
Old Dominion University

ODU Digital Commons

Computer Science Faculty Publications Computer Science

2016

Interactively Cutting and Constraining Vertices in
Meshes Using Augmented Matrices
Yu-Hong Yeung

Jessica Crouch
Old Dominion University

Alex Pothen

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_fac_pubs

Part of the Software Engineering Commons

This Article is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in

Computer Science Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact

digitalcommons@odu.edu.

Repository Citation
Yeung, Yu-Hong; Crouch, Jessica; and Pothen, Alex, "Interactively Cutting and Constraining Vertices in Meshes Using Augmented
Matrices" (2016). Computer Science Faculty Publications. 97.
https://digitalcommons.odu.edu/computerscience_fac_pubs/97

Original Publication Citation
Yeung, Y. H., Crouch, J., & Pothen, A. (2016). Interactively cutting and constraining vertices in meshes using augmented matrices.
ACM Transactions on Graphics, 35(2), 18. doi:10.1145/2856317

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_fac_pubs?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_fac_pubs?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_fac_pubs/97?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


18

Interactively Cutting and Constraining Vertices in Meshes
Using Augmented Matrices

YU-HONG YEUNG

Purdue University

JESSICA CROUCH

Old Dominion University

and

ALEX POTHEN

Purdue University

We present a finite-element solution method that is well suited for interactive

simulations of cutting meshes in the regime of linear elastic models. Our

approach features fast updates to the solution of the stiffness system of equa-

tions to account for real-time changes in mesh connectivity and boundary

conditions. Updates are accomplished by augmenting the stiffness matrix

to keep it consistent with changes to the underlying model, without refac-

toring the matrix at each step of cutting. The initial stiffness matrix and its

Cholesky factors are used to implicitly form and solve a Schur complement

system using an iterative solver. As changes accumulate over many simula-

tion timesteps, the augmented solution method slows down due to the size

of the augmented matrix. However, by periodically refactoring the stiffness

matrix in a concurrent background process, fresh Cholesky factors that in-

corporate recent model changes can replace the initial factors. This controls

the size of the augmented matrices and provides a way to maintain a fast

solution rate as the number of changes to a model grows. We exploit sparsity

in the stiffness matrix, the right-hand-side vectors and the solution vectors to

compute the solutions fast, and show that the time complexity of the update

steps is bounded linearly by the size of the Cholesky factor of the initial

matrix. Our complexity analysis and experimental results demonstrate that

this approach scales well with problem size. Results for cutting and defor-

mation of 3D linear elastic models are reported for meshes representing the

brain, eye, and model problems with element counts up to 167,000; these

show the potential of this method for real-time interactivity. An application

to limbal incisions for surgical correction of astigmatism, for which linear

elastic models and small deformations are sufficient, is included.

We acknowledge support from DOE grant no. 13SC-003242, NSF grants no.

CCF-1218916 and no. CCF-1552323, and the Purdue Research Foundation.

Authors’ addresses: Y.-H. Yeung and A. Pothen, Department of Computer

Science, Purdue University, West Lafayette, IN 47907; emails: {yyeung,

apothen}@cs.purdue.edu; J. Crouch, Department of Computer Science, Old

Dominion University, Norfolk, VA 23529; email: jrcrouch@cs.odu.edu.

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

show this notice on the first page or initial screen of a display along with

the full citation. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, to republish, to post on servers, to redistribute to lists, or to use

any component of this work in other works requires prior specific permission

and/or a fee. Permissions may be requested from Publications Dept., ACM,

Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1

(212) 869-0481, or permissions@acm.org.

c© 2016 ACM 0730-0301/2016/02-ART18 $15.00

DOI: http://dx.doi.org/10.1145/2856317

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Compu-

tational Geometry and Object Modeling—Physically based modeling; I.6.3

[Simulation and Modeling]: Applications; I.1.2 [Symbolic and Algebraic

Manipulation]: Algorithms—Algebraic algorithms

General Terms: Theory, Performance

Additional Key Words and Phrases: Finite element, surgery simulation, real-

time, deformable model, cutting

ACM Reference Format:

Yu-Hong Yeung, Jessica Crouch, and Alex Pothen. 2016. Interactively cut-

ting and constraining vertices in meshes using augmented matrices. ACM

Trans. Graph. 35, 2, Article 18 (February 2016), 17 pages.

