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Abstract: Network traffic data analysis is important for securing our computing environment and
data. However, analyzing network traffic data requires tremendous effort because of the complexity
of continuously changing network traffic patterns. To assist the user in better understanding and
analyzing the network traffic data, an interactive web-based visualization system is designed using
multiple coordinated views, supporting a rich set of user interactions. For advancing the capability of
analyzing network traffic data, feature extraction is considered along with uncertainty quantification
to help the user make precise analyses. The system allows the user to perform a continuous visual
analysis by requesting incrementally new subsets of data with updated visual representation. Case
studies have been performed to determine the effectiveness of the system. The results from the case
studies support that the system is well designed to understand network traffic data by identifying
abnormal network traffic patterns.

Keywords: web-based visual analysis; uncertainty; discrete wavelet transformation

1. Introduction

Since massive amounts of network traffic data are generated daily, understanding
them by integrating various scientific and data analysis approaches has received substantial
attention in network security. Visualization is one of the approaches that has received an
emerging interest in analyzing network traffic data [1]. Visually representing network
traffic data with supporting interactive visual analysis is essential to advance network
traffic data analysis. Thus, a significant amount of research has been performed to develop
cutting-edge visualization approaches to present the patterns and characteristics of net-
work traffic data [2]. However, numerous research challenges have emerged in handling
complex network traffic data, manipulating various data attributes, incorporating different
analytical approaches, and eventually identifying domain-specific insights from visual
representations. Although researchers have utilized various visualization approaches to
analyze the data successfully [3–5], integration of data analysis with interactive visual
analysis is essential to support analyzing such complex network traffic data. Furthermore,
visualization techniques can become major roles in analyzing large data sets because they
can be applied to every step in data analysis, including initial exploration, hypothesis
generation, experimental validation, and final presentation of results [6].
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In the visualization community, supporting interactive visualization is emphasized
because it assists users in analyzing data more efficiently. Interactive visualization indicates
a combination of user interactions with visualizations to enhance the comprehension of data
through manipulation and exploration of visually represented data. Commonly used user
interaction techniques include selection, filtering, zooming, distortion, linking and brushing,
etc. [7]. The user interactions can enable users to control the visual representations of data
to increase their understanding of the data and support them in solving domain problems
through identifying meaningful information. Although numerous visualization techniques
have been introduced in the past, visually representing data along with supporting both
interactive data analysis and increased user accessibility has not been fully integrated
into network traffic data analysis. Furthermore, adding uncertain information into a
visualization has not been emphasized, even if it increases the understandability of network
traffic data.

Thus, this paper presents a new web-based visualization system by incorporating
various visualization techniques to illustrate network traffic data with supporting interac-
tive functions for the user to conduct an interactive visual analysis of the representation.
In detail, the added interactive functions help users select visually represented instances
and navigate them through zooming and panning. To present network traffic data, we
performed a data wrangling process consisting of data cleaning, data transformation, fea-
ture extraction, and uncertainty quantification to design accurate visual representations
to assist the user in analyzing the data more precisely. Furthermore, in the visualization
system, the user is allowed to initiate data analysis continuously by creating multiple views
based on network traffic events that appeared in different time frames. To understand the
effectiveness of the system, several case studies have been performed to identify abnormal
network traffic patterns. The main contributions of our work are as follows:

• We designed a new web-based interactive visual analysis system to assist the user in
performing a continuous visual analysis with updated visual representation.

• To the best of our knowledge, our work is the first visual analysis system that uti-
lizes uncertainty quantification and discrete wavelet transform in analyzing network
traffic data.

• We performed a series of use-case studies to determine the effectiveness of the system.
The study results prove the usefulness of the system.

The rest of this paper is structured in six sections. Section 2 provides previous studies
on utilizing visualization techniques in network traffic data analysis. In Section 3, the
conducted data wrangling process is explained. Section 4 includes a detailed explanation
about the designed web-based visualization system. Section 5 shows conducted case studies
of analyzing network traffic data in consideration of identifying abnormal network events.
After providing interesting insights and possible limitations of the system in Section 6, we
conclude this paper by providing possible future work in Section 7.

2. Related Work

Visualization approaches have been broadly utilized in network traffic data analy-
sis to support users in exploring network traffic events more effectively through visual
representations. Among various visualizations, simple statistical tools along with charts
and diagrams have been commonly utilized to support understanding the data distribu-
tions of network traffic events [8–11]. Instead of using simple visualizations, researchers
designed new visualization systems to advance network traffic data analysis. For instance,
Krokos et al. [12] proposed 2D and 3D network flow visualization by integrating pattern
recognition and deep learning. Gove and Deason [13] introduced a flow visualization by
integrating Discrete Fourier Transforms. Cappers and van Wijk [14] designed a composite
visualization system by creating multiple visualizations, including heatmap, node-link dia-
gram, and bar graphs. Xiao et al. [15] considered upgrading a simple network visualization
by adding domain knowledge to help users understand network patterns more clearly
through the colored representation of network traffic data. Although various visualization
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techniques and systems were proposed in the past, the effectiveness of utilizing visualiza-
tion in network traffic analysis has not been clearly stated. Thus, Ji et al. [1] conducted an
in-depth literature review and identified four key approaches to be considered in designing
an effective network traffic visualization system, such as data filtration and transformation,
pixel-based visualization, graph representation, and coordinated multi-views. They also
identified six commonly known and used visualization techniques in security—scatter plot,
bar graph, node-link diagram, heatmap, parallel coordinates, and glyph representation—by
evaluating necessary requirements to be managed for utilizing the visualization techniques,
such as data wrangling, evaluation of visual complexity and visual scalability, and identifi-
ability of abnormal events or activities. Understanding complex network traffic data on
static visualization images is difficult for the user to identify meaningful results because the
static images deliver limited insightful information. Thus, it is essential to provide multiple
user interactions to help the user understand the visualization more effectively.

