
Abstract

We present a system for interactively rendering large, unstruc-
tured grids. Our approach is to voxelize the grid into a 3D voxel
octree, and then to render the data using hierarchical, 3D texture
mapping. This approach leverages the current 3D texture mapping
PC hardware for the problem of unstructured grid rendering. We
specialize the 3D texture octree to the task of rendering unstruc-
tured grids through a novel pad and stencil algorithm, which
distinguishes between data and non-data voxels. Both the voxeli-
zation and rendering processes efficiently manage large, out-of-
core datasets. The system manages cache usage in main memory
and texture memory, as well as bandwidths among disk, main
memory, and texture memory. It also manages rendering load to
achieve interactivity at all times. It maximizes a quality metric for
a desired level of interactivity. It has been applied to a number of
large data and produces high quality images at interactive, user-
selectable frame rates using standard PC hardware.

1 INTRODUCTION
Direct volume rendering of 3D scalar and vector fields plays an
important role in the fields of medicine and scientific visualiza-
tion. In these fields, 3D data is measured or computed at a large
number of points in 3D space and then rendered to produce
informative images.

Interaction is an effective technique for guiding the production
of these images, allowing a doctor or scientist to navigate to
various regions of interest and adjust the transfer function used to
map the data into colors. Unfortunately, due to the size of these
3D datasets and the processing required to render them, interac-
tion has only been possible with relatively small data sets and not
of the most general organization.

In particular, regular rectilinear grids of volume elements, or
voxels, are well-suited to acceleration by modern graphics hard-
ware. This hardware can take the form of a dedicated volume
processor [Pfister et al. 1999] or a more generic 3D graphics
accelerator [Cabral et al. 1994]. For data of the right form and
size, these hardware make interaction possible.

However, volume data comes in many sizes and forms. For
example, data may be gathered along a warped grid, known as a

structured grid, or it may be gathered at arbitrary points and
connected topologically as an unstructured grid (also irregular
grid or tetrahedral mesh). In addition, the data may be larger than
the cache on a hardware accelerator or larger than the random
access memory of the computer itself.

We present an interactive system to display large 3D unstruc-
tured grids that builds upon recent advances in 3D-texture based
volume rendering to devise a pipeline that scales well with
increasing data size. Because a structured grid is a special case of
an unstructured grid, our algorithms also apply to this class of 3D
scalar fields, as well as to regular voxel data. In essence, our
system brings rendering problems from the domain of unstruc-
tured grids into the domain of voxel grids, allowing for both faster
rendering of these data than previous approaches and reasonably
high quality images. The classic use of uniform resampling of
such data typically results in an explosion of both data size and
error. To mitigate these problems, we employ a 3D texture octree
and develop specialized, out-of-core algorithms for resampling,
filtering, and rendering the data. We specialize the octree to
account for the distinction between data and non-data voxels,
avoiding rendering artifacts that would otherwise occur. In
addition, we develop a time-critical (frame-rate driven) algorithm
for adapting our octree rendering to the current view.

Given a set of non-overlapping tetrahedra with per-vertex data,
the system adaptively creates an octree of voxel cells, with deeper
leaf cells in regions of smaller tetrahedra (structured grids are first
decomposed into tetrahedra). Each leaf node is resampled from
the tetrahedron into a uniform voxel grid. We use a conservative
metric to decide when a node may be uniformly sampled and
hence produce satisfactory visualizations. Once the leaf cells have
been determined, they are filtered to generate the lower resolution
octree cells (given a large voxel grid as input, just this filtering is
performed).

The interactive visualization system is used to visualize this
texture octree data, regardless of its original form. It maintains
two levels of LRU cache of the octree cells, one in texture
memory on the graphics hardware, and one in main memory, as
well as the full data set on disk. Not only are the maximum cache
sizes respected, but special care is paid to the bandwidth required
to fill the cache by managing the number of data loads per frame.
A user-specified frame rate is maintained by using performance
feedback from previous frames and adjusting the workload for the
current frame accordingly. Thus the user can visualize the data at
rates of over 10 frames per second.

Interactive Visualization of Unstructured Grids
Using Hierarchical 3D Textures

Joshua Leven Jason Corso

Jonathan Cohen Subodh Kumar

The Johns Hopkins University

Figure 1: Radmri data set (1 million tetrahedra). Left: 9 texture bricks with standard slicing at 10 frames per second. Middle: 9 textures with ex-

tra planes rendered. Right: Refined to 98 textures with extra planes.

Our system has a number of desirable properties:

• Out-of-core operation: Both the octree creation and rendering
algorithms are designed to operate on data much larger than
core memory.

• General class of 3D input: The algorithm handles general
structured and unstructured grids as well as voxel data. Data and
non-data are distinguished at sampling and rendering times
using a novel pad and stencil algorithm.

• Interactive performance: The system maintains a user-
specified frame rate in excess of 10 frames per second as well as
allowing higher-quality refinement (as seen in Figure 1b-c).

• Widely deployable: The system has been implemented on a
relatively inexpensive Windows PC using an NVIDIA Geforce4
accelerator.

We have used our system to examine a number of scalar fields,
ranging from 1,700 to 6,000,000 tetrahedra, generating from 7
MB to 9 GB of voxel data. All these data sets may be explored at
interactive rates of greater than 10 frames per second on a stan-
dard PC with OpenGL hardware supporting 3D texturing. This is
significantly better than previous approaches to unstructured grid
rendering in speed as well as in quality. We believe that the
simplicity of our approach is its biggest asset.