DOI: http://dx.doi.org/10.1145/2856317

1. INTRODUCTION

A method to support interactively cutting or deforming solid fi-
nite element models by solving the time-varying equations quickly
is presented in this article. Topological mesh modifications and
boundary condition changes are essential parts of many simulation
scenarios, particularly surgical simulations. Integrating support for
cutting with real-time finite-element solution methods is a computa-
tional challenge: first, because graphic and haptic rendering requires
demanding update rates and, second, because connectivity changes
due to cutting necessitate corresponding changes to the underlying
matrix equations. Such changes invalidate previous factorizations
or inverse computations for the stiffness matrix, requiring either
computationally expensive update procedures or solution via an
iterative method.

Many simulations that involve cutting would ideally support un-
predictable cutting paths. Enabling unpredictable cutting can re-
quire that the internal deformation of a solid model be computed
and tracked so that accurate cut surfaces are exposed as cuts progress
into a model’s potentially inhomogeneous interior. Thus, a desir-
able solution method would quickly compute the displacement of all
nodes in a 3D mesh while accommodating changes to the mesh and
equations due to cutting, variable pushing and pulling forces, and
changes to the fixed displacements (Dirichlet boundary conditions)
created by different fixation scenarios.

Our solution approach is to represent the changing mesh of a
linear elastic model with an augmented 2-by-2 block matrix in
which the (1,1) block is fixed, the (2,2) block is zero, and the
other blocks vary. We then use an implicit solution approach to

ACM Transactions on Graphics, Vol. 35, No. 2, Article 18, Publication date: February 2016.



18:2 • Y.-H. Yeung et al.

the Schur complement system, in which we exploit the sparsity
of the matrices involved. Our current solution approach combines a
matrix-factorization-based method for the (1,1) block, with a Krylov
space-based iterative solver for the Schur complement. A detailed
treatment of the algorithm’s complexity shows that performance
scales well with model size while supporting arbitrary cutting of
any valid finite-element mesh. Periodic refactorizations of the stiff-
ness matrix are performed concurrently with the real-time solution
loop so that changes to the model eventually become directly incor-
porated into the nonaugmented stiffness matrix factors. This allows
the list of nodes affected by accumulated changes to be periodically
reduced, limiting the growth in solution time that can occur as the
list of mesh modifications grows longer over time.

A variety of existing algorithms for mesh generation [Goksel
and Salcudean 2011; Mohamed and Davatzikos 2004; Lederman
et al. 2010], collision detection [Teschner et al. 2005; Spillmann
and Harders 2012; Zhang and Kim 2012], and mesh refinement
[Steinemann et al. 2006; Mor and Kanade 2000; Forest et al. 2002]
are available. Such algorithms that work for finite-element models
can be paired with our solution algorithm to construct a simulation
platform. Thus, the scope of this article does not include algorithms
for simulation tasks other than solving the finite-element system of
equations. In addition, although only node cutting is demonstrated
in this article, many cutting and remeshing algorithms cut edges
and surfaces; these can also be solved using our method. A feature
of the solution algorithm presented is its flexibility to work with
structured and unstructured meshes as well as a number of different
methods for adapting mesh geometry to respect a cut surface.

Our results show that the augmented approach works well on
linear models exhibiting small deformations. This is valuable for
the important subset of medical applications that involve small-
magnitude, but medically significant, deformations. For these ap-
plications, linear elasticity can be an appropriate material model
because it realistically simulates deformation at a lower computa-
tional cost than more complex models. A variety of simulation re-
sults have been published based on linear elastic models in both the
computer graphics and biomedical engineering literature, in many
cases with validation of model accuracy against empirical data de-
rived from medical images or mechanical experiments. Examples
include models of the lens [Mikielewicz et al. 2013] and cornea
[Gefen et al. 2009] of the eye, trabecular bone [Jahya et al. 2014],
prostate biopsy [Crouch et al. 2007] and prostate brachytherapy
[Keaveny et al. 1994; Andreaus et al. 2014; Juszczyk et al. 2011].
We recognize that linear elasticity will not adequately model these
organs and tissue types under all loading scenarios, but the commu-
nity has found the linear elastic model to be useful for biomechanical
modeling when limited forces are applied. Nonlinear models are not
considered in this article, but will be investigated in the future.