In network security, several researchers have focused on integrating visualization.
Nunnally et al. [16] introduced a visualization module called NAVSEC. It was designed
to assist users as a recommender system to investigate experts’ interactions to identify
attacks with 3D network security visualization tools. Cai and M. Franco [17] integrated
an interactive visualization and clustering algorithm to show anomalous network events.
They developed a signature detection algorithm to detect abnormalities by utilizing clus-
tering techniques and presenting them using different forms of glyphs. Theron et al. [18]
introduced a new interactive visualization tool called IGPCA that combines Principal
Component Analysis (PCA) with a PCA variant called group-wise Principal Component
Analysis (GPCA) to help users incorporate a high volume of network traffic data into
their analysis in identifying abnormal network events. Since GPCA is good for finding a
structural distinctiveness of data, they used both PCA and GPCA to determine possible
outliers by removing common outcomes from the results of the two algorithms. Besides the
newly designed visualization approaches, utilization of commonly known bar graph, line
graph, and hive plot is also broadly used in analyzing network traffic data. For instance,
Tremel et al. [19] utilized advanced versions of line and bar graphs to analyze network
traffic. They introduced an interactive network traffic analysis tool called VITALflow (Vi-
sual Interactive Traffic Analysis with NetFlow). It integrated a clustered time series view
with a visual analytics approach to improving the representation of enormous time series
data. Angelini et al. [20] introduced a new visual analytics tool called PERCIVAL. Instead
of simply showing network traffic data, they emphasized users’ situational awareness of
abnormal network events by providing network security status with attack path graphs uti-
lizing IP address information. Although most visualization techniques have been designed
as 2D visualizations, Zong et al. [21] proposed a 3D interactive visualization approach to
present network intrusion detection data to help users understand machine learning results.
They presented different attack types with a 3D decision space supporting ML-based clas-
sification. Their approach possesses a unique and interesting idea for analyzing network
traffic data. However, 3D visual representation is not broadly considered because of an
occlusion problem (e.g., one 3D element blocks another partially) that often makes users
difficult to understand visualization results [22].

In addition, researchers identified several concerns that should be addressed when
designing a web-based visualization system to enhance the network traffic data analysis.
Zhang et al. [23] introduced a simple web-based visualization prototype focusing on inter-
preting the effects of visualization techniques, such as area charts, Gantt charts, Treemaps,
and network graphs, for gaining valuable information from visual representations. They
emphasized that combining multiple techniques might help users understand and evaluate
network anomalies. Hao et al. [24] implemented a web-based visualization system that
supports creating user-configurable charts to analyze network traffic data. They focused
on identifying security alerts from malicious activities by extending a charting library
(RGraph). The system includes multiple functionalities for supporting users’ analytical
processes of analyzing network traffic data. Arendt et al. [25] introduced a web-based deci-
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sion support visualization prototype, Ocelot, to help cyber analysts to determine network
threats and identify affected computers utilizing a circle packing (Petri dish) and a sunburst
plot. It allows users to filter network traffic data by constructing a simple AND/OR boolean
logic expression for attributes. Since most network traffic data are captured as flow packets
(generating PCAP data files) using packet sniffers, analyzing PCAP data often requires
a precise understanding of network flow and environment. Ulmer et al. [26] designed a
web-based visualization tool to analyze PCAP data by presenting them into multiple views
such as timeline, protocol, graph, source, destination, and filter status views [26]. They
presented raw data with a table-based view, including timestamps, source and destination
IPs, ports, and payload size. Chen et al. [27] introduced an online visual analysis system,
OCEANS (Online Collaborative Explorative Analysis on Network Security), that was built
using HTML5, D3, and jQuery, to provide multi-level visualization temporal views of IP
connections and their detailed connections by combining visual analytics and collaboration
features. The events submitted by users constructed an event timeline and graph, allowing
other users to review and provide feedback on the identified events. Cherepanov et al. [28]
designed an interactive visual tool by combining the classification of network data with a
1D Convolutional Neural Network (CNN). Schufrin et al. [29] designed a visual firewall
log analysis system in collaboration with an IT service provider. They designed the system
having two interlinked parts by following human-centered design process (HCD).

Table 1 shows a summary of existing web-based visualization systems with emphasiz-
ing utilized visualization techniques and evaluation approaches. Most of them emphasized
the importance of utilizing multiple user interactions with various visualization techniques
to support interactive analysis of network traffic data. Commonly supported user interac-
tion techniques include Brushing and Linking, Selection and Manipulation, and Zooming
and Panning. Although time-series data analysis with dimension reduction technique
is important in analyzing network traffic data [30], it has not been broadly applied in
visualization. We also found that parallel coordinates and scatterplot visualizations are not
broadly used due to the difficulty of handling massive network traffic data. Among the dif-
ferent visualization systems, two of them [14,18] are not clearly stated in the paper whether
they are designed as web-based visualizations or not. Although visualization offers es-
sential features for users to analyze network traffic data, many studies still have focused
on presenting original network traffic data with simple visualization techniques [31,32].
Furthermore, when designing a visualization system, supporting interactive visual analysis
needs to be emphasized because it is the key to advancing the network traffic data analysis.
Thus, this paper aims to address the limitations by designing an interactive web-based
temporal visualization to deliver easy network traffic data comprehension and analysis.
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Table 1. A summary of web-based visualization systems that support interactive visual analysis on network traffic data. © denotes fully supported. 4 indicates
partially supported due to limited information available in the paper.

Publication Hao et al.
[24], 2013

Zhang et al.
[23], 2014

Chen et al.
[27], 2014

Arendt et al.
[25], 2015

Cappers
and van

Wijk [14],
2016

Anh Huynh
et al. [33],

2016

Theron et al.
[18], 2017

Gove and
Deason [13],

2018

Ulmer et al.
[26], 2019

Cirillo et al.
[34], 2019

Tremel et al.
[19], 2022

Cherepanov
et al. [28],

2022

Schufrin et al.
[29], 2022

Proposed
System

Dataset

Network
flow data
and Snort

alerts

VAST
2013 mini
challenge

dataset

VAST
2013 mini
challenge

dataset

VAST 2013
mini challenge

dataset

Network
flow with
Wireshark

DARPA
1999 dataset
and botnet

dataset from
UNB

UGR16 Bro network
data

Network
flow (PCAP)

with
Wireshark

Network
flow with

Scapy

NetFlow
data

Network
flow (PCAP)

with
Wireshark

Firewall log CIC-
IDS2017 [35]

Brushing and
Linking † © © © © © © © © © © © ©

Selection and
Manipulation † © © © © © © © © 4 © © ©

Zooming and
Panning † 4 © © © © 4 © © © © © © ©

Time Series Feature
Extraction Analysis

‡

Discrete
Fourier

Transform

Discrete
Fourier

Transform

Discrete
Wavelet

Transform

Dimensionality
reduction ‡ © © ©

Web-based System ‡ © © © © 4 © 4 © © © © © © ©

Time-line
Visualization § 4 © © © © © © © 4 © ©

Bar and line graphs § © © © © © © © © © © © ©

Scatterplot § © © © ©

Node-link diagram § © © circle packing
(Petri dish) © © © ©

Heatmap § © © © © ©

Parallel coordinates § © © ©

Unique
Visualization
Approaches §

Ring
graph

Petri dish
(a hybrid

hierarchical/
node-link

visualization)