2 PREVIOUS WORK
The field of volume rendering has been in existence for well over
a decade [Drebin et al. 1988 , Levoy 1988]. The specific areas
most closely related to the goals of this work are unstructured grid
rendering and 3D texture level of detail.

2.1 Unstructured Grid Rendering
A number of approaches to direct volume rendering of unstruc-
tured grids have been applied, including ray casting [Garrity
1990], large-scale parallel rendering [Kniss et al. 2001], and
hardware-accelerated cell projection [Shirley and Tuchman 1990].
Cell projection techniques also require fast algorithms for sorting
the tetrahedral elements from front-to-back for proper rendering
and opacity accumulation [Farias et al. 2000]. The works most
closely related to ours are those that put a premium on interactiv-
ity, using time-critical raycasting [Farias et al. 2000] or fast
hierarchical splatting approaches [Meredith and Ma 2001].

Compared to these recent works, our results exhibit faster frame
rates and higher image quality during interaction due to the use of
fast modern texture mapping hardware. Our main contribution in
the area of unstructured grids is the algorithm for resampling the
grid into an adaptive 3D texture octree. This out-of-core algorithm
distinguishes between data voxels (those covered by the original
grid) and non-data voxels (those outside the grid but within some
octree cell) using a pad and stencil algorithm, padding the data
boundary and marking the data voxels in a separate 3D stencil
texture to allow for proper rendering.

2.2 3D Texture Level of Detail Rendering
3D texturing techniques, whereby a 3D texture is rendered on a

stack of translucent polygons slicing through a volume, have

recently become popular due to their effective use of texture

mapping hardware and due to the abundance and cost-

effectiveness of this hardware [Cabral et al. 1994, Westermann

and Ertl 1998, Rezk-Salama et al. 2000]. Recent works have built

level-of-detail hierarchies from high resolution 3D textures

[LaMar et al. 1999, Boada et al. 2001], elaborating on proper

methods for correcting texture opacities to account for differing

slice distances, bricking the textures to avoid artifacts on same-

level boundaries, and avoiding artifacts on inter-level boundaries

[Weiler et al. 2000].

We build upon the texture octree data structure developed in
[LaMar et al. 1999], specializing it to the task of storing resam-
pled unstructured grids. Because our octree is intentionally an
incomplete, adaptive octree, we develop a modified filtering
algorithm to maintain continuity of adjacent nodes at the same
octree level. In addition, we include a padding algorithm to enable
accurate rendering at the data/non-data boundary. Finally, our
adaptation algorithm for choosing the octree nodes to be rendered
for a given frame is geared to maximizing quality for a target
frame rate, rather than maximizing the frame rate for a given
quality. We respect bandwidth limitations, treating texture
memory and main memory as a two-level cache for the full data
set on disk. Our focus is on frame rate management, and we
emphasize the creation of non-uniform-depth octrees from
unstructured grids as an important class of input data. Our frame
rate management techniques are inspired in part by those of Iris
Performer [Rohlf and Helman 1994] and the Berkeley Soda Hall
walkthrough [Funkhouser and Sequin 1993].

3 OVERVIEW
Our approach to interactive volume rendering of unstructured
grids involves an adaptive voxelization component, which occurs
as a preprocess, and a volume level-of-detail component, which
renders the voxel octree produced by the preprocess to provide
visualization at interactive frame rates (see Figure 2).

Adaptive Voxelization

Tetrahedralization

Octree Construction

Voxelization

Voxel Filtering

Volume LOD Rendering

Adapt / Load

Cull / Render

Structured

Grid

Tetrahedra

Voxels

V
o
x
el

 O
ct

re
e

Visualization

Parameters

Rendered

Image

Figure 2: Components of interactive visualization system.

Adaptive voxelization occurs as a preprocess, whereas interac-

tive visualization occurs at real-time rates.

3.1 Voxel Octree Structure
The adaptive voxelization preprocess converts either a structured
grid, unstructured grid (tetrahedral mesh), or regular voxel grid
into a hierarchical 3D texture. For good scalability, we use a
hierarchical arrangement of constant-resolution texture bricks.
Our construction closely follows that of [LaMar et al. 1999,
Boada et al. 2001]. (Note that this is somewhat different from that
of [Weiler et al. 2000], which uses a uniform grid arrangement of
multi-resolution bricks.) As shown in Figure 3, each node of the
octree contains a texture brick of fixed resolution (4x4 for the 2D

(1/8, 1/8)

(7/8, 7/8)

Figure 3: 2-level texture quadtree with 4x4 texture

resolution in each node.

figure). For a brick resolution r, the usable portion of the texture
domain is from 1/(2r) to (2r-1)/(2r). Neighboring bricks have 1
texel of overlap, shown as shaded regions in the figure. This
provides for continuity of data from brick to brick (at the same
level, at least).

We specialize this octree structure of [LaMar et al. 1999] to our
application domain by distinguishing between data and non-data
voxels. Given an unstructured grid, the data must typically be
filled out with some artificial filler to create a valid, rectangular
3D texture. A simple solution is to fill this space with zero-scalar
data. However, with this naïve approach, there exists a discontinu-
ity between the real data and the artificial. When using linear
interpolation, this discontinuity displays itself as a striping along
the boundary of the model. We remove this artifact through a two-
step pad and stencil algorithm. First, the discontinuity is ex-
tended outward from the real data one texel during resampling by
replicating the boundary data as described in Section 4.5. Sec-
ond, during rendering we use a 3D stencil test to clip the repli-
cated data. Thus, the replicated data is never rendered, but it is
used when linearly interpolating pixels near the original bounda-
ries. This is illustrated in Figure 4. An extreme example of this
striping artifact and its correction on the Blunt fin model are
shown in Figure 5.

