aid in figuring out if

the location of the selected points in the current projection differs substantially from

the expected location under the background distribution.3

Next, we added a cluster constraint for the selection of data points shown in red in

Fig. 7. We updated the the background distribution and whitened the data with respect

to the updated background distribution. Using the whitened data, we computed the

first two PCA components and obtained the projection shown in Fig. 8a. Here we

selected another set of points differing from the background distribution (the selection

in red in Fig. 8a). This set of points mainly contains ‘academic prose’ and ‘broadsheet

newspaper’ (Jaccard-indices 0.63 and 0.35). After adding a cluster constraint for this

selection, we updated the background distribution, whitened the data, and computed

the PCA projection for the whitened data, resulting in the projection shown in Fig. 8b.

Now, there is no apparent difference to the background distribution (reflected indeed

in low PCA scores), and we conclude that the identified ‘prose fiction’ class, together

with the combined cluster of ‘academic prose’ and ‘broadsheet newspaper’ explain

the data well with respect to variation in counts of the most frequent words. Notice that

we did not provide the class labels in advance, they were only used retrospectively.

Observe also that class labels are not necessary for gaining insights during the

exploration, although for brevity we base most our discussion and observations on

them. The location of clustered sets of points in the projection together with the weight

vectors for the projection axes directly provides further information. For example, an

inspection of the selection shown in Fig. 8a (mainly consisting of texts from classes

‘broadsheet newspaper’ and ‘academic prose’) shows that this selection has low values

along PCA1 axis, which implies that the selected points consist of texts with a high

frequency of the word ‘of’ and low frequencies of “n’t” (as in “don’t”) and ‘I’.

3 The 95% confidence regions are here a visual aid computed from the points shown in the projection.

The confidence ellipsoid could also be computed from the background distribution directly, but it is a

simplification as well since every data point may have unique mean and co-variance parameters.
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Fig. 8 The use case with the BNC data continues. a Selection of points for the second cluster constraint. The

view is the most informative PCA projection with respect to the updated background distribution obtained

after adding a cluster constraint for the points selected in Fig. 7. b After adding a further cluster constraint for

the selection in red in a and updating of the background distribution, there is no longer a striking difference

between the background distribution and the data in the most informative PCA projection (Color figure

online)

3.3 UCI image segmentation data

As a second use case, we have the Image Segmentation dataset from the UCI machine

learning repository (Dua and Graff 2019) with 2310 samples. The PCA projection

(Fig. 9a) shows that the background distribution has a much larger variance than the

data. Thus, we first added a 1-cluster constraint for the data (overall covariance) and

updated the background distribution. After this, in the most informative projection

(Fig. 9b) at least three sets of points quite clearly separated. The set of 330 points

selected in Fig. 9b contains solely points from the class ‘sky’, while the 315 points in

the lower left corner (selected in Fig. 9d) are from the class ‘grass’. The set of points

clustered in the middle (selected in Fig. 9c) are mainly from the classes ‘brickface’,

‘cement’, ‘foliage’, ‘path’, and ‘window’ (with Jaccard-index approx. 0.2 each). The

detailed distribution of class labels in the selections are provided in Table 4.

We next add a cluster constraint for each of the three selections, and show the data

and a sample from the updated background distribution in Fig. 9e. We can observe

that the background distribution now matches the data rather well with the exception

of some outliers. Then, we whiten the data and compute the most informative PCA

projection (Fig. 9f) which reveals that indeed there are outliers. For brevity, we did

not continue the analysis, but the data obviously contains a lot more structure that we

could explore in subsequent iterations. Furthermore, in many applications identifying

and studying the outlier points deviating from the three-cluster main structure of the

data could be interesting and useful.
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Fig. 9 A use case with the UCI image segmentation data. a Initially the scale of background distribution

significantly differs from that of the data. b After adding a 1-cluster constraint and performing an update

of the background distribution there is visible structure present in the most informative PCA projection.

The points selected for the first cluster constraint are shown in red. c, d The selections of points for the

second and third cluster constraint shown in red, respectively, in the same projection as b. e After these

three cluster constraints are added and the background distribution is updated accordingly, the data and the

background distribution are similar in this projection. f The most informative PCA projection for the data

whitened using the updated background distribution shows mainly outliers (Color figure online)
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Table 4 Distribution of the class

labels for the selections in the

use case with the exploration of

the UCI Image Segmentation

data

Class Selection

Figure 9b Figure 9c Figure 9d All

‘brickface’ 0 330 0 330

‘cement’ 0 330 0 330

‘foliage’ 0 330 0 330

‘grass’ 0 15 315 330

‘path’ 0 330 0 330

‘sky’ 330 0 0 330

‘window’ 0 329 0 330

All 330 1664 315 2310

3.4 Proof-of-concept system sideR

We implemented an interactive demonstrator system sideR (Puolamäki 2019) using

our R implementation and shiny (Chang et al. 2017). Our proof-of-concept system

runs in the web browser using R as a back-end.

The user interface of sideR is shown in Fig. 10. The main scatterplot (upper right

corner) shows the PCA (here) or ICA projection of the data to directions in which

the data and the background distribution differ the most. The tool uses the same

visualization as used in the scatterplots in Sect. 3, i.e., the data is shown by solid

black spheres and the currently selected subset of data points is shown by solid red

spheres. A sample from the background distribution is shown by gray circles, with

a gray line connecting the data points with the corresponding sampled background

points. We further show in the main scatterplot in blue the 95% confidence ellipsoids

for the distribution of the selection (solid blue ellipsoid) and the respective background

samples (dotted blue ellipsoid).

We also show a pairplot (lower right corner) directly displaying the attributes max-

imally different with respect to the current selection (red points) as compared to the

full dataset. In the left-hand panel, we show some statistics of the full data and of the

data points that have been selected.

The user can add data points to a selection by directly marking them using a brushing

operation, by using pre-defined classes that exist in the dataset, or by using previously

saved groupings. The user can create a 2-D or cluster constraint of the current selection

by clicking the appropriate button on the left-hand panel as well as recompute the

background distribution to match the current constraints and update the projections.

The user can also adjust convergence parameters which have by default been set so

that the maximal time taken to update the background distribution is ∼10 s which

is in practice typically more than enough. The interface has been designed so that

time-consuming operations (taking more than ∼2 s, i.e., updating the background

distribution or computing the ICA projection) are executed only by a direct command

by the user, which makes the system responsive and predictable.

The sideR tool can be readily used to reproduce the exploration interactively for

our use cases in Sects. 3.2 and 3.3. The visual user interface of sideR makes selec-
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Fig. 10 The full user interface of sideR. The data shown here is the British National Corpus data, see

Sect. 3.2 for details

tion of sets of data points and the addition of new constraints easy. Furthermore, the

implementation is fast enough to allow for comfortable interactive use for dataset sizes

typical for visual exploration.

4 Related work

This work is motivated by the ideas in Puolamäki et al. (2016) and Kang et al. (2016)

in which a similar system was constructed using constrained randomization. The con-

strained randomization approach (Hanhijärvi et al. 2009; Lijffijt et al. 2014) is similar

to the MaxEnt distribution used here, but it relies on sampling of the data and no direct

distribution assumptions are made. An advantage of the approach took here is that

it is faster—which is essential in interactive applications—and scales more easily to

larger data. Furthermore, here we have an explicit analytic form for the background

distribution unlike in Puolamäki et al. (2016), where the background distribution was

defined by a permutation operation.

The mathematical form of linear and quadratic constraints and efficient inference

of the background distribution has been developed by us in Lijffijt et al. (2018). The

presentation here is new and non-overlapping. The analytic form of the background

distribution allows us, in addition to speeding up the computations, to define interest-

ingness functions and the cluster constraint in a more natural manner. Here we also

introduce the whitening method that allows our approach to be used with standard and

robust projection pursuit methods such as PCA or ICA instead of the tailor-made line

search algorithm of Puolamäki et al. (2016). Furthermore, we provide a fluent open

source implementation written in R.
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The Maximum Entropy method has been proposed as a part of Formalizing Sub-

jective Interestingness (forsied) framework of data mining (De Bie 2011, 2013)

modeling the user’s knowledge by a background distribution. forsied has been stud-

ied in the context of dimensionality reduction and EDA (De Bie et al. 2016; Kang et al.

2018). Jaroszewicz and Simovici (2004) consider interestingness of frequent itemsets

using Bayesian networks as background knowledge. Their approach is limited to cat-

egorical data and updating background knowledge requires modifying directly the

Bayesian network. To the best of our knowledge, ours is the first instance in which

this background distribution can be updated by direct interaction of the user, thus

providing a principled method of EDA.

Several interactive dimensionality reduction methods have been proposed before,

e.g., iPCA (Jeong et al. 2009), InVis (Paurat and Gärtner 2013), supervised PCA

(Barshan et al. 2011), and guided locally linear embedding (Alipanahi and Ghodsi

2011). However, these methods aim to construct projections that obey the feedback,

i.e., the projections are constrained by the feedback, in order to find a specific view of

the data. The idea there is that the user and the system work together to construct a view.

In contrast, in the proposed method the user feedback is used to track what the user

has learned about the data in order to continuously provide new and complementary

information about the data, working under the premise that a single view cannot capture

all structure present in the data.

Many other special-purpose methods have been developed for active learning in

diverse settings, e.g., in classification and ranking, as well as explicit models for user

preferences. However, as these approaches are not targeted at data exploration, we do

not review them here. Finally, several special-purpose methods have been developed

for visual iterative data exploration in specific contexts, e.g., for itemset mining and

subgroup discovery (Boley et al. 2013; Dzyuba and van Leeuwen 2013; van Leeuwen

and Cardinaels 2015; Paurat et al. 2014), information retrieval (Ruotsalo et al. 2015),

and network analysis (Chau et al. 2011).

The system presented here can be also considered to be an instance of visually

controllable data mining (Puolamäki et al. 2010), where the objective is to implement

advanced data analysis methods understandable and efficiently controllable by the user.

Our approach satisfies the properties of a visually controllable data mining method,

see (Puolamäki et al. 2010, Sect. 2.2): (VC1) the data and model space are presented

visually, (VC2) there are intuitive visual interactions allowing the user to modify the

model space, and (VC3) the method is fast enough for visual interaction.

Dimensionality reduction for EDA has been studied for decades starting with mul-

tidimensional scaling (MDS) (Kruskal 1964; Torgerson 1952) and Projection Pursuit

(Friedman and Tukey 1974; Huber 1985). Recent research on this topic (referred to

as manifold learning) is still inspired by MDS: find a low-dimensional embedding of

points representing well the distances in the high-dimensional space. In contrast to

PCA (Pearson 1901), the idea is to preserve small distances, and large distances are

irrelevant, as long as they remain large, e.g., Locally Linear and (t-)Stochastic Neigh-

bor Embedding (Hinton and Roweis 2003; Roweis and Saul 2000; van der Maaten

and Hinton 2008). This is typically not possible to achieve perfectly, and a trade-

off between precision and recall arises (Venna et al. 2010). Recent works are mostly

spectral methods along this line.
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In our framework, the whitening transformation allows us to reduce the problem of

finding the most relevant direction in data with respect to the knowledge of the user

into the problem of finding the direction in which the whitened data differs from the

unit Gaussian distribution with zero mean. This allows us to use Projection Pursuit

methods instead of having to define our own algorithm for the search. Thus, in the

special case in which there is no prior knowledge about the data, our approach reduces

to PCA/ICA.

5 Conclusions

There have been many efforts in the analysis of multivariate data in different con-

texts. For example, there are several Projection Pursuit and manifold learning methods

using specific criteria to compress the data into a lower-dimensional—typically 2-

D—presentation, while preserving features of interest. The inherent drawback of

this approach is that the criteria for dimensionality reduction are defined typically

in advance and it may or may not fit the user’s need. It may be that a visualization

shows only features of the data already known to the user, or features that are irrelevant

for the task at hand.

The advantage of the dimensionality reduction methods is that the computer, unlike

the human user, has a “view” of all the data and it can select a view in a more fine-tuned

way and by using more complex criteria than a human could. A natural alternative

to static visualizations using pre-defined criteria is the addition of interaction. The

drawback of such interactions is, however, that they lack the sheer computational

power utilized by the dimensionality reduction methods.

Our method fills the gap between automated dimensionality reduction methods

and interactive systems. We propose to model the knowledge of a domain expert

by a probability distribution computed by using the Maximum Entropy criterion.

Furthermore, we propose powerful and yet intuitive interactions for the user to update

the background distribution. Our approach uses Projection Pursuit methods and shows

the directions in which the data and the background distribution differ the most. In

this way, we utilize the power of Projection Pursuit at the same the allowing the user

to adjust the criteria by which the computer chooses the directions to show her.

The current work presents a framework and a system for real-valued data and the

background distribution which is modeled by multivariate Gaussian distributions. The

same ideas could be generalized to other data types, such as categorical or ordinal

data values, or to higher-order statistics, likely in a straightforward manner, as the

mathematics of exponential family distribution would lead to similar derivations.

Our approach could also be extended to other interactions, especially in knowledge-

intensive tasks. Instead of designing interactions directly and explicitly we can think

that the “views of the data” (here mainly 2-D projections) and the interactions (here,

e.g., marking the constraints) could also in other contexts be modeled as operations

modifying the user’s “background model”. One of the main benefits of our approach

is that the user marks the patterns she observes and thus the background distribution is

always customized to the user’s understanding of the data, without a need for assump-

tions such as that high variance directions are interesting to everyone, as implicitly
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assumed when applying PCA for visualization. Furthermore, this approach cannot

show user features that do not exist because the user is shown linear projections of the

data.

The framework and the methodology proposed here are general and we anticipate

our approach and tool to be useful in practice in the exploration of real-valued mul-

tidimensional datasets in various domain. As a concrete example, our approach and

the sideR tool appear promising for gating in computational flow cytometry. Gating

is an analysis technique applied by biologists to flow cytometry data, where cells are

data points and each point is described by a few intensity readings corresponding to

emissions of different fluorescent dyes. The goal of gating is to extract clusters (gates)

based on fluorescence intensities of the cells so that the cell types of a given sample

can be differentiated. Initial experiments with up to tens of thousands of samples from

flow-cytometry (Saeys et al. 2016) have shown the computations in sideR to scale up

well and the projections to reveal structure in the data potentially interesting to the

application specialist.
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