Stacked
histogram Hive plot

Geolocation
vis. of the

packet
stream

Cluster
visualization

with a flexible
analytical tool

Uncertainty
visualiza-

tion

Case Study ¶ 4 © © © © © © © © ©

User Evaluation ¶ © © © ©
† Supported User Interactions, ‡ Provided Special Features, § Applied Visualization Techniques, ¶ Conducted Evaluation Method.
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3. Data Wrangling

For designing a network traffic visualization system, applying data wrangling should
be considered to represent network traffic events with visual elements more effectively.
Data wrangling is a process that focuses on manipulating data into a usable cleaned data
form [1,36]. Kandel et al. [36] defined data wrangling as “a process of iterative data
exploration and transformation that enables analysis”. It primarily focuses on making data
usable for understanding the phenomena of events that occurred within domains. To make
the network traffic data become usable forms, we defined data wrangling to have four
steps: data cleaning, data transformation, feature extraction, and uncertainty quantification.
Detailed explanations about the used dataset and the performed steps as part of the data
wrangling process are included in the following subsections.

3.1. Dataset

In this study, we used the CIC-IDS2017 dataset [35] that was created at the Canadian
Institute for Cybersecurity (CIC) to address the unreliability of existing intrusion detection
datasets because of the lack of current network traffic patterns. As the name indicates, it
was captured within a period of five days in 2017. More specifically, it was generated by
capturing all network activities from Monday, 3 July 2017 to Friday, 7 July 2017. It includes
benign traffic as well as attack traffic patterns. The original full packet payload dataset
is about 51 GB. It also provides a processed dataset by a network traffic flow analysis
tool (called CICFlowMeter), which includes labeled network flows with time stamps, IP
addresses, network ports, protocols, and attack information. In the rest of this paper, we
refer to CICIDS2017 to indicate this processed dataset. As shown in Table 2, it includes
about 2.8 million network events. Among them, about 0.17% represents abnormal events
(about 0.5 million). Each event indicates a single network activity (or instance) captured
over the network. Thus, each abnormal event denotes a single network attack. As indicated
in the table, no abnormal event was captured on Monday. The dataset contains eighty-five
variables, including timestamp and label information. The label includes specific types of
attack information.

Table 2. Number of network events in the CICIDS2017 dataset. All normal and abnormal events
indicated after eliminating null instances from the dataset.

Monday, 3 July
2017∼Friday,
7 July 2017

Benign (# of
Normal Events)

Attack (# of
Abnormal

Events)

Included Attack
Types

Dropped Null
Instances

Monday 529,918 0 None 64

Tuesday 431,873 13,835 Brute Force
attack 201

Wednesday 439,972 251,723 DoS/DDoS 1008

Thursday 456,714 2216 Web Attack and
Infiltration 38

Friday 414,275 288,923 Botnet and Port
Scan 47

When performing the data wrangling process, we found errors in the dataset, in-
cluding inaccurate representation of date and time information and the existence of un-
known attacks (not mentioned anywhere in the dataset description). The date informa-
tion of the captured network traffic data was formatted by following the European style
as day/month/year. However, the authors’ computers follow the American style as
/month/day/year. Thus, most programming languages (including JavaScript) automat-
ically parse the date information incorrectly. Furthermore, the time information was set
incorrectly. For example, the time (“5:30”) was used to indicate afternoon 5:30. Thus,
manual interpretation and translation of the data have been performed by referencing
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the original data description to correct such imprecisely entered time information (e.g.,
converting 5:30 to 17:30).

Table 3 describes normal and abnormal network events that appeared each day in
the CICIDS2017 dataset. We observed several unknown attacks when evaluating the
abnormal events with our visualization system. The unknown attacks indicate that they
are not described in the dataset description. By conducting an additional data wrangling
process, we found numerous network events that could be considered unknown attacks.
The conducted case study of discovering the unknown attacks with the system is included
in Section 5. We also found that several attacks mentioned in the dataset description did not
exist. They include infiltration attacks (Cool disk—MAC) in the time range of 14:53–15:00
on Thursday.

Table 3. Summary of normal and abnormal events in each day with initiated attack types.

Benign (# of
Normal Events)

Attack (# of
Abnormal Events)

Initiated Attack Types and their
# of Events

Unknown Attack (# of
Abnormal Events)

Monday 529,918 - - -

Tuesday 432,074 13,835
[Brute Force]
FTP-Patator (9:20–10:20): 7937
SSH-Patator (14:00–15:00): 4993

905

Wednesday 440,031 252,349

[DoS/DDoS]
DoS slowloris (9:47–10:10): 5464
DoS Slowhttptest (10:14–10:35): 5371
DoS Hulk (10:43–11:00): 230,726
DoS GoldenEye (11:10–11:23): 10,293
[SSL Attack]
Heartbleed Port 444 (15:12–15:32): 11

483

Thursday 456,762 2217

[Web Attack]
Brute Force (9:20–10:00): 1494
XSS (10:15–10:35): 652
SQL Injection (10:40–10:42): 21
[Infiltration Attack]
Meta exploit Win Vista (14:19–14:35): 4
Cool disk–MAC (14:53–15:00): 0
Win Vista (15:04–15:45): 18

28

Friday 414,322 288,923

Botnet ARES (10:02–11:02): 1472
[Port Scan]
Firewall Rule on (13:55–14:35): 289
Firewall Rule off (14:51–15:29): 158,558
DDoS LOIT (15:56–16:16): 128,027

577

As discussed above, we defined the data wrangling process to have four steps—
data cleaning, data transformation, feature extraction, and uncertainty quantification.
Data cleaning sanitizes the data by eliminating errors and unwanted attributes. Since
CICIDS2017 is a preprocessed dataset, it does not require extensive data cleaning. However,
it includes ‘null’ and ‘infinity’ values in the variables of ‘Flow Packets/s’ and ‘Flow Bytes/s’.
Thus, all instances having either ‘null’ or ‘infinity’ are removed from the dataset. Data
transformation changes the data into usable forms to be mapped into visual glyphs. Our
designed visualization system uses aggregated network traffic data per minute to build an
overview representation. The average number of network events in every minute is about
1153 ± 2114 (mean ± std). Feature extraction extracts hidden information from the data.
Uncertainty quantification identifies uncertain information from the network traffic data.
Detailed information about the applied feature extraction and uncertainty quantification is
included in the following sub-sections.
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3.2. Feature Extraction