The final data associated with a brick includes a scalar field /
gradient texture and a stencil texture.

3.2 Processing Components
The first stage of this preprocess converts a structured grid into a
set of tetrahedra (this stage can be skipped if the original input is
already in tetrahedral form). The second stage uses a top-down
approach to construct an octree to partition the model space. Each
octree node is subdivided until an error threshold is reached for
the subsequent resampling process. In the third stage, the tetrahe-
dra within each leaf node’s spatial cell are resampled into a
regular grid of voxels. In the final stage, the leaf node voxels are
filtered to produce the voxel grids for the all the interior tree
nodes. This process results in a number of voxelized cells, using
higher resolution where it is most needed to preserve the original
data.

The volume level-of-detail rendering process allows the user to
interactively choose a desired frame rate and other visualization
parameters, such as the transfer function (mapping data to RGBA
color), view position, etc. Given these user-specified parameters
and the system parameters, such as RAM, texture memory size,
bandwidths, polygon and fill performance, etc., this visualization
process maximizes a measure of image quality within the user and
system constraints. The adapt/load stage modifies the set of
rendered cells from last frame to adapt it to this frame’s new
viewing parameters, splitting some cells while merging others to
maximize quality. Some cells require reloading from RAM to

texture memory, and others may first require loading from disk to
RAM. The cull/render phase then traverses the octree from the
root, performing a hierarchical cull and rendering the flagged
nodes to the screen using 3D texture mapping and blending in
back-to-front order.

We next discuss each of these components in more detail be-
fore examining the results of our system applied to a number of
models.

4 ADAPTIVE VOXELIZATION
Voxelization algorithms have been applied to unstructured grids
to produce a single-resolution voxel grid [Kaufman and Shimony
1986, Prakash and Manohar 1995]. Such a uniform grid typically
undersamples as well as oversamples large portions of the vol-
ume. Instead, the voxel data organization in our work is an
adaptive octree, similar to [Boada et al. 2001], employing the
alignment strategy of [LaMar et al. 1999]. Our algorithm creates
these multi-resolution voxels directly from the grid, however. It
works on data much larger than could fit the main memory and
uses less than 5 MB of RAM for the data sets we have tried so far.
This octree partitions the space of the model, sampling local
subspaces at appropriate resolutions. The adaptive voxelization
algorithm is composed of several steps (see Figure 2) described
next.

4.1 Tetrahedralization
If the input to our system is a structured grid, we begin by tetra-
hedralizing it. Structured grids with convex, linear elements are
easily tetrahedralized by slicing off tetrahedra from the corners
until only one tetrahedron remains (aka “ear slicing”). For the
hexahedral grids of many of our test models, we apply the same
tetrahedral decomposition template to each cell, breaking each
cell into 5 tetrahedra. (In our current implementation, we limit the
input to convex grid-cells. Algorithms to tessellate concave cells
into tetrahedra exist [Ruppert and Seidel 1992], as well.)

In order to facilitate linear file I/O, the tetrahedra are written to
a flat, unindexed tetrahedron file. In the octree construction that
follows, such files are created for each octree node, specifying the
dimensions of the octree node and an appropriate subset of the
tetrahedra. Each tetrahedron comprises four vertices, each with
three 32-bit floating point coordinates and one 16-bit scalar field
value, for a total of 56 bytes per tetrahedron.

4.2 Octree Construction
The voxel octree nodes are built top-down, recursively. The
procedure is shown in Figure 6. At the termination of each
recursion, it samples the current leaf node into a voxel grid. The
termination criteria are scalar-field homogeneity and tetrahedra
size for the current node. The processing occurs in an out-of-core
fashion: each tetrahedron is inspected independently and is
discarded after it has been processed. Our current implementation
imposes a constant voxel resolution per octree node.

In the current system, each tetrahedron vertex whose scalar
field neighborhood varies more than a user-specified threshold
lands in its own voxel and is thus sampled at least once. The
scalar field error threshold provides a bound on the maximum

Figure 4: Padding and stenciling to remove non-data voxels.

Figure 5: Blunt fin model without then with padding and sten-

ciling.

resampling error during voxelization. In the extreme, a threshold
of zero-error may be specified ensuring that no two tetrahedron
vertices lie in the same voxel. To make this geometrical constraint
feasible in practice, we exclude degenerate (nearly flat) tetrahedra
from this computation.

An important component of this phase is the tetrahedron-cell
overlap test. We extend the separating axis theorem [Gottschalk et
al. 1996] to tetrahedra for this. For our case of intersecting a box
(cell) with a tetrahedron, testing 25 particular axes are sufficient
to prove whether or not the volumes overlap. The 25 axes consist
of 3 axes orthogonal to the faces of the cell, 4 axes orthogonal to
the faces of the tetrahedron, and the cross product axes of both
objects’ edges (3 for the cell times 6 for the tetrahedron yields 18
more axes). We can exit early from this set of tests, making them
quite fast in practice.