1.1 Our Contributions

The three main contributions of this work are:

—A unified augmented matrix formulation of a finite element model
that allows both continuous, unpredictable cutting, and imposi-
tion of new boundary conditions. This formulation keeps the
original stiffness matrix as a submatrix to eliminate the necessity
of refactorization at each timestep.

—A hybrid solution approach that utilizes a direct solver and an
iterative solver. The solution of the updated portion of a mesh is
decoupled from the solution of the unchanged portion, facilitating
fast updates when the percentage of mesh elements affected by
topological changes is small. Preconditioning techniques for the
iterative part of the solution method are also discussed.

—Acceleration of the solution algorithms by exploiting sparsity
in both the matrices and the vectors. A complexity analysis is
presented using graph theory concepts applied to the accelerated
solution method.

1.2 Article Organization

This article is organized as follows. Section 2 reviews previous work
on the real-time solution of physics-based models and finite-element
equations. Section 3 presents our new augmented method for as-
sembling a finite-element system of equations and accounting for
changes in mesh connectivity and boundary conditions via updates
to stiffness matrix factors. Section 4 presents speed and accuracy
results from finite-element deformation and cutting experiments
with models of various sizes. Section 5 discusses conclusions and
directions for future work.

2. PREVIOUS WORK

Beginning with Terzopoulos et al. [1987] and Terzopoulos and
Fleischer [1988], physics-based deformable models have been used
for animation and simulation. By the mid-1990s, a variety of work
specific to surgery simulation began to appear [Cover et al. 1993;
Bro-Nielsen and Cotin 1996]. This section reviews existing ap-
proaches for computing physics-based deformation solutions, with
a particular focus on methods that involve finite-element analysis
and cutting. Methods are categorized according to whether they use
a direct-solution approach with precomputation, an iterative solver,
or a combination of both.

2.1 Precomputation Approaches

Precomputation strategies accelerate the solution step of a simula-
tion by shifting the bulk of the computational burden to a prepro-
cessing stage. The bottleneck in a finite-element simulation is the
solution of a system of linear equations, Ka = f , where K is the
stiffness matrix, a is a vector of nodal displacements, and f is a
vector of nodal forces. Precomputation methods such as Zhong et al.
[2005] minimize the time required to calculate the solution vector
by inverting K before a simulation begins so that a can be directly
computed via the multiplication a = K−1f during the simulation.
Since K−1 is dense, condensation methods such as Bro-Nielsen
and Cotin [1996], Bro-Nielsen [1998], Berkley et al. [2004], and
Lee et al. [2010] further reduce computation time by producing
from the full inverse matrix a smaller dimension one that contains
only the equations necessary to compute a solution for a small sub-
set of the nodes, such as a set of surface nodes. The inability to
compute a solution for nodes not included in the preselected subset
poses a problem for applications that involve cutting. The Sherman-
Morrison-Woodbury update formula [Hager 1989] has been used to
address this by allowing selected degrees of freedom to be added
back into a condensed stiffness matrix as they are needed. This
approach was suggested by James and Pai [1999], and later was
used in needle-insertion simulation [DiMaio and Salcudean 2002;
DiMaio 2003], and in a cutting simulation [Zhong et al. 2005]. The
approach is most successful when access to a small number of de-
grees of freedom needs to be added to an already condensed system.
It becomes computationally intensive and slow as the added number
of degrees of freedom increases, and is impractical for applications
that require cutting with nontrivial remeshing.

A variation on the precomputed inverse approach sharing some
similarities with our work is the precomputed stiffness matrix factor-
ization described by Turkiyyah [2011], which updated a Cholesky
factorization to accommodate the addition and modification of

ACM Transactions on Graphics, Vol. 35, No. 2, Article 18, Publication date: February 2016.



Interactively Cutting Meshes Using Augmented Matrices • 18:3

discontinuous basis functions along a cutting path. While our
work also updates the solution to a system of equations involving
the stiffness matrix, it does so without updating the factors by
solving a Schur complement system with an iterative solver.
Hence, our method supports any local mesh modification, whether
from remeshing or addition of basis functions; consequently, our
method’s update process substantially differs from Turkiyyah’s
work.

Solution techniques that rely on the superposition principle such
as Cotin et al. [1999], Picinbono et al. [2002], and Sedef et al. [2006]
precompute and record the set of node displacements that result from
a constraint being applied to a single node. This computation is
repeated for every node that might be subject to a constraint, and all
the results are stored. At runtime, nodal displacements are computed
as a linear combination of the stored results. For some applications,
this approach can closely approximate the ideal solution, but without
modification, it cannot handle changes in mesh connectivity.