Feature extraction is important when analyzing network traffic data because it identi-
fies unique characteristics of different network traffic events [37]. Since capturing rapid
changes in network traffic over time is key to detecting attack behaviors precisely, wavelet
transformation (WT) is suitable for finding such behaviors in network events. It also
benefits analyzing non-stationary signal data like network traffic analysis by identifying
significant patterns of network event behaviors. Discrete Wavelet Transform (DWT) is
used in this study. It is a broadly known technique for time-frequency analysis because of
several merits, including (a) analyzing non-stationary data (e.g., internet traffic data), (b)
detecting any rapid changes in the data, and (c) revealing information that is underlying in
the data. It repeatedly decomposes input data into multiple levels of frequency components.
The input data are split at each level into two sub-band components (i.e., low and high
frequencies). The high frequency represents detail coefficients, and the low frequency
indicates approximate coefficients. Since the detail coefficients can detect rapid changes in
the data, they are broadly used to identify discontinuity or sudden changes. Our previous
studies [38,39] showed the advantage of extracting features with DWT to detect hidden
but important patterns. Although using the DWT features is effective at analyzing data,
selecting a mother wavelet is often considered a challenging task because performances
would be different depending on data types. For this reason, we evaluated various wavelets
and found that Daubechies 3 (db3) wavelet with decomposition level (i.e., l = 3) provided
a good presentation examining rapid changes within the network traffic dataset [38,40].
Thus, db3 (with level three) decomposition is used for extracting features from the network
traffic data. The extracted features include,

σj =

√
[

1
N

ΣN
i=1(|di,j| − µdi,j

)2], mj =

√
1
N

ΣN
i=1(di,j)2, ej = ΣN

i=1(|di,j|)2 υj = Med(di,j) (1)

where di,j = {d1,j, d2,j, · · · , di,j} represents wavelet coefficient at the jth level, and i is the
length of the coefficient. Med(di,j) presents median of di,j, µ presents the average of di,j.
The feature set F = {σj, mj, ej, υj}, j = 1, 2, · · · , (l + 1) is used for further analysis. A total
of 1280 wavelet features are extracted from eighty variables, excluding timestamp, label,
and three categorical attributes.

3.3. Uncertainty Quantification

To increase the capability of understanding network traffic data, uncertainty quan-
tification has been applied with subjective opinions based on a binomial beta distribution.
Subjective opinions are defined as part of subjective logic (SL) for expanding traditional
belief functions. The opinions represent epistemic uncertainty indicating vacuity of evi-
dence by measuring the probabilities through a belief mass distribution, a prior probability
distribution, and epistemic uncertainty mass [41]. In detail, the type of opinion (or belief)
indicating normal and abnormal has been applied to binomial opinions. Since binomial
opinions in SL corresponds to statistical Beta distribution, we applied Binomial Beta Distri-
bution to project normal and abnormal activity with quantifying uncertainty.

In SL, a binomial opinion is represented as ωx = (bx, dx, ux, ax), in where opinion
is applied to the value x in the binary domain X = {x, x}, bx indicates belief mass of
being x = true, dx represents disbelief mass of being x = f alse (i.e., x = f alse), ux denotes
epistemic uncertainty, and ax shows prior probability of being x = true. In our study,
a binomial opinion is used to denote if a captured network traffic event indicates normal vs.
abnormal activity. Jøsang et al. [42] showed the relationship between a binomial opinion
and a beta probability density function (PDF) through a bijective mapping. The Probability
Density Function (PDF) for a Beta X is represented as,

f (x; α, β) =
xα−1(1− x)β−1

Beta(p|α, β)
, Beta(p|α, β) =

Γ(α + β)

Γ(α) + Γ(β)
pα−1(1− p)β−1 (2)
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where shape parameters α, β > 0, prior probability 0 ≤ p ≤ 1, Γ is the Gamma distribution.
α and β can be represented by ax with observed numbers of evidences (qa, qn) as,

α = qa + axW, β = qn + axW (3)

where qa and qn denote the number of evidence being abnormal (i.e., attack) and normal
events measured by referencing the labels in the dataset. W is non-informative prior weight
in the absence of qa or qn. With qa and qn, the bijective mapping rule is defined as to show
the equivalence of a binomial opinion and a Beta PDF as,

bx =
qa

qa + qn + W
, dx =

qn

qa + qn + W
, ux =

W
qa + qn + W

(4)

where the summation of qa and qn represents the overall observation of events. If both
qa = 0 and qn = 0 (indicating no network traffic events), uncertainty quantification
(ux) becomes equal to the non-informative prior weight (W). With this mapping rule,
uncertainty quantification is performed to show the probability of having attacks in every
hour and minute. A detailed explanation of how the quantified uncertainty information
has been used in our visualization is included in Section 4.3.

4. Web-Based Visual Analysis System

Figure 1 shows an overview of the designed web-based visualization system. For sup-
porting users in conducting interactive analysis of network traffic data, the system is
designed with three main visualization layouts and system controls. Each layout manages
a distinctive visual representation to show different features and attributes of data. When
interacting with multiple visual representations, it is crucial to support users’ flow of
interactions maintained within visualization - not hindering their analytical processes [43].
Thus, our visualization system has been designed by following the coordinated multi-
view (CMV) paradigm [44] to help users conduct interactive visual analysis of the data.
The CMV paradigm is important because it focuses on maintaining user interactions in mul-
tiple views with supporting integrated reflections caused by users on all other views [45].
Based on our previous study [1], we also found that supporting the CMV paradigm is
critical when designing visualization systems for network traffic data analysis because one
or two visualization views are not sufficient enough to support users conducting complex
analytical tasks.

Due to the restriction of handling and representing a massive amount of network
traffic data, it is necessary to design an innovative visualization technique. Visually repre-
senting large-scale data has been actively performed in the visualization community by
proposing new visualization layouts or glyph representations. In the context of visualiza-
tion, glyph indicates a visual form or object that represents a single data item or a set of
data elements. Designing and finding an appropriate visualization is not an easy process,
even for visualization experts [46]. Thus, we considered using a known visualization
with applying data aggregation to support easy interpretation for users with maintaining
high cognitive efficiency by adapting a common visualization (i.e., time series line graph).
Cognitive efficiency [47] is an important component in designing visualizations because it
helps users understand visual forms and interpret their meaning effectively. Since cognitive
efficiency is closely connected to visual difficulties indicating the obstruction of under-
standing the meaning of visualizations, utilization of a known visualization is a suitable
approach because it maintains high cognitive efficiency due to increased user familiarity.
As shown in Figure 1, the designed visualization system consists of three views (A∼C)
and one system setting (D). The three views include (A) Uncertainty View, (B) Network
View, (C) Detailed Analysis View. The Network View shows time-series network traffic
events. The Uncertainty View represents uncertainty information measured based on the
data that appeared in the Network View. The Detailed Analysis View is designed to help
users conduct interactive visual analysis on the selected network traffic data within the Net-
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work View. The system setting options (D) are added to allow changing the parameters of
visualizations and internal computations of t-distributed Stochastic Neighbor Embedding
(t-SNE), Uniform Manifold Approximation and Projection (UMAP), and PCA. Detailed
explanations about them are added in the following sub-sections.