4.3 Node Sampling
Once a node terminates the recursion and chooses to be a leaf
node, it samples its tetrahedra at a uniform resolution. The
sampling algorithm used is a voxel-order algorithm. This ordering
implies that all the tetrahedra for this node should be loaded into
memory at once. In practice, this is not a problem as there are
generally many more voxels than tetrahedron vertices at the leaf
nodes.

A voxel is sampled by first finding which tetrahedron contains
it and then interpolating the tetrahedron’s scalar field values
according to the voxel location. Our approach does not need any
topological connectivity information among the tetrahedra. The
tetrahedra are bucketed into a coarse uniform grid (using the
intersection test described in Section 4.2). We maintain a one-
tetrahedron cache of the most recently used tetrahedron to take
advantage of voxel-to-voxel coherence. When this tetrahedron
fails a voxel test, the uniform grid is used to accelerate the
selection of the next tetrahedron. The combination of coherence
and spatial locality makes the testing fast overall.

The point-in-tetrahedron test is performed using the barycentric
coordinates of the voxel’s sample point with respect to the
tetrahedron. If the coordinates sum to less than 1, the point is
contained. Conveniently, these barycentric coordinates are then
used to perform the interpolation. The computation of the coordi-

nates is accelerated by caching the basis conversion matrix (from
Euclidean to barycentric coordinates) for each tetrahedron in the
node once before node sampling. Although we have chosen to
implement a CPU based algorithm for its simplicity and precision,
we should note that efficient hardware-accelerated voxelization
algorithms exist [Westermann 2000, Weiler and Ertl 2001]. For
applications where voxelization speed is an important concern,
such faster voxelization algorithms may be employed at this stage
of our preprocessing pipeline.

4.4 Node Filtering
The next stage of building the voxel octree is voxel filtering to
create parent nodes. Two separate filtering stages are used. First,
child nodes are merged into parent nodes. A 3x3 box filter is
employed for this. (Other filters, such as a Gaussian filter, may
also be used during this process.) Second, gradients are computed
at all nodes. The central difference method is used to compute
gradients and is replaced by a forward or backward difference at
the volume boundaries. Both filtering stages execute in a bottom-
up level by level fashion (see pseudo-code in Figure 7).

To avoid discontinuities between neighboring cells and to
maintain overlapping borders, we include the neighboring nodes’
data for each node during processing. During the merging stage,
we load the 7 nodes adjacent to each child node into memory and
then perform a merge along the common border. This is depicted
in Figure 8a, where the three nodes adjacent to child a are loaded
and the common border is drawn in red (a quadtree is used to
facilitate presentation). Likewise, during the gradient filtering
stage, the cell’s 26 neighbors are loaded into memory to accu-
rately calculate the gradient along the border. These filtering
procedures correspond to the largest amount of in-core memory
used during the voxelization (128K * 27 nodes). During this
filtering, we are only concerned with neighbors that exist on the
same level in the octree; discontinuities between neighboring cells
of different levels must be corrected during rendering (see Section
5.4). If at any time, a neighbor does not exist on the same level in
the octree, a special node containing null data is loaded.

Finally, special care is required because of our adaptive, sparse
octree with overlapping borders. During the child-merging stage,
it is possible that only a portion of a node’s octants subdivides
thus creating discontinuity between node levels. Since neighbor
information is only maintained on a per-level basis, this could
introduce discontinuities at these internal borders. In Figure 8b,
we show an example of such a case (in 2D). When this node’s
child d merges its children, its top and left borders will be incor-
rect because d’s children da, db, and dc do not have neighbors at
their depth. If we naively merge a,b,c and d, this incorrect data
would be averaged into the resultant parent causing discontinui-
ties at its internal child boundaries. Thus, when d merges its

 Process(Node N, Tetrahedra File FN)

 read N’s spatial extent

 create 8 children, C

 foreach child Ci

 create file FC
i

 write Ci’s spatial extent to FC
i

 N.Recursion ← FALSE

 foreach tetrahedron T in FN

 foreach child Ci

 if Intersect(Ci, T) = TRUE

 write T to FC
i

 if T.NeededResolution > Resolution

 N.Recursion ← TRUE

 if N.Recursion = FALSE

 delete 8 Cis and FC
i
s

 Voxel grid VN ← Sample(N, FN)
 else

 delete FN

 foreach child Ci

 VC
i
 ← Process(Ci, FC

i
)

 return VN

Figure 6: Pseudo-code for the adaptive octree construction

procedure.

 Filter(Node N , FilterStage S)
 create data buffers, B and O

 if (S = MERGE_CHILDREN)

 read N’s 8 children into B

 foreach child Ci

 read Ci’s adjacent nodes into B

 create box filter kernel, K

 else // S = COMPUTE_GRADIENT

 read N and N’s neighbors into B

 create gradient filter kernel, K

 convolve B by K into O

 perform normalization on O

 write O into N->output_filename

 free temporary data, B and O

Figure 7: Pseudo-code for the node filtering with overlapping

borders.

children, we test for this special case and fix the discontinuity by
copying the border from b and c into d.

Figure 8: (a) Ensuring border continuity during the child-

merge stage. (b) Internal border discontinuity fixing between

cells of different levels during the child merge stage. (2D is

shown for simplicity.)

4.5 Padding and Stencil Texture
To prepare the octree cells for fixing the striping artifact as
discussed in Section 3.1, two further processing stages are
included in the voxelization pipeline. The first stage creates a
stencil, or binary, texture for each cell. This texture stores one-
bit-per-voxel that is 0 for null data and 1 for any other data. The
next stage pads the embedded volume by one voxel. Along the
boundary of the volume in the octree between data and null data,
we grow the texture by averaging neighboring non-null voxels.