Precomputed Green’s functions have also been used by Nikitin
et al. [2002] and James and Pai [2003] to quickly compute defor-
mation solutions for subsets of mesh nodes. Similarly, the banded
matrix method proposed by Berkley et al. [1999] prioritizes and re-
arranges the rows and columns of a stiffness matrix based on node
type, then factors the stiffness matrix in such a way that a fast up-
date is provided only for the highest-priority nodes. In both cases,
solutions for internal nodes are generally not computed.

A limitation generally shared by precomputation approaches is
that results produced in the precomputation phase are invalidated
when the topology of the mesh changes; thus, cutting and remeshing
require special consideration. Constraint removal is a precomputa-
tion approach that requires cutting paths to be known a priori.
Lindblad and Turkiyyah [2007] and Sela et al. [2007] have demon-
strated how duplicate nodes along a cutting path can be constrained
to move together until they are cut, at which time the constraint is
removed to open up a predefined cut.

Discontinuous basis functions provide a more flexible cutting
scheme that has been used in concert with precomputation. This
approach was originally introduced in the engineering literature as
a way of studying crack formation [Mos et al. 1999] and more
recently has been applied to the problem of cutting in surgical
simulations [Vigneron et al. 2004; Turkiyyah et al. 2011]. Unpre-
dictable and arbitrary cutting paths are accommodated through the
addition of new degrees of freedom that use discontinuous interpo-
lation functions to account for mid-element breaks in nodal influ-
ence. The Turkiyyah work has important similarities to our work,
in that both approaches progressively update the solution of the
stiffness matrix equation. However, an important distinction is that
our work maintains a finite-element mesh that respects cut surfaces
by remeshing areas as needed, while the Turkiyyah work maintains
separate, distinct meshes for graphic rendering and for computation
of the finite-element solution. In their method, rendered surfaces
are remeshed as needed, but the finite element equations accommo-
date cutting through the addition of discontinuous basis functions
without remeshing. As shown in Lindblad and Turkiyyah [2007],
an update procedure similar to the Sherman-Morrison-Woodbury
update can be employed to update a precomputed inverse stiffness
matrix to account for the new degrees of freedom. Because the com-
plexity of the Sherman-Morrison-Woodbury update is cubic with
respect to the number of matrix rows and columns changed, this
works well only when the modifications are very limited.

Nonlinear elastodynamics problems, in which the nonlinearities
are due to rotations within an object, have been solved using a
corotational approach in Hecht et al. [2012]. They approximate the
rotation by applying an average of the rotations of the surround-

ing elements to a node. They compute the solution by updating the
Cholesky factors of the system matrix by exploiting the nonzero pat-
tern of the factor due to a nested dissection ordering, observing as
we have done here that only the submatrices of the factor that lie on
a path in the elimination tree from a submatrix to the root of the tree
are affected. In order to have the simulations run fast, they trade off
an increased error tolerance for time by choosing which submatrices
in the factors to update. There are major differences between our
work and theirs. They have applied their work to nonlinear problems
in which rotations are the major source of the nonlinearity, while our
work in this article applies to linear problems. Our augmented ma-
trix approach models the stiffness system exactly, and the solutions
should be identical to the original system in exact arithmetic. They
have not applied their work to cutting problems addressed in this
work, which would require the ability to handle changes in the mesh
topology. The way that the two approaches exploit sparsity is also
different. Hecht et al. [2012] have chosen to update selected subma-
trices of the Cholesky factors, which requires dynamic updates to
the large data structure that stores the Cholesky factor and the update
matrices, increasing the storage needs. Our approach is to update the
solution, but not the Cholesky factors, by implicitly solving a Schur
complement system with a Krylov space solver, without forming the
Schur complement matrix. We exploit the sparsity not only in the
factor, but also in the right-hand-side vectors and the solutions, as
described in Section 3.3 and the Appendix. The time complexity of
the update step is bounded linearly by the number of nonzeros in the
(static) Cholesky factor (and the number of iterations of the Krylov
space solver) in our case, but the corotational approach cannot be
bounded in this manner since the factors are updated.

Finally, we consider the CHOLMOD approach of Chen
et al. [2008] for updating the Cholesