
Abstract 

We present a system for interactively rendering large, unstruc-
tured grids. Our approach is to voxelize the grid into a 3D voxel 
octree, and then to render the data using hierarchical, 3D texture 
mapping. This approach leverages the current 3D texture mapping 
PC hardware for the problem of unstructured grid rendering. We 
specialize the 3D texture octree to the task of rendering unstruc-
tured grids through a novel pad and stencil algorithm, which 
distinguishes between data and non-data voxels. Both the voxeli-
zation and rendering processes efficiently manage large, out-of-
core datasets. The system manages cache usage in main memory 
and texture memory, as well as bandwidths among disk, main 
memory, and texture memory. It also manages rendering load to 
achieve interactivity at all times. It maximizes a quality metric for 
a desired level of interactivity. It has been applied to a number of 
large data and produces high quality images at interactive, user-
selectable frame rates using standard PC hardware.  

1 INTRODUCTION 
Direct volume rendering of 3D scalar and vector fields plays an 
important role in the fields of medicine and scientific visualiza-
tion. In these fields, 3D data is measured or computed at a large 
number of points in 3D space and then rendered to produce 
informative images. 

Interaction is an effective technique for guiding the production 
of these images, allowing a doctor or scientist to navigate to 
various regions of interest and adjust the transfer function used to 
map the data into colors. Unfortunately, due to the size of these 
3D datasets and the processing required to render them, interac-
tion has only been possible with relatively small data sets and not 
of the most general organization. 

In particular, regular rectilinear grids of volume elements, or 
voxels, are well-suited to acceleration by modern graphics hard-
ware. This hardware can take the form of a dedicated volume 
processor [Pfister et al. 1999] or a more generic 3D graphics 
accelerator [Cabral et al. 1994]. For data of the right form and 
size, these hardware make interaction possible. 

However, volume data comes in many sizes and forms. For 
example, data may be gathered along a warped grid, known as a 

structured grid, or it may be gathered at arbitrary points and 
connected topologically as an unstructured grid (also irregular 
grid or tetrahedral mesh). In addition, the data may be larger than 
the cache on a hardware accelerator or larger than the random 
access memory of the computer itself. 

We present an interactive system to display large 3D unstruc-
tured grids that builds upon recent advances in 3D-texture based 
volume rendering to devise a pipeline that scales well with 
increasing data size. Because a structured grid is a special case of 
an unstructured grid, our algorithms also apply to this class of 3D 
scalar fields, as well as to regular voxel data. In essence, our 
system brings rendering problems from the domain of unstruc-
tured grids into the domain of voxel grids, allowing for both faster 
rendering of these data than previous approaches and reasonably 
high quality images. The classic use of uniform resampling of 
such data typically results in an explosion of both data size and 
error. To mitigate these problems, we employ a 3D texture octree 
and develop specialized, out-of-core algorithms for resampling, 
filtering, and rendering the data. We specialize the octree to 
account for the distinction between data and non-data voxels, 
avoiding rendering artifacts that would otherwise occur. In 
addition, we develop a time-critical (frame-rate driven) algorithm 
for adapting our octree rendering to the current view. 

Given a set of non-overlapping tetrahedra with per-vertex data, 
the system adaptively creates an octree of voxel cells, with deeper 
leaf cells in regions of smaller tetrahedra (structured grids are first 
decomposed into tetrahedra). Each leaf node is resampled from 
the tetrahedron into a uniform voxel grid. We use a conservative 
metric to decide when a node may be uniformly sampled and 
hence produce satisfactory visualizations. Once the leaf cells have 
been determined, they are filtered to generate the lower resolution 
octree cells (given a large voxel grid as input, just this filtering is 
performed). 

The interactive visualization system is used to visualize this 
texture octree data, regardless of its original form. It maintains 
two levels of LRU cache of the octree cells, one in texture 
memory on the graphics hardware, and one in main memory, as 
well as the full data set on disk. Not only are the maximum cache 
sizes respected, but special care is paid to the bandwidth required 
to fill the cache by managing the number of data loads per frame. 
A user-specified frame rate is maintained by using performance 
feedback from previous frames and adjusting the workload for the 
current frame accordingly. Thus the user can visualize the data at 
rates of over 10 frames per second. 
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Figure 1: Radmri data set (1 million tetrahedra). Left: 9 texture bricks with standard slicing at 10 frames per second. Middle: 9 textures with ex-

tra planes rendered. Right: Refined to 98 textures with extra planes. 

 



Our system has a number of desirable properties: 

• Out-of-core operation: Both the octree creation and rendering 
algorithms are designed to operate on data much larger than 
core memory. 