5 VOLUME LOD RENDERING
Using the level-of-detail hierarchy described by the voxel octree,
our visualization system is designed to maximize quality for a
user-specified frame rate. In addition, it can be quickly re-tasked
to produce the best image possible at a reasonable frame rate (as
defined by rendering all the textures that will fit in memory). This
gives the user considerable freedom to explore the data set and
examine high-quality images of localized portions of the data. For
example, Figure 1 starts with a highly interactive visualization (a)
which can be quickly refined by adding additional slices (b).
Given more time, subdivision can occur to its fullest extent,
allowing the third rendering (c).

We next describe the two phases of the level-of-detail rendering
system – the adapt/load phase and the cull/render phase.

5.1 Adapt / Load
The adapt/load phase is responsible for determining which set of
octree cells should be rendered for the current frame and for
loading any non-resident textures to texture memory either from
local RAM or from external memory (hard disk, in our case).

A list of nodes known as the active cut, as shown in Figure 9, is
maintained from frame to frame. The active cut is a set of nodes
whose cells cover the model space in its entirety exactly once.
This notion of cut is very similar to those used in view-dependent,
continuous level of detail for polygonal models [Xia and Varsh-
ney 1996, Duchaineau et al. 1997, Hoppe 1997, Luebke and
Erikson 1997]. The cut is maintained by performing a series of
merges and splits each frame to produce the best possible quality
according to some error metric without going over the budgeted
frame time. Note that the number of nodes rendered from the
active cut (due to fill rate), and the number of merges and splits
(which may require texture loads from RAM or disk) all influence
the frame time. Hence, not only must we manage the number of
nodes on the cut but also restrict the amount of cut-adaptation that
may be performed in a single frame.

In addition to flagging nodes to indicate if they are on the cut,
our visualization system constructs two priority queues each
frame – the merge queue and the split queue. The merge queue
contains the parents of all nodes on the active cut, sorted in order

of increasing error. The split queue contains all non-leaf nodes on
the active cut, sorted in order of decreasing error.

To decrease the overall error, the first split from the split queue
is performed by: placing the splitting node on the merge queue
and marking it inactive, then placing its children on the split
queue and flagging them as active.

To increase the overall error (and thus the frame rate): the first
node is removed from the merge queue, and placed on the split
queue, marking it active; then the node’s parent is placed on the
merge queue and its children are removed from the split queue
and marked inactive.

Figure 9: A cut through the tree defines 5 active nodes (only a

binary tree is shown for simplicity).

The number of splits and merges performed in a given frame
are bounded according to the machine’s bandwidths from disk to
RAM and from RAM to texture memory. Texture caches are
maintained in both main memory and texture memory according
to a least recently used policy, and thus splits or merges which
cause cache misses are more expensive than those which are
already cached.

Figure 10: Oxygen post model (513,375 tetrahedra) showing

view-dependent refinement

In addition to being limited by bandwidth restrictions, splits are
restricted according to the total texture memory size (because they
increase texture memory usage) and the desired frame rate
(because they increase the number of rendered nodes). If one of
these limits is reached, then a split may only be performed after
forcing another node to merge. This is only allowed when the
merge followed by the split would reduce the overall error (i.e. the
merge node’s error is less than the split node’s error). In practice,
a split operation may be performed over multiple frames because
it can involve loading several texture nodes from RAM or disk.

Since a split may not complete in a single frame, it is possible
that the node in the process of being split is no longer the best
candidate for splitting. If a node other than the currently splitting
node is more appropriate to split (because of a higher error),
progress on the current node is stalled and the new node begins
splitting immediately.

The error metric used to determine priorities of merges and
splits is the maximum screen space size of a node’s texels in pixel
units. Ideally, every texel rendered would fill a single pixel – all
renderable data would be rasterized, and no extra texture data
would be used. As the pixels per texel within a node increases for
a non-leaf node, visual quality quickly decreases, deviating from
what it could be at a deeper node. The adapt / load phase is

responsible for maintaining all texel sizes at as close to a single
pixel as possible, while not allowing the frame rate to fall below
the current target frame rate.

Figure 10 shows the Oxygen Post model with the active cut
created for the depicted viewing frustum. The red cells are leaf
nodes and thus at sufficient resolution to represent the original
data. The green nodes are non-leaf nodes with projected texel
sizes of less than a pixel, and yellow nodes are non-leaf nodes
with larger projected texel sizes. Yellow nodes will refine if the
budget allows. Note that deeper refinement occurs closest to the
viewpoint.

5.2 Cull / Render
The cull/render phase is performed hierarchically using an octree
traversal, starting from the root node. When a node is visited, it is
culled according to the viewing frustum and the transfer function.
If the node is entirely outside the viewing frustum or if its range
of scalar field values lies entirely in a range of the transfer
function with zero opacity, the node is culled. Culled nodes are
set to zero error and placed on the merge queue so their children
may be merged upwards next frame. Even if a culled node is not
rendered in a given frame, its texture is not swapped out until it is
actually merged into its parent. In other words, the cut indeed
covers all of the model space. This ensures that in any given
frame, we are able to quickly render each portion of the model at
some resolution and with any transfer function, even if that
portion was culled in the previous frame. If the current node of
this octree traversal is flagged as being on the cut and not culled,
it is rendered. If the node is not on the cut, then its children are
visited in back-to-front order.

Our system renders each node’s voxel data using 3D texture
mapping with viewport-aligned planes [Westermann and Ertl
1998]. Although it is possible to choose a different normal for
each node’s stack of planes, coarsely approximating the use of
spherical shells [LaMar et al. 1999], we have found that using the
same plane alignment for all cells works reasonably well for
moderate fields of view. We choose the planes such that the inter-
plane distance is equal to the distance between axis-aligned slices.
Using this approach, we only need to compute a single set of
geometry and texture coordinates for the planes used to render a
node for a particular frame. We can use exactly the same primi-
tives for all nodes just by changing the model transformation
matrix.

We apply a user-specified transfer function dynamically. The
transfer function is stored as a dependent texture, which is a
lookup table stored on the graphics accelerator. Because the
function is applied for every texture lookup, the user can interac-
tively change the transfer function by simply updating the lookup
table.

The use of different plane spacings at different octree levels can
cause opacity imbalance artifacts. This imbalance is corrected by
applying a correction factor to the opacity which depends on the
inter-plane distance, as described in [LaMar et al. 1999, Weiler et

al. 2000]. We store several versions of the transfer function
lookup table on the graphics accelerator for use with different
inter-plane distances (distances which are powers of two multiples
of some smallest distance are supported). Each node then uses the
appropriate lookup table depending on its plane spacing for the
current frame.

Figure 11(a-c) shows the Cylinder model both without, and
with, transparency culling. The number of nodes displayed is
greatly reduced, increasing rendering speed, and allowing for
further refinement of the model. Figure 11d shows the DC Plate.
Several nodes at the center of the model are culled within the
viewing frustum due to transparency culling.

5.3 Fragment Program
We shade the rendered slice polygons using a custom fragment
program on an NVIDIA GeForce4 graphics accelerator. The
fragment program applies the current transfer function to the
scalar field data, performs two-sided diffuse and specular illumi-
nation of the data according to its gradient, and applies a 3D
stencil test to clip non-data voxels from the resulting image.

Our fragment program uses three textures for each primitive:

 Texture0 3D Stencil Texture

 Texture1 3D Gradient <x, y, z>, Scalar Value

 Texture2 2D Transfer Function (dependent texture)

The stencil texture uses nearest neighbor interpolation, whereas
the others use linear interpolation. We use two fragment registers
to store our constants. The RGB of constant color 0 and 1 are the
scaled-and-biased light and view directions respectively. The
alpha values are used for two illumination coefficients. The first is
the ambient coefficient; the second is the diffuse (as well as being
one minus the specular) coefficient. The lighting equation is:

FinalRGB = (Ids * Cd) + ((1-Ids) * Is
32) + Ia

FinalAlpha = (stencil == valid) ? Alpha : 0

where,

 Ids = diffuse_and_specular_coefficient

 Cd = (transfer_fnrgb x max (V • L, -V • L))

 Is = max (V • H, -V • H)32

 Ia = (ambient_coefficient)

 Alpha = transfer_fnalpha

Figure 12: Lit view of the oxygen post.

Figure 11: (a) Cylinder data set (615,000 tetrahedra) (b) all nodes in the view frustum (235 nodes) (c) nodes remaining after transparency

culling (80 nodes) (d) DC plate with transparency culling (note culling at the center)

5.4 Other Quality Issues
Several types of rendering artifacts are possible in a hierarchical
3D texture-based volume rendering system. These include
interslice shearing gaps, texture discontinuities, and mathematical
imprecision.

Interslice shearing gaps can occur due to the distance between
the rendered planes and the non-optimal orientation (i.e. true
concentric spheres would not suffer from this artifact). These
shearing gaps may be reduced to a pixel or less in size by increas-
ing the number of planes (thus reducing the interplane distance) as
a node approaches the viewer. Unfortunately, this can severely
degrade performance by dramatically increasing the number of
textured fragments rendered. When the target frame rate mode is
disabled (either manually or due to a pause in navigation), we
reduce the shearing gap sizes by rendering more planes. This
effect can also be reduced by pre-integrating the transfer function
and rendering the data as thick slabs rather than thin slices [Engel
et al. 2001]. This can be incorporated into our fragment program
on hardware with 5 or more texture units.

Texture discontinuities occur when adjacent rendered cells are
at different octree levels. Several techniques have been proposed
to reduce or eliminate these discontinuities. For example, one can
load pre-filtered transition textures into the borders of the 3D
textures on an as-needed basis depending on which neighbors
appear in a given frame [LaMar et al. 1999].

Finally, all 3D texture-based volume rendering that we are
aware of is subject to some precision problems, which generally
grow worse with increasing numbers of planes (and thus increas-
ing compositing operations) per pixel. This problem should be
solved by the next generation of hardware, which promises 32-bit
floating point precision throughout the graphics pipeline.

6 RESULTS
We have implemented our system on a Windows 2000 PC with a
1.2 GHz AMD Athlon processor and NVIDIA GeForce4 graphics
accelerator with 128 MB of Video RAM. In practice, we can use
as much as 120 MB of the VRAM as texture memory. To make
loading texture data from disk to texture memory feasible within a
small portion of a frame time, we choose to sample all our cells at
323 resolution, thus we can fit a maximum of 930 cells in the
texture memory cache at once.

Some statistics about the adaptive voxelization of our test mod-
els are shown in Figure 13. Most of these models originated as
structured grids. and were tetrahedralized using 5 tetrahedra per
grid cell.

In Figure 14, we show a graph that characterizes the relation of
the scalar field homogeneity and geometric complexity for each of
the large models. If we see an early fall-off, like we do for the
post model, then it can be inferred that the underlying grid used to
simulate the data had many locations where it over-sampled the
data. Likewise, if we see a late fall-off, like for the delta model,
we can infer that the grid used better sampled the high density
portion of the data.

Model # Tets Avg/Max

Depth

Nodes Size

(MB)

DC Plate 1,745 2.8/3 51 6.9

Blunt Fin 187,223 8.22/10 22,208 3,002

Oxygen Post 513,375 9.03/11 65,324 8,830

Cylinder 615,195 7.94/9 10,608 1,434

Delta Wing 664,668 9.26/14 13,703 1,852

Radmri 6,011,200 4/4 489 66

Figure 13: Test model statistics after adaptive voxelization.

Results shown are for 0% scalar field error threshold.

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

Octree Size Versus Scalar Field Error

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0 0.01 0.1 1 2 5 10 20

Percent Scalar Field Error

P
er

ce
n

t
N

o
d

es

b lun t

c ylinde r

de lta

pos t

ra dmri

Figure 14: Graph showing the relative reduction in output oc-

tree size with varying scalar field error thresholds.

Figure 15 shows data recorded along a path exploring the Blunt
Fin model, visualized in a 640x480 resolution window. This was
run without register combiners on a GeForce3. In the first graph,
we see the path with the target frame rate at 10 frames per second.
Notice that for some periods the frame rate is well above that
budget. The reason for this is clear on examining the second
graph, which shows that the maximum error is usually less than
one pixel per texel during those periods, thus no refinement is
necessary. Notice as well that as the frame rate increases around
frame 380, the system responds by adding more cells until the
quality improves to less than one pixel per texel.

7 CONCLUSIONS AND FUTURE WORK
We have demonstrated an interactive volume rendering system
capable of exploring scalar fields in the form of unstructured grids
as well as structured grids and uniform voxel grids. Our system
maintains a user-specified frame rate while maximizing quality (as
well as transitioning quickly to a higher refinement mode). It
improves the state of the art in unstructured grid rendering in
terms of quality and speed on a low cost PC platform. Although
we have not yet implemented a quantitative image quality metric,
the accompanying video allows us to make a visual claim of
quality.

As future work, we would like to employ more system timing
parameters such as fill rates to schedule the frames more proac-
tively, reducing our reliance on a feedback mechanism. Also, we
would like to explore the use of 3D texture mapping in the
domain of time-varying data, which may require much more
accurate management to deal with the rapidly changing informa-
tion.

8 ACKNOWLEDGMENTS
We would like to thank Xueying Cao, Edmund Dorsey, and
Siddharth Sonrexa for their programming contributions to this
work. Datasets have been graciously provided by NASA and the
Space Telescope Science Institute. Funding has been provided by
NSF CISE-RI Grant 9703080, NSF CAREER Award
CCR9733827 , NSF Engineering Research Center EEC9731478,
and a Joseph Pistritto Fellowship.

Frame Rate During

Path Playback

0

2

4

6

8

10

12

14

16

18

1

2
2

4
3

6
4

8
5

1
0

6

1
2

7

1
4

8

1
6

9

1
9

0

2
1

1

2
3

2

2
5

3

2
7

4

2
9

5

3
1

6

3
3

7

3
5

8

3
7

9

4
0

0

4
2

1

4
4

2

4
6

3

Frame #

F
ra

m
e

s
 /

 S
e

c

Texture Quality Ranges

0

1

2

3

4

5

6

1

2
2

4
3

6
4

8
5

1
0

6

1
2

7

1
4

8

1
6

9

1
9

0

2
1

1

2
3

2

2
5

3

2
7

4

2
9

5

3
1

6

3
3

7

3
5

8

3
7

9

4
0

0

4
2

1

4
4

2

4
6

3

Frame #

P
ix

e
ls

 /
 T

e
x

e
l

X Worst Splittable

Best Quality

N ode s D rawn

0

10

20

30

40

50

60

70

80

90

100

1

2
2

4
3

6
4

8
5

1
0
6

1
2
7

1
4
8

1
6
9

1
9
0

2
1
1

2
3
2

2
5
3

2
7
4

2
9
5

3
1
6

3
3
7

3
5
8

3
7
9

4
0
0

4
2
1

4
4
2

4
6
3

Fra m e #

N
o

d
e
s

Figure 15: Data from an exploration path around the Blunt Fin.

References
Boada, Imma, Isabel Navazo, and Roberto Scopigno. Multiresolution

Volume Visualization with a Texture-Based Octree. The Visual Com-

puter. vol. 17. 2001. pp. 185-197.

Cabral, B, N Cam, and J Foran. Accelerated Volume Rendering and

Tomographics Reconstruction Using Texture Mapping Hardware.

Proceedings of 1994 ACM Symmposium on Volume Visualization. pp.

91-98.

Drebin, Robert A., Loren Carpenter, and Pat Hanrahan. Volume Render-

ing in J. Dill, ed Computer Graphics (Proceedings of SIGGRAPH 88)

Atlanta, Georgia 1988 pp. 65-74

Duchaineau, M, M Wolinsky, D E Sigeti, M C Miller, C Aldrich, and M

B Mineev-Weinstein. ROAMing Terrain: Real-time Optimally Adapt-

ing Meshes. Proceedings of Visualization '97. pp. 81-88.