Figure 1. An overview of the designed visual analysis system that consists of (A) Uncertainty
View: probability representation of network events in every hour and minute, (B) Network View:
aggregated representation of original network events, (C) Detailed Analysis View: representation of
multiple visualizations to support a continuous visual analysis, and (D) Control Options: settings to
control visualizations.

We designed the visualization system as a single-page application (SPA) because it
loads a single-page web document and updates its content through JavaScript APIs. Since
several SPA frameworks (e.g., Angular, AngularJS, Vue.js, React, Meter, Next.js, ASP.NET,
and more) are available, an evaluation has been conducted to determine the benefits and
limitations of each framework. Among them, the most broadly used SPA frameworks are
Angular, Vue.js, and React. React is often considered a JavaScript UI library rather than a
framework. Therefore, the customization of UI modules is more flexible than others. Vue.js
is also popular because it contains best practices in React and Angular. Unlike the other
frameworks, Angular uses MVVM (Model-View-ViewModel) architecture, which is a sim-
plified version of a Model-View-Controller (MVC) architecture that separates an application
into three main logical components: the model, the view, and the controller [48]. However,
MVVM is a software architectural pattern that separates views (i.e., GUIs) from business
logic or back-end logic (i.e., model). It supports two-way data binding between View and
ViewModel to allow automatic propagation to change within ViewModel’s state to the view.
Therefore, modifying and upgrading a view can be performed easily because complete
rewriting of all related views is unnecessary. In addition, Angular uses a component-based
structure that makes designed components highly reusable across an app. Thus, designed
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visualization components with Angular can be recycled when designing other visualization
systems. As discussed above, supporting user interactions is essential because it can initiate
multiple user inputs that affect the web application changes by dynamically rewriting
the current web page document. Thus, our visualization system has been designed by
utilizing the Angular framework (v13) because it supports controlling the UI, reacting to
user inputs, managing multiple applications, and connecting them. In the system, Apache
Arrow (https://arrow.apache.org/, accessed on 10 December 2021) is integrated to handle
the network traffic data on the web-based visualization system. It manages data instances
by following column-oriented data structures. Because of this reason, it includes several
benefits of supporting more effective compression and data transmission speed while trans-
ferring data over the Internet and seeking information within the web-based visualization
system. Data loading, aggregation, and computation on the system are handled with
TypeScript to make it work seamlessly with the Angular framework.

4.1. User Interactions

With the system, the user is able to initiate a continuous analysis by generating de-
tailed analysis views. To control the views interactively, several user interactions are added.
The system supports commonly utilized user interaction techniques, including Brushing
and Linking, Selection and Manipulation, and Zooming and Panning. Brushing and Link-
ing support selecting the subsets of data in a view and identifying the correlations of the
subsets in other linked views. Selection technique helps the user choose single or multiple
network traffic events. It is useful for the user to find detailed underlying information about
the events. Manipulation technique is often activated whenever the selection technique is
applied. It supports changing the existing visual layout or initiating new visual representa-
tion (e.g., scatter plots). Since multiple visual elements (i.e., glyphs) are presented in the
system, navigation techniques (i.e., Zooming and Panning [49]) are added.

4.2. Network View—Overview Representation

The Network View (Figure 1B) shows actual network traffic events. As discussed
in Section 3.1, the CICIDS2017 dataset includes millions of network traffic records. Thus,
data aggregation is applied to show network traffic data properly on a web browser. Two
time-series line graphs are added to separately represent normal (above) and abnormal
(below) network traffic data. When representing all network traffic data (including both
normal and abnormal network events), we observed low cognitive efficiency caused by
the high similarity between multiple network events as well as the existence of numerous
variables in the data. Due to this reason, analyzing and detecting anomalous network
activities is often considered a research challenge in network security. For the Network
View, having the two time-series line graphs help the user understand the network traffic
patterns more clearly. Within the graphs, the user is allowed to change network variables
while navigating the network traffic data through zooming and panning. The user’s
navigation on the Network View also generates updated results that reflect recomputed
uncertainty quantification in the Uncertainty View.

4.3. Uncertainty View—Uncertainty Quantification and Representation

As discussed above, uncertainty quantification has been performed with SL through
the bijective mapping rule. Figure 1A represents the measured uncertainty quantification
based on the data selected within the Network View. The Uncertainty View projects
quantified uncertainty in every hour and minute with stacked bar graphs. A binomial
opinion is represented as ωx = (bx, dx, ux, ax) with satisfying the additivity requirement
of ωx as bx + dx + ux = 1.0. As shown in Figure 2, each binomial opinion represents
the probability of having attacks in each time frame with different color attributes. If no
normal and attack activities exist within a specific time frame, high uncertainty (ux = 1.0)
represents the region painted with only the yellow color attribute. Based on the bijective
mapping rule, W needs to be determined for computing bx, dx, and ux. Since our system

https://arrow.apache.org/
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focuses on determining the possibility of having normal vs. abnormal within a selected
timeframe, prior weight denoted by W is set to W = 2. Beta PDF with default base rate
a = 0.5 represents a uniform PDF because of no prior knowledge of being the status x
becoming normal or abnormal. Projected probabilities supporting the attack state x by
following the terminology of P(x) = bx + axux are measured and presented as a connected
line graph on top of the representation of the binomial opinions. To help the user see
the detail of each binomial opinion and the projected probability, a mouse hovering user
interaction is supported. Figure 2B shows an example when the user moves the cursor over
the opinion. It represents computed belief, disbelief, uncertainty, and projected probability.