• General class of 3D input: The algorithm handles general 
structured and unstructured grids as well as voxel data. Data and 
non-data are distinguished at sampling and rendering times 
using a novel pad and stencil algorithm. 

• Interactive performance: The system maintains a user-
specified frame rate in excess of 10 frames per second as well as 
allowing higher-quality refinement (as seen in Figure 1b-c). 

• Widely deployable: The system has been implemented on a 
relatively inexpensive Windows PC using an NVIDIA Geforce4 
accelerator. 

We have used our system to examine a number of scalar fields, 
ranging from 1,700 to 6,000,000 tetrahedra, generating from 7 
MB to 9 GB of voxel data. All these data sets may be explored at 
interactive rates of greater than 10 frames per second on a stan-
dard PC with OpenGL hardware supporting 3D texturing. This is 
significantly better than previous approaches to unstructured grid 
rendering in speed as well as in quality. We believe that the 
simplicity of our approach is its biggest asset. 

2 PREVIOUS WORK 
The field of volume rendering has been in existence for well over 
a decade [Drebin et al. 1988 , Levoy 1988 ]. The specific areas 
most closely related to the goals of this work are unstructured grid 
rendering and 3D texture level of detail. 

2.1 Unstructured Grid Rendering 
A number of approaches to direct volume rendering of unstruc-
tured grids have been applied, including ray casting [Garrity 
1990], large-scale parallel rendering [Kniss et al. 2001], and 
hardware-accelerated cell projection [Shirley and Tuchman 1990]. 
Cell projection techniques also require fast algorithms for sorting 
the tetrahedral elements from front-to-back for proper rendering 
and opacity accumulation [Farias et al. 2000]. The works most 
closely related to ours are those that put a premium on interactiv-
ity, using time-critical raycasting [Farias et al. 2000] or fast 
hierarchical splatting approaches [Meredith and Ma 2001].  

Compared to these recent works, our results exhibit faster frame 
rates and higher image quality during interaction due to the use of 
fast modern texture mapping hardware. Our main contribution in 
the area of unstructured grids is the algorithm for resampling the 
grid into an adaptive 3D texture octree. This out-of-core algorithm 
distinguishes between data voxels (those covered by the original 
grid) and non-data voxels (those outside the grid but within some 
octree cell) using a pad and stencil algorithm, padding the data 
boundary and marking the data voxels in a separate 3D stencil 
texture to allow for proper rendering. 

2.2 3D Texture Level of Detail Rendering 
3D texturing techniques, whereby a 3D texture is rendered on a 

stack of translucent polygons slicing through a volume, have 

recently become popular due to their effective use of texture 

mapping hardware and due to the abundance and cost-

effectiveness of this hardware [Cabral et al. 1994, Westermann 

and Ertl 1998, Rezk-Salama et al. 2000]. Recent works have built 

level-of-detail hierarchies from high resolution 3D textures 

[LaMar et al. 1999, Boada et al. 2001], elaborating on proper 

methods for correcting texture opacities to account for differing 

slice distances, bricking the textures to avoid artifacts on same-

level boundaries, and avoiding artifacts on inter-level boundaries 

[Weiler et al. 2000]. 

We build upon the texture octree data structure developed in 
[LaMar et al. 1999], specializing it to the task of storing resam-
pled unstructured grids. Because our octree is intentionally an 
incomplete, adaptive octree, we develop a modified filtering 
algorithm to maintain continuity of adjacent nodes at the same 
octree level. In addition, we include a padding algorithm to enable 
accurate rendering at the data/non-data boundary. Finally, our 
adaptation algorithm for choosing the octree nodes to be rendered 
for a given frame is geared to maximizing quality for a target 
frame rate, rather than maximizing the frame rate for a given 
quality. We respect bandwidth limitations, treating texture 
memory and main memory as a two-level cache for the full data 
set on disk. Our focus is on frame rate management, and we 
emphasize the creation of non-uniform-depth octrees from 
unstructured grids as an important class of input data. Our frame 
rate management techniques are inspired in part by those of Iris 
Performer [Rohlf and Helman 1994] and the Berkeley Soda Hall 
walkthrough [Funkhouser and Sequin 1993]. 

3 OVERVIEW 
Our approach to interactive volume rendering of unstructured 
grids involves an adaptive voxelization component, which occurs 
as a preprocess, and a volume level-of-detail component, which 
renders the voxel octree produced by the preprocess to provide 
visualization at interactive frame rates (see Figure 2). 
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Figure 2: Components of interactive visualization system. 

Adaptive voxelization occurs as a preprocess, whereas interac-

tive visualization occurs at real-time rates. 

3.1 Voxel Octree Structure 
The adaptive voxelization preprocess converts either a structured 
grid, unstructured grid (tetrahedral mesh), or regular voxel grid 
into a hierarchical 3D texture. For good scalability, we use a 
hierarchical arrangement of constant-resolution texture bricks. 
Our construction closely follows that of [LaMar et al. 1999, 
Boada et al. 2001]. (Note that this is somewhat different from that 
of [Weiler et al. 2000], which uses a uniform grid arrangement of 
multi-resolution bricks.)  As shown in Figure 3, each node of the 
octree contains a texture brick of fixed resolution (4x4 for the 2D 
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Figure 3: 2-level texture quadtree with 4x4 texture 

resolution in each node. 



figure). For a brick resolution r, the usable portion of the texture 
domain is from 1/(2r) to (2r-1)/(2r). Neighboring bricks have 1 
texel of overlap, shown as shaded regions in the figure. This 
provides for continuity of data from brick to brick (at the same 
level, at least). 

We specialize this octree structure of [LaMar et al. 1999] to our 
application domain by distinguishing between data and non-data 
voxels. Given an unstructured grid, the data must typically be 
filled out with some artificial filler to create a valid, rectangular 
3D texture. A simple solution is to fill this space with zero-scalar 
data. However, with this naïve approach, there exists a discontinu-
ity between the real data and the artificial. When using linear 
interpolation, this discontinuity displays itself as a striping along 
the boundary of the model. We remove this artifact through a two-
step pad and stencil algorithm.  First, the discontinuity is ex-
tended outward from the real data one texel during resampling by 
replicating the boundary data as described in Section 4.5.  Sec-
ond, during rendering we use a 3D stencil test to clip the repli-
cated data. Thus, the replicated data is never rendered, but it is 
used when linearly interpolating pixels near the original bounda-
ries. This is illustrated in Figure 4. An extreme example of this 
striping artifact and its correction on the Blunt fin model are 
shown in Figure 5. 

The final data associated with a brick includes a scalar field / 
gradient texture and a stencil texture. 

3.2 Processing Components 
The first stage of this preprocess converts a structured grid into a 
set of tetrahedra (this stage can be skipped if the original input is 
already in tetrahedral form). The second stage uses a top-down 
approach to construct an octree to partition the model space. Each 
octree node is subdivided until an error threshold is reached for 
the subsequent resampling process. In the third stage, the tetrahe-
dra within each leaf node’s spatial cell are resampled into a 
regular grid of voxels. In the final stage, the leaf node voxels are 
filtered to produce the voxel grids for the all the interior tree 
nodes. This process results in a number of voxelized cells, using 
higher resolution where it is most needed to preserve the original 
data. 

The volume level-of-detail rendering process allows the user to 
interactively choose a desired frame rate and other visualization 
parameters, such as the transfer function (mapping data to RGBA 
color), view position, etc. Given these user-specified parameters 
and the system parameters, such as RAM, texture memory size, 
bandwidths, polygon and fill performance, etc., this visualization 
process maximizes a measure of image quality within the user and 
system constraints. The adapt/load stage modifies the set of 
rendered cells from last frame to adapt it to this frame’s new 
viewing parameters, splitting some cells while merging others to 
maximize quality. Some cells require reloading from RAM to 

texture memory, and others may first require loading from disk to 
RAM. The cull/render phase then traverses the octree from the 
root, performing a hierarchical cull and rendering the flagged 
nodes to the screen using 3D texture mapping and blending in 
back-to-front order. 

We next discuss each of these components in more detail be-
fore examining the results of our system applied to a number of 
models. 

4 ADAPTIVE VOXELIZATION 
Voxelization algorithms have been applied to unstructured grids 
to produce a single-resolution voxel grid [Kaufman and Shimony 
1986, Prakash and Manohar 1995]. Such a uniform grid typically 
undersamples as well as oversamples large portions of the vol-
ume. Instead, the voxel data organization in our work is an 
adaptive octree, similar to [Boada et al. 2001], employing the 
alignment strategy of [LaMar et al. 1999]. Our algorithm creates 
these multi-resolution voxels directly from the grid, however. It 
works on data much larger than could fit the main memory and 
uses less than 5 MB of RAM for the data sets we have tried so far. 
This octree partitions the space of the model, sampling local 
subspaces at appropriate resolutions. The adaptive voxelization 
algorithm is composed of several steps (see Figure 2) described 
next. 

4.1 Tetrahedralization 
If the input to our system is a structured grid, we begin by tetra-
hedralizing it. Structured grids with convex, linear elements are 
easily tetrahedralized by slicing off tetrahedra from the corners 
until only one tetrahedron remains (aka “ear slicing”). For the 
hexahedral grids of many of our test models, we apply the same 
tetrahedral decomposition template to each cell, breaking each 
cell into 5 tetrahedra. (In our current implementation, we limit the 
input to convex grid-cells. Algorithms to tessellate concave cells 
into tetrahedra exist [Ruppert and Seidel 1992], as well.) 

In order to facilitate linear file I/O, the tetrahedra are written to 
a flat, unindexed tetrahedron file. In the octree construction that 
follows, such files are created for each octree node, specifying the 
dimensions of the octree node and an appropriate subset of the 
tetrahedra. Each tetrahedron comprises four vertices, each with 
three 32-bit floating point coordinates and one 16-bit scalar field 
value, for a total of 56 bytes per tetrahedron. 

4.2 Octree Construction 
The voxel octree nodes are built top-down, recursively. The 
procedure is shown in Figure 6. At the termination of each 
recursion, it samples the current leaf node into a voxel grid. The 
termination criteria are scalar-field homogeneity and tetrahedra 
size for the current node. The processing occurs in an out-of-core 
fashion: each tetrahedron is inspected independently and is 
discarded after it has been processed.  Our current implementation 
imposes a constant voxel resolution per octree node. 

In the current system, each tetrahedron vertex whose scalar 
field neighborhood varies more than a user-specified threshold 
lands in its own voxel and is thus sampled at least once. The 
scalar field error threshold provides a bound on the maximum 

 
Figure 4: Padding and stenciling to remove non-data voxels. 

  
Figure 5: Blunt fin model without then with padding and sten-

ciling. 



resampling error during voxelization. In the extreme, a threshold 
of zero-error may be specified ensuring that no two tetrahedron 
vertices lie in the same voxel. To make this geometrical constraint 
feasible in practice, we exclude degenerate (nearly flat) tetrahedra 
from this computation. 

An important component of this phase is the tetrahedron-cell 
overlap test. We extend the separating axis theorem [Gottschalk et 
al. 1996] to tetrahedra for this. For our case of intersecting a box 
(cell) with a tetrahedron, testing 25 particular axes are sufficient 
to prove whether or not the volumes overlap. The 25 axes consist 
of 3 axes orthogonal to the faces of the cell, 4 axes orthogonal to 
the faces of the tetrahedron, and the cross product axes of both 
objects’ edges (3 for the cell times 6 for the tetrahedron yields 18 
more axes). We can exit early from this set of tests, making them 
quite fast in practice. 

4.3 Node Sampling 
Once a node terminates the recursion and chooses to be a leaf 
node, it samples its tetrahedra at a uniform resolution. The 
sampling algorithm used is a voxel-order algorithm. This ordering 
implies that all the tetrahedra for this node should be loaded into 
memory at once. In practice, this is not a problem as there are 
generally many more voxels than tetrahedron vertices at the leaf 
nodes. 

A voxel is sampled by first finding which tetrahedron contains 
it and then interpolating the tetrahedron’s scalar field values 
according to the voxel location. Our approach does not need any 
topological connectivity information among the tetrahedra. The 
tetrahedra are bucketed into a coarse uniform grid (using the 
intersection test described in Section 4.2). We maintain a one-
tetrahedron cache of the most recently used tetrahedron to take 
advantage of voxel-to-voxel coherence. When this tetrahedron 
fails a voxel test, the uniform grid is used to accelerate the 
selection of the next tetrahedron. The combination of coherence 
and spatial locality makes the testing fast overall. 

The point-in-tetrahedron test is performed using the barycentric 
coordinates of the voxel’s sample point with respect to the 
tetrahedron. If the coordinates sum to less than 1, the point is 
contained. Conveniently, these barycentric coordinates are then 
used to perform the interpolation. The computation of the coordi-

nates is accelerated by caching the basis conversion matrix (from 
Euclidean to barycentric coordinates) for each tetrahedron in the 
node once before node sampling. Although we have chosen to 
implement a CPU based algorithm for its simplicity and precision, 
we should note that efficient hardware-accelerated voxelization 
algorithms exist [Westermann 2000, Weiler and Ertl 2001]. For 
applications where voxelization speed is an important concern, 
such faster voxelization algorithms may be employed at this stage 
of our preprocessing pipeline. 