Engel, Klaus, Martin Kraus, and Thomas Ertl. High-Quality Pre-

Integrated Volume Rendering Using Hardware-Accelerated Pixel Shad-

ing. Proceedings of SIGGRAPH/Eurographics Workshop on Graphics

Hardware 2001. pp. 9-16.

Farias, R, J Mitchell, and C Silva. ZSWEEP: An Efficient and Exact

Projection Algorithm for Unstructure Volume Rendering. Proceedings

of 2000 ACM/IEEE Volume Visualization and Graphics Symposium.

pp. 91-99.

Farias, Ricardo, Joseph S B Mitchell, Claudio T Silva, and Brian Wylie.

Time-Critical Rendering of Irregular Grids. Proceedings of SIBGRAPI

2000. pp. 243-250.

Funkhouser, T. A. and C. H. Sequin. Adaptive Display Algorithm for

Interactive Frame Rates During Visualization of Complex Virtual

Environments. Proceedings of SIGGRAPH 93. pp. 247-254.

Garrity, Michael P. Raytracing Irregular Volume Data. Computer

Graphics (San Diego Workshop on Volume Visualization). vol. 24(5).

1990. pp. 35-40.

Gottschalk, Stefan, Ming C. Lin, and Dinesh Manocha. OBB-Tree: A

Hierarchical Structure for Rapid Interference Detection. Proceedings of

SIGGRAPH 96. pp. 171-180.

Hoppe, Hugues. View-Dependent Refinement of Progressive Meshes.

Proceedings of SIGGRAPH 97. pp. 189-198.

Kaufman, Arie and Eyal Shimony. 3D Scan-conversion Algorithms for

Voxel-based Graphics. Proceedings of 1986 Workshop in Interactive

3D Graphics.

Kniss, Joe, Patrick McCormick, Allen McPherson, James Ahrens, Jamie

Painter, Alan Keahey, and Charles Hansen. Interactive Texture-Based

Volume Rendering for Large Data Sets. IEEE Computer Graphics and

Applications. vol. 21(4). 2001. pp. 52-61.

LaMar, Eric C., Bernd Hamann, and Kenneth I. Joy. Multiresolution

Techniques for Interactive Texture-based Volume Visualization. Pro-

ceedings of IEEE Visualization '99. pp. 355-362.

Levoy, Marc. Display of Surfaces From Volume Data IEEE Computer

Graphics & Applications vol. 8 (3). 1988 pp. 29-37

Luebke, David and Carl Erikson. View-Dependent Simplification of

Arbitrary Polygonal Environments. Proceedings of SIGGRAPH 97. pp.

199-208.

Meredith, Jeremy and Kwan-Liu Ma. Multiresolution View-Dependent

Splat Based Volume Rendering of Large Irregular Data. Proceedings of

IEEE 2001 Symposium on Parallel and Large Data Visualization and

Graphics.

Pfister, Hanspeter, Jan Hardenbergh, Jim Knittel, Hugh Lauer, and Larry

Seiler. The VolumePro Real-Time Ray-casting System. Proceedings of

SIGGRAPH 99. pp. 251-260.

Prakash, C E and S Manohar. Volume Rendering of Unstructured Grid -

A Voxelization Approach. Computers & Graphics. vol. 19(5). 1995.

pp. 711-726.

Rezk-Salama, C, K Engel, M Bauer, G Greiner, and T Ertl. Interactive

Volume Rendering on Standard PC Graphics Hardware Using Multi-

Textures and Multi-Stage-Rasterization. Proceedings of Eurographics

/ SIGGRAPH Workshop on Graphics Hardware 2000. pp. 109-118

and 147.

Rohlf, John and James Helman. IRIS Performer: A High Performance

Multiprocessing Toolkit for Real--Time 3D Graphics. Proceedings of

SIGGRAPH 94. July 24-29. pp. 381-395.

Ruppert, J and R Seidel. On the Difficulty of Triangulating Three-

Dimensional Non-convex Polyhedra. Discrete Computational Geome-

try. vol. 7. 1992. pp. 227-253.

Shirley, P and A Tuchman. A Polygonal Approximation to Direct Scalar

Volume Rendering. Computer Graphics (San Diego Workshop on

Volume Visualization). vol. 24(5). 1990. pp. 63-70.

Weiler, M, R Westermann, C Hansen, K Zimmerman, and T Ertl. Level-

Of-Detail Volume Rendering via 3D Textures. Proceedings of Volume

Visualization and Graphics Symposium 2000. pp. 7-13.

Weiler, Manfred and Thomas Ertl. Hardware-Software-Balanced Resam-

pling for the Interactive Visualization of Unstructured Grids. Proceed-

ings of IEEE Visualization 2001. pp. 199-206.

Westermann, Rüdiger. The Rendering of Unstructured Grids Revisited.

Proceedings of 2001 Eurographics / IEEE TCVG Symposium on

Visualization. pp. 65-74.

Westermann, Rüdiger and Thomas Ertl. Efficiently Using Graphics

Hardware in Volume Rendering Applications. Proceedings of SIG-

GRAPH 98. pp. 169-177.

Xia, Julie C. and Amitabh Varshney. Dynamic View-Dependent Simplifi-

cation for Polygonal Models. Proceedings of IEEE Visualization '96.

pp. 327-334.