Disbelief

Uncertainty

Belief

Projected 
Probability

0.0

1.0

(A)
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00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Proj.Prob.: 0.334
Belief: 0.333
Disbelief: 0.662
Uncertainty: 0.004

(B)
Figure 2. Binomial opinions of network events are represented with stacked bar graphs with different
colors as belief (orange), disbelief (green), and uncertainty (yellow). (A) represents a schematic
diagram of the stacked graph. (B) shows a representation of quantified uncertainty in every hour
(00∼09) and minute (00∼23). Height indicates the amount of belief mass in supporting the truth of
attack state x being true, false, uncommitted condition, accordingly.

4.4. Detailed Analysis View

In network traffic data analysis, supporting experts to conduct multiple visual analyses
in analyzing a subset of data can help them to determine similar or distinctive network
traffic patterns. Thus, our system is designed to help them perform continuous visual
analysis on requesting incrementally new data sets with updated visual representation.
The Detailed Analysis View consists of a parallel coordinates plot, multiple scatter plots,
and a heatmap visualization. The parallel coordinates plot shows the user-selected network
traffic data. Furthermore, the scatter plots display re-scaled high-dimensional data into
lower-dimensional space (i.e., 2D display space) by applying different dimension reduction
techniques such as t-SNE [50], UMAP [51], and PCA [52]. The heatmap visualization is
added to show a global representation of data attributes with pixel-based visualization.

In the parallel coordinates plot, all network traffic data that appeared within the
selected date and time range in the Network View are represented. In the plot, variables
are represented as vertical bars to denote axes [53,54]. Figure 3 shows examples of user-
selected data for the raw and DWT features on Day-3 (7 May 2017). The representation
of the raw features (Figure 3A) does not show any distinctive network traffic patterns.
This would be because network traffic data often maintain complete randomness in the
distribution of cyberattacks [55]. This randomness is somewhat diminished when using
the DWT features by making network traffic patterns visible (see Figure 3B). To help the
user control the features and variables in the parallel coordinates plot, selecting network
events is supported. Based on the user’s selection, corresponding network events are
highlighted in multiple scatterplots. Furthermore, the selected events in the scatterplots
become highlighted in the parallel coordinates plot. This feature is critical to increase the
understandability of data. In the plot, axis translation [54] is also supported to help the user
move the location of variables (i.e., dimensions—represented as vertical bars) through a
drag-and-drop operation. This is useful for finding invisible patterns induced by different
arrangements of variables.
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(A) Raw features

(B) DWT features
Figure 3. Visual representations of (A) 45 raw and (B) 33 DWT user-selected features of network traffic
data on Day-4 with parallel coordinates plots. Red and blue color attributes are used to indicate attack
and normal activities, respectively. The leftmost vertical bar represents time dimension denoting date
and time information.

Various dimension reduction techniques are commonly applied to show high-
dimensional data on a lower-dimensional space (i.e., 2D or 3D display space). Among them,
PCA is broadly applied because of its ability of detecting principal components by mea-
suring eigenvectors and eigenvalues from data. However, to produce the best results, it
must satisfy the linearity of the data attribute requirement. If the data include non-linear
characteristics, they do not provide the best result when projecting it. Due to this reason,
researchers proposed alternative techniques, such as t-SNE and UMAP. They use similar
approaches to arranging data into a lower dimensional space using graph layout algo-
rithms by determining and placing structurally similar elements in nearby locations. t-SNE
requires more computational time than UMAP for finding an optimal layout, especially
when handling a large amount of data. Although they are good projections for handling
data that have both linear and non-linear attributes, projections of the data would not be
effective if parameters are set inappropriately. There are two types of parameters, such as
required (free) parameters (i.e., t-SNE: perplexity and UMAP: components, k-neighbours)
and optimization parameters (i.e., learning rate, number of iterations). Determining optimal
parameters is critical to producing the best results in projecting high-dimensional data
into a lower-dimensional space [56,57]. However, it is not easy to find optimal parameters
because every data has unique, distinctive characteristics requiring different parameter
settings to capture local and global structures. Thus, the system allows the user to change
the parameters manually to conduct interactive data analysis.

Figure 4 shows network traffic data on Day-2. All abnormal network traffic events were
created by using brute force attacks with Patator and a multi-purpose brute-forcer. In detail,
the visual patterns that appeared in the morning (A) and afternoon (B) indicate FTP and
SSH brute force attacks, respectively. Although there was no difference in normal network
traffic patterns throughout the day, the two attack patterns appeared to have different
characteristics making them positioned at far distances (see the red-colored network events
within the circles in the scatterplots). By default, all selected network events are projected
onto the multiple scatterplots with considering date information (using UNIX timestamp).
This approach is useful for understanding the changes in network traffic patterns over time.
Date and time range selection is added in the parallel coordinates plot to support interactive
visual analysis of network traffic events. Whenever a new date and time range is selected,
corresponding network events within the range are populated in other visualizations.
The user is allowed to exclude the inclusion of the date and time information from each
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dimension reduction computation by unchecking the checkbox (named “Date”) positioned
at the bottom of scatterplots. Identifying the pattern changes of abnormal events over
time can be performed by enabling time information. Furthermore, understanding the
global network patterns considering both normal and abnormal events is allowed if time
information is excluded. Examples of analyzing data without considering time information
are added in Section 5.

Figure 4. Examples of presenting network traffic events on Day-2 on the Network View and scatter-
plots. (A,B) represent FTP and SSH brute force attacks, respectively.

(A) Normal (B) Abnormal
Figure 5. Heatmap visualizations of the attribute (i.e., Flow Duration). The vertical and horizontal
axes in the heatmap view indicate hour (0∼23) and time (0∼59) information, respectively. Each
heatmap cell holds an average value of the selected attribute within a specified time. In the view, blue
and red colors are used to indicate normal and abnormal activities. Gray color represents no activities.

Analyzing network traffic data is difficult due to the size of data is often large. Pixel-
view representation is an excellent approach to showing a global layout of the network
traffic data [1]. When representing network traffic data with pixels, appropriate pixel size
needs to be determined to improve humans’ cognitive ability to understand the meaning
of tiny pixel regions. Thus, representing information by measuring the physical size
of displays and the number of pixels (defined as “visual scalability”) is essential when
displaying large-scale datasets [1,58]. In our system, a heatmap view is added by applying
a data aggregation to determine average values in every minute for the user-selected
variable and map them to the 24 h projection. Figure 5 shows normal and abnormal
heatmap representations of all network traffic on the variable “Flow Duration”. In the
view, the user is allowed to change the variable. Whenever the variable is changed, data
normalization is applied to show the correct distribution of the selected variable. Gray
color attribute is used to indicate no network activity within a specified heatmap cell.
Figure 5 represents no network activities from evening to next day morning: 5 p.m. to



Information 2023, 14, 16 15 of 23

8 a.m. A linear color gradient is applied to indicate the min and max of the attribute. Mouse
hovering is supported to show the actual value of each heatmap cell.

5. Case Studies

When evaluating a visualization system, conducting a comparative user study helps
determine the benefits and limitations of the system. Although organizing the comparative
user study is effective, finding a system that acts similarly or provides identical functions
is difficult. For evaluating our designed system, user study cannot be managed because
no counterpart (or similar) application or system exists. Thus, we performed case studies
to find the effectiveness of the designed system by conducting multiple analyses on the
visually represented network traffic data to identify distinctive patterns of abnormal ac-
tivities. Specifically, case studies were managed to assess if the system provides hidden,
underlying information that can be used to identify unique characteristics of abnormal
network traffic patterns.

Figure 6 shows a series of visualizations of network traffic events on different days
with sixteen DWT features. Since all the detailed analysis views appear on the same page of
a web browser, the user can conduct a comparative analysis by evaluating multiple visual
representations simultaneously. As discussed above, the CICIDS2017 dataset was created
by embedding different daily attack scenarios. When analyzing the raw features data, it was
difficult to see the unique differences between normal and abnormal. However, with the
DWT features, distinctive patterns were observed. Since there was no abnormal (i.e.,
attack) activity embedded in Day-1, abnormal activity was not visible in the visualization.
However, the abnormal activities on Days 2∼5 show apparent differences compared to
the normal activities. In detail, there were high similarities among the abnormal activities
on Days 2∼4. However, the activities on Day-5 were completely different. Based on the
data description of the CICIDS2017 dataset, we found that three attack scenarios were
embedded on Day-5. They are Botnet using ARES (A Command aNd Control server), port
scan, and DDoS attack using LOIT (Low Orbit Ion Cannon). Since these attack scenarios
were not included in other days, distinctive patterns were observed. We also found similar
visual representations when analyzing network patterns that appeared on Day-3 and Day-4,
even if different attack scenarios were embedded on these days. We could not locate a
major reason causing this result. However, identifying the main cause of this could be
vital for elevating our ability to understand network traffic data. Thus, a further study
should be performed. When evaluating the scatter plots generated with t-SNE and UMAP
(the 1st and 2nd views), we could not identify significant differences between normal and
abnormal. However, we found almost complete separation between normal and abnormal
when evaluating PCA results on Days 2∼4. The PCA projection on Day-5 indicates a
high similarity between normal and abnormal. This would be because port scan activities
generated similar network traffic patterns compared to normal network events.

To understand the difference between the attacks that appeared on Day-5, we created
several scatterplots by selecting different time ranges by referencing the CICIDS2017 dataset
description as 10:02–11:02 (Botnet ARES), 13:55–15:29 (port scan), and 15:56–16:16 (DDoS
LOIT). When comparing the scatterplots of t-SNE and UMAP, we could not find any major
difference between normal and abnormal activities. However, with PCA projections on
scatterplots, we found a clear distinction between normal and abnormal. Figure 7 shows
examples of PCA projections with DWT features in different time ranges. In addition, based
on our analysis of understanding the difference between normal and abnormal patterns,
we found unknown attacks in the time range of 11:03–12:59. These unknown attacks were
not mentioned anywhere in the dataset description. Figure 7D represents unknown attacks
(highlighted in red) overlaid with other network traffic activities (colored gray and blue) in
8:46–13:22. The highlighting was performed by the user within the parallel coordinates plot.
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Figure 6. A continuous data analysis with sixteen DWT features of the variable (“Flow Duration”) on
all five days. All visual representations are appeared on the same web page to support a comparative
analysis on different results.



Information 2023, 14, 16 17 of 23

(A) Botnet ARES (B) Port scan (C) DDoS LOIT (D) Unknown attacks
Figure 7. PCA projections on abnormal network activities on Day-5. (A–C) represent known at-
tacks described in the CICIDS2017 dataset. (D) highlights unknown attacks that are detected with
the system.

When analyzing network traffic data, it is important to support the user in finding
network patterns and unexpected events in the data. With the designed system, the iden-
tification of unexpected network events can be performed with different visualizations.
Figure 8 shows an example of identifying an unknown network event. With multiple
visualizations, it is possible to explore the represented network traffic data to determine
unique, distinctive patterns different from other network traffic events. While navigating
the Network View, we identified an unexpected abnormal event on Tuesday morning at
10:30. Unfortunately, we could not locate any information about this event in the dataset
description. Since brute force attacks on an FTP server were embedded from 9:20–10:20,
we initially thought that it was a continuation of the same attack. However, by evaluating
the data more closely, we noticed that the network traffic event was using port 80, indi-
cating a web-based traffic event. This was completely new information detected with our
designed system.

Figure 8. Identifying an unexpected network event while analyzing the network traffic data with
the system.

Since the system utilizes the raw and DWT features for analyzing network events, it is
vital to determine the effectiveness of using the DWT features compared to using the raw
features. Figure 9 shows examples of scatterplots of network traffic events on Day-3 using
(A) raw and (B) DWT features. The used DWT features include standard deviation, median,
and energy of the feature (“Flow Duration”). When using the raw features, the scatterplots
with UMAP and PCA did not provide distinctive differences between normal and strange
events. However, with t-SNE, we found that some abnormal events were positioned nearby.
However, when using the DWT features, we observed improved projections of normal and
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abnormal events. Specifically, t-SNE and PCA showed better representations of network
events indicating the difference between normal and abnormal.

(A) Raw features

(B) DWT features
Figure 9. Scatterplots of network traffic events on Day-3 with (A) raw and (B) DWT features using
t-SNE, UMAP, and PCA.

6. Discussion

We proposed an interactive web-based visualization system to help users analyze
network traffic data. Instead of using raw feature data, DWT-based feature extraction
is applied as an alternative method to identify hidden but critical information from the
network traffic and eventually help users determine abnormal network patterns. The DWT
features (i.e., σj, mj, ej, υj) presenting rapid changes and coarse approximation of network
events in a time domain are extracted. Figure 10 shows examples of subjective opinions
on the (A) raw and (B) DWT features of Day-3 network traffic data in the Uncertainty
View. On Day-3, two types of attacks were embedded into the CICIDS2017 dataset as
DoS/DDoS (9:47 a.m.–11:23 a.m.) and Heartbleed on port 444 (15:12 p.m.–15:32 p.m.).
The arrows in the figure indicate the regions where the Heartbleed attacks were embedded.
As shown in Figure 10B, the Heartbleed attacks (see the arrow in the figure) are clearly
visible, indicating a belief probability of having abnormal events. However, the attacks are
disappeared when utilizing the DWT features (see Figure 10C). Although the Heartbleed
attacks generate high burst attacks (see Figure 10A) that can be easily detected with the
DWT features, we identified that a single network event (indicating a Heartbleed attack)
occurred every two minutes starting from 15:12 p.m. Because of such fewer attack events,
applying DWT to extract features from such events may not be feasible. Interestingly,
we found a possibility of detecting outliers by analyzing the difference between the two
representations (Figure 10B,C) as comparing two outcomes is often utilized in detecting
possible outliers [18]. Since finding possible outliers in network traffic data analysis is
important, we plan to upgrade our system by adding a technique that supports comparing
multiple results.

When analyzing network traffic data, integrating time information is critical for pre-
cisely identifying abnormal network patterns. Thus, as mentioned above, the initial repre-
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sentation of the raw network traffic data in the Network View shows aggregated network
traffic data per minute. At the same time, when extracting the DWT features, feature extrac-
tion was applied to all network events that appeared every minute. However, we found
that correct time information was not captured. In detail, time (“seconds”) information was
not included in the dataset from Days 2∼5. For more precise data analysis, extracting a new
set of data, including detailed time information (i.e., hour/minutes/seconds), should be
performed by analyzing the original full packet payloads dataset with the PCAP analyzer
(i.e., CICFlowMeter). Furthermore, we plan to perform feature extractions at different time
scales as future work for conducting full-scale data analysis.

(A) Abnormal network events in the Network View

(B) Uncertainty quantification using the raw features in the Uncertainty View

(C) Uncertainty quantification using the DWT features in the Uncertainty View

Figure 10. Representations of network events on Day-3 using (A,B) raw and (C) DWT features.

As discussed above, the Detailed Analysis View was added to support an interactive
visual analysis by generating multiple visualizations based on different sets of network
events. The user is allowed to create multiple visual representations of network events
appearing in different time ranges. This feature is essential in network traffic data analysis
because it supports the user in analyzing abnormal network patterns comparatively on mul-
tiple visualizations by selecting network traffic data on different time ranges. In the parallel
coordinates plot, the user can move the location of variables. Since different arrangements
of variables might produce dissimilar results depending on applied rearrangements, vari-
ous automatic rearrangement methods have been proposed to find optimal configurations
to support maximized readability [59,60]. For upgrading the system, this automatic rear-
rangement will be considered to enhance the capability of analyzing network traffic data
more effectively.

Since multiple scatterplots are created by applying different dimension reduction tech-
niques, analyzing the network traffic data on various projections is effective in identifying
anomalous network events. Thus, the user is able to conduct a direct comparison of the
projections to determine similarities and differences among network events. Among the
dimension reduction techniques, PCA is the fastest approach compared to t-SNE and
UMAP because t-SNE and UMAP use a different stochastic neighbor embedding method to
combine potential neighbors [61]. However, PCA often generates unexpected outcomes if
data include attributes that do not follow the characteristics of data linearity. Although both
t-SNE and UMAP are good for handling numerical and categorical data simultaneously,
their computational speed is slower depending on the parameters set for running the
techniques and the scale of the network traffic data. For effective data analysis with the
techniques, the user must set a relatively small number of network events. However, an ad-
ditional study should be performed to determine the optimal scale of the network events for
identifying unique network patterns for understanding abnormal network traffic events.

In network traffic data analysis, applying feature selection is critical for understanding
network traffic events because numerous features often exist in network traffic data. Often,
domain experts perform individual feature selection when analyzing the data. With the
designed system, the user can perform a feature selection while conducting the network
traffic analysis. Although individual feature selection techniques produce inconsistent
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performances, it provides freedom for the domain experts to understand the data. Since it
is essential to integrate an automated feature selection process to assist the experts [62], it is
helpful to add automated feature selection functionality as an assisted method for the user.
Furthermore, it would be useful, especially if there are numerous feature selection options
like DWT features. Thus, we plan to upgrade the system to include this functionality.

Network traffic data often produce a large amount of data and features that make
users difficult to understand the data. For effectively representing a large amount of data,
heatmap visualization is added to the system because it generates a color-mapped represen-
tation of network traffic events [1]. Thus, it can assist in displaying large amounts of data
without causing visual clutter problems. However, heatmap visualization has a limitation
of displaying values with matched colored representations that often lead to delivering
an approximate visual perception of the original quantitative values. Furthermore, only
a single variable can be used when mapping data with color representation. This often
makes the user spend numerous amounts of time evaluating all heatmap representations
with various attributes. Because of this limitation, heatmap visualization may not be used
as a primary visualization. Thus, it is necessary to improve the heatmap visualization by
adding the functionality of incorporating multiple attributes together to represent each
network event. Alternatively, it can be used as a supplementary visualization to assist the
user in understanding attributes through visual representation.

As described above, unknown attacks could be discovered with our visualization
system. Since several unknown attacks exist in the dataset, it would be good to have a
functionality (e.g., search-by-example [63]) that supports finding similar network events to
the unknown attacks. More specifically, seeking closely relevant network events (having
similar characteristics) can be performed within the visualization system by measuring
similarities of network events with various statistical measurements, such as Cosine sim-
ilarity, Euclidean distance, extended Jaccard coefficient, Pearson correlation coefficient,
and more [40]. Alternatively, clustering or classification algorithms can be applied to find
computationally similar network events closely related to unknown attacks.

7. Conclusions and Future Work

In this paper, we present an interactive web-based visualization system focusing on
analyzing network traffic data. We integrated multiple coordinated views to design the
system, supporting a rich set of user interactions. To support network traffic data analysis
with the system, we performed data wrangling to sanitize unwanted information from the
data and extract significant features. We performed several case studies and found the
effectiveness of our system by identifying its benefits and limitations.

As discussed above, feature selection is important when analyzing network traffic
data because there are numerous features to evaluate. Thus, for future work, we plan to
upgrade our system by adding automatic or semi-automatic feature selection techniques
to assist the user in the feature selection process. Since we found unknown attacks while
analyzing the network traffic dataset, it is helpful to add a method “search-by-example” to
understand network traffic events by identifying similar attack patterns. For evaluating the
designed system, conducting an expert evaluation study should be considered to identify
the benefits and limitations of the system. Thus, we plan to conduct a usability test to
evaluate it to determine design intuitiveness and usefulness for conducting interactive
visual analysis on network traffic data.
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