4.4 Node Filtering 
The next stage of building the voxel octree is voxel filtering to 
create parent nodes. Two separate filtering stages are used.  First, 
child nodes are merged into parent nodes.  A 3x3 box filter is 
employed for this.  (Other filters, such as a Gaussian filter, may 
also be used during this process.)  Second, gradients are computed 
at all nodes.  The central difference method is used to compute 
gradients and is replaced by a forward or backward difference at 
the volume boundaries.  Both filtering stages execute in a bottom-
up level by level fashion (see pseudo-code in Figure 7). 

To avoid discontinuities between neighboring cells and to 
maintain overlapping borders, we include the neighboring nodes’ 
data for each node during processing.  During the merging stage, 
we load the 7 nodes adjacent to each child node into memory and 
then perform a merge along the common border.  This is depicted 
in Figure 8a, where the three nodes adjacent to child a are loaded 
and the common border is drawn in red (a quadtree is used to 
facilitate presentation).  Likewise, during the gradient filtering 
stage, the cell’s 26 neighbors are loaded into memory to accu-
rately calculate the gradient along the border.  These filtering 
procedures correspond to the largest amount of in-core memory 
used during the voxelization (128K * 27 nodes).  During this 
filtering, we are only concerned with neighbors that exist on the 
same level in the octree; discontinuities between neighboring cells 
of different levels must be corrected during rendering (see Section 
5.4). If at any time, a neighbor does not exist on the same level in 
the octree, a special node containing null data is loaded. 

Finally, special care is required because of our adaptive, sparse 
octree with overlapping borders.  During the child-merging stage, 
it is possible that only a portion of a node’s octants subdivides 
thus creating discontinuity between node levels.  Since neighbor 
information is only maintained on a per-level basis, this could 
introduce discontinuities at these internal borders. In Figure 8b, 
we show an example of such a case (in 2D). When this node’s 
child d merges its children, its top and left borders will be incor-
rect because d’s children da, db, and dc do not have neighbors at 
their depth.  If we naively merge a,b,c and d, this incorrect data 
would be averaged into the resultant parent causing discontinui-
ties at its internal child boundaries. Thus, when d merges its 

 Process( Node N, Tetrahedra File FN ) 

  read N’s spatial extent 

  create 8 children, C 

  foreach child Ci 

   create file FC
i
  

   write Ci’s spatial extent to FC
i
 

  N.Recursion ← FALSE 

  foreach tetrahedron T in FN 

   foreach child Ci 

   if Intersect(Ci, T) = TRUE 

    write T to FC
i
 

   if T.NeededResolution > Resolution 

    N.Recursion ← TRUE 

  if N.Recursion = FALSE 

   delete 8 Cis and FC
i
s 

   Voxel grid VN ← Sample(N, FN) 
  else 

   delete FN 

   foreach child Ci 

    VC
i
 ← Process(Ci, FC

i
) 

  return VN 

Figure 6: Pseudo-code for the adaptive octree construction 

procedure. 

 Filter( Node N , FilterStage S) 
   create data buffers, B and O  

   if ( S = MERGE_CHILDREN ) 

   read N’s 8 children into B 

    foreach child Ci  

     read Ci’s adjacent nodes into B 

   create box filter kernel, K 

   else // S = COMPUTE_GRADIENT 

    read N and N’s neighbors into B 

    create gradient filter kernel, K 

   convolve B by K into O 

   perform normalization on O 

   write O into N->output_filename 

   free temporary data, B and O  

Figure 7: Pseudo-code for the node filtering with overlapping 

borders. 



children, we test for this special case and fix the discontinuity by 
copying the border from b and c into d. 

             
Figure 8: (a) Ensuring border continuity during the child-

merge stage. (b) Internal border discontinuity fixing between 

cells of different levels during the child merge stage. (2D is 

shown for simplicity.) 

4.5 Padding and Stencil Texture 
To prepare the octree cells for fixing the striping artifact as 
discussed in Section 3.1, two further processing stages are 
included in the voxelization pipeline.  The first stage creates a 
stencil, or binary, texture for each cell.  This texture stores one-
bit-per-voxel that is 0 for null data and 1 for any other data.  The 
next stage pads the embedded volume by one voxel.  Along the 
boundary of the volume in the octree between data and null data, 
we grow the texture by averaging neighboring non-null voxels. 

5 VOLUME LOD RENDERING 
Using the level-of-detail hierarchy described by the voxel octree, 
our visualization system is designed to maximize quality for a 
user-specified frame rate. In addition, it can be quickly re-tasked 
to produce the best image possible at a reasonable frame rate (as 
defined by rendering all the textures that will fit in memory). This 
gives the user considerable freedom to explore the data set and 
examine high-quality images of localized portions of the data. For 
example, Figure 1 starts with a highly interactive visualization (a) 
which can be quickly refined by adding additional slices (b). 
Given more time, subdivision can occur to its fullest extent, 
allowing the third rendering (c). 

We next describe the two phases of the level-of-detail rendering 
system – the adapt/load phase and the cull/render phase. 

5.1 Adapt / Load 
The adapt/load phase is responsible for determining which set of 
octree cells should be rendered for the current frame and for 
loading any non-resident textures to texture memory either from 
local RAM or from external memory (hard disk, in our case). 

A list of nodes known as the active cut, as shown in Figure 9, is 
maintained from frame to frame. The active cut is a set of nodes 
whose cells cover the model space in its entirety exactly once. 
This notion of cut is very similar to those used in view-dependent, 
continuous level of detail for polygonal models [Xia and Varsh-
ney 1996, Duchaineau et al. 1997, Hoppe 1997, Luebke and 
Erikson 1997]. The cut is maintained by performing a series of 
merges and splits each frame to produce the best possible quality 
according to some error metric without going over the budgeted 
frame time. Note that the number of nodes rendered from the 
active cut (due to fill rate), and the number of merges and splits 
(which may require texture loads from RAM or disk) all influence 
the frame time. Hence, not only must we manage the number of 
nodes on the cut but also restrict the amount of cut-adaptation that 
may be performed in a single frame. 

In addition to flagging nodes to indicate if they are on the cut, 
our visualization system constructs two priority queues each 
frame – the merge queue and the split queue. The merge queue 
contains the parents of all nodes on the active cut, sorted in order 

of increasing error. The split queue contains all non-leaf nodes on 
the active cut, sorted in order of decreasing error.  

To decrease the overall error, the first split from the split queue 
is performed by: placing the splitting node on the merge queue 
and marking it inactive, then placing its children on the split 
queue and flagging them as active.  

To increase the overall error (and thus the frame rate): the first 
node is removed from the merge queue, and placed on the split 
queue, marking it active; then the node’s parent is placed on the 
merge queue and its children are removed from the split queue 
and marked inactive. 

 
Figure 9: A cut through the tree defines 5 active nodes (only a 

binary tree is shown for simplicity). 

The number of splits and merges performed in a given frame 
are bounded according to the machine’s bandwidths from disk to 
RAM and from RAM to texture memory. Texture caches are 
maintained in both main memory and texture memory according 
to a least recently used policy, and thus splits or merges which 
cause cache misses are more expensive than those which are 
already cached. 

 
Figure 10: Oxygen post model (513,375 tetrahedra) showing 

view-dependent refinement 

In addition to being limited by bandwidth restrictions, splits are 
restricted according to the total texture memory size (because they 
increase texture memory usage) and the desired frame rate 
(because they increase the number of rendered nodes). If one of 
these limits is reached, then a split may only be performed after 
forcing another node to merge. This is only allowed when the 
merge followed by the split would reduce the overall error (i.e. the 
merge node’s error is less than the split node’s error). In practice, 
a split operation may be performed over multiple frames because 
it can involve loading several texture nodes from RAM or disk. 

Since a split may not complete in a single frame, it is possible 
that the node in the process of being split is no longer the best 
candidate for splitting. If a node other than the currently splitting 
node is more appropriate to split (because of a higher error), 
progress on the current node is stalled and the new node begins 
splitting immediately. 

The error metric used to determine priorities of merges and 
splits is the maximum screen space size of a node’s texels in pixel 
units. Ideally, every texel rendered would fill a single pixel – all 
renderable data would be rasterized, and no extra texture data 
would be used.  As the pixels per texel within a node increases for 
a non-leaf node, visual quality quickly decreases, deviating from 
what it could be at a deeper node.  The adapt / load phase is 



responsible for maintaining all texel sizes at as close to a single 
pixel as possible, while not allowing the frame rate to fall below 
the current target frame rate. 

Figure 10 shows the Oxygen Post model with the active cut  
created for the depicted viewing frustum. The red cells are leaf 
nodes and thus at sufficient resolution to represent the original 
data. The green nodes are non-leaf nodes with projected texel 
sizes of less than a pixel, and yellow nodes are non-leaf nodes 
with larger projected texel sizes. Yellow nodes will refine if the 
budget allows. Note that deeper refinement occurs closest to the 
viewpoint. 

5.2 Cull / Render 
The cull/render phase is performed hierarchically using an octree 
traversal, starting from the root node. When a node is visited, it is 
culled according to the viewing frustum and the transfer function. 
If the node is entirely outside the viewing frustum or if its range 
of scalar field values lies entirely in a range of the transfer 
function with zero opacity, the node is culled. Culled nodes are 
set to zero error and placed on the merge queue so their children 
may be merged upwards next frame. Even if a culled node is not 
rendered in a given frame, its texture is not swapped out until it is 
actually merged into its parent. In other words, the cut indeed 
covers all of the model space. This ensures that in any given 
frame, we are able to quickly render each portion of the model at 
some resolution and with any transfer function, even if that 
portion was culled in the previous frame. If the current node of 
this octree traversal is flagged as being on the cut and not culled, 
it is rendered. If the node is not on the cut, then its children are 
visited in back-to-front order. 

Our system renders each node’s voxel data using 3D texture 
mapping with viewport-aligned planes [Westermann and Ertl 
1998]. Although it is possible to choose a different normal for 
each node’s stack of planes, coarsely approximating the use of 
spherical shells [LaMar et al. 1999], we have found that using the 
same plane alignment for all cells works reasonably well for 
moderate fields of view. We choose the planes such that the inter-
plane distance is equal to the distance between axis-aligned slices. 
Using this approach, we only need to compute a single set of 
geometry and texture coordinates for the planes used to render a 
node for a particular frame. We can use exactly the same primi-
tives for all nodes just by changing the model transformation 
matrix. 

We apply a user-specified transfer function dynamically. The 
transfer function is stored as a dependent texture, which is a 
lookup table stored on the graphics accelerator. Because the 
function is applied for every texture lookup, the user can interac-
tively change the transfer function by simply updating the lookup 
table. 

The use of different plane spacings at different octree levels can 
cause opacity imbalance artifacts. This imbalance is corrected by 
applying a correction factor to the opacity which depends on the 
inter-plane distance, as described in [LaMar et al. 1999, Weiler et 

al. 2000]. We store several versions of the transfer function 
lookup table on the graphics accelerator for use with different 
inter-plane distances (distances which are powers of two multiples 
of some smallest distance are supported). Each node then uses the 
appropriate lookup table depending on its plane spacing for the 
current frame. 

Figure 11(a-c) shows the Cylinder model both without, and 
with, transparency culling.  The number of nodes displayed is 
greatly reduced, increasing rendering speed, and allowing for 
further refinement of the model. Figure 11d shows the DC Plate.  
Several nodes at the center of the model are culled within the 
viewing frustum due to transparency culling.   

5.3 Fragment Program 
We shade the rendered slice polygons using a custom fragment 
program on an NVIDIA GeForce4 graphics accelerator. The 
fragment program applies the current transfer function to the 
scalar field data, performs two-sided diffuse and specular illumi-
nation of the data according to its gradient, and applies a 3D 
stencil test to clip non-data voxels from the resulting image. 

Our fragment program uses three textures for each primitive: 

 Texture0 3D Stencil Texture 

 Texture1 3D Gradient <x, y, z>,  Scalar Value 

 Texture2 2D Transfer Function (dependent texture) 

The stencil texture uses nearest neighbor interpolation, whereas 
the others use linear interpolation. We use two fragment registers 
to store our constants. The RGB of constant color 0 and 1 are the 
scaled-and-biased light and view directions respectively. The 
alpha values are used for two illumination coefficients. The first is 
the ambient coefficient; the second is the diffuse (as well as being 
one minus the specular) coefficient. The lighting equation is: 

FinalRGB  = (Ids * Cd) + ((1-Ids) * Is
32) + Ia 

FinalAlpha = (stencil == valid) ? Alpha : 0 

where, 

 Ids = diffuse_and_specular_coefficient 

 Cd = ( transfer_fnrgb x  max (V •  L, -V •  L) ) 

 Is = max (V •  H, -V •  H)32 

 Ia = ( ambient_coefficient ) 

 Alpha = transfer_fnalpha 

 
Figure 12: Lit view of the oxygen post. 

       
Figure 11: (a) Cylinder data set (615,000 tetrahedra)  (b) all nodes in the view frustum (235 nodes) (c) nodes remaining after transparency 

culling (80 nodes)  (d) DC plate with transparency culling (note culling at the center) 



5.4 Other Quality Issues 
Several types of rendering artifacts are possible in a hierarchical 
3D texture-based volume rendering system. These include 
interslice shearing gaps, texture discontinuities, and mathematical 
imprecision. 

Interslice shearing gaps can occur due to the distance between 
the rendered planes and the non-optimal orientation (i.e. true 
concentric spheres would not suffer from this artifact). These 
shearing gaps may be reduced to a pixel or less in size by increas-
ing the number of planes (thus reducing the interplane distance) as 
a node approaches the viewer. Unfortunately, this can severely 
degrade performance by dramatically increasing the number of 
textured fragments rendered. When the target frame rate mode is 
disabled (either manually or due to a pause in navigation), we 
reduce the shearing gap sizes by rendering more planes. This 
effect can also be reduced by pre-integrating the transfer function 
and rendering the data as thick slabs rather than thin slices [Engel 
et al. 2001]. This can be incorporated into our fragment program 
on hardware with 5 or more texture units. 

Texture discontinuities occur when adjacent rendered cells are 
at different octree levels. Several techniques have been proposed 
to reduce or eliminate these discontinuities. For example, one can 
load pre-filtered transition textures into the borders of the 3D 
textures on an as-needed basis depending on which neighbors 
appear in a given frame [LaMar et al. 1999]. 

Finally, all 3D texture-based volume rendering that we are 
aware of is subject to some precision problems, which generally 
grow worse with increasing numbers of planes (and thus increas-
ing compositing operations) per pixel. This problem should be 
solved by the next generation of hardware, which promises 32-bit 
floating point precision throughout the graphics pipeline. 

6 RESULTS 
We have implemented our system on a Windows 2000 PC with a 
1.2 GHz AMD Athlon processor and NVIDIA GeForce4 graphics 
accelerator with 128 MB of Video RAM. In practice, we can use 
as much as 120 MB of the VRAM as texture memory. To make 
loading texture data from disk to texture memory feasible within a 
small portion of a frame time, we choose to sample all our cells at 
323 resolution, thus we can fit a maximum of 930 cells in the 
texture memory cache at once.  

Some statistics about the adaptive voxelization of our test mod-
els are shown in Figure 13. Most of these models originated as 
structured grids. and were tetrahedralized using 5 tetrahedra per 
grid cell. 

In Figure 14, we show a graph that characterizes the relation of 
the scalar field homogeneity and geometric complexity for each of 
the large models.  If we see an early fall-off, like we do for the 
post model, then it can be inferred that the underlying grid used to 
simulate the data had many locations where it over-sampled the 
data. Likewise, if we see a late fall-off, like for the delta model, 
we can infer that the grid used better sampled the high density 
portion of the data. 

Model # Tets Avg/Max 

Depth 

# Nodes Size  

(MB) 

DC Plate 1,745 2.8/3 51 6.9 

Blunt Fin 187,223 8.22/10 22,208 3,002 

Oxygen Post 513,375 9.03/11 65,324 8,830 

Cylinder 615,195 7.94/9 10,608 1,434 

Delta Wing 664,668 9.26/14 13,703 1,852 

Radmri 6,011,200 4/4 489 66 

Figure 13: Test model statistics after adaptive voxelization. 

Results shown are for 0% scalar field error threshold. 
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Figure 14: Graph showing the relative reduction in output oc-

tree size with varying scalar field error thresholds. 

Figure 15 shows data recorded along a path exploring the Blunt 
Fin model, visualized in a 640x480 resolution window. This was 
run without register combiners on a GeForce3.  In the first graph, 
we see the path with the target frame rate at 10 frames per second. 
Notice that for some periods the frame rate is well above that 
budget. The reason for this is clear on examining the second 
graph, which shows that the maximum error is usually less than 
one pixel per texel during those periods, thus no refinement is 
necessary. Notice as well that as the frame rate increases around 
frame 380, the system responds by adding more cells until the 
quality improves to less than one pixel per texel. 

7 CONCLUSIONS AND FUTURE WORK 
We have demonstrated an interactive volume rendering system 
capable of exploring scalar fields in the form of unstructured grids 
as well as structured grids and uniform voxel grids. Our system 
maintains a user-specified frame rate while maximizing quality (as 
well as transitioning quickly to a higher refinement mode). It 
improves the state of the art in unstructured grid rendering in 
terms of quality and speed on a low cost PC platform. Although 
we have not yet implemented a quantitative image quality metric, 
the accompanying video allows us to make a visual claim of 
quality. 

As future work, we would like to employ more system timing 
parameters such as fill rates to schedule the frames more proac-
tively, reducing our reliance on a feedback mechanism. Also, we 
would like to explore the use of 3D texture mapping in the 
domain of time-varying data, which may require much more 
accurate management to deal with the rapidly changing informa-
tion. 
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Figure 15: Data from an exploration path around the Blunt Fin. 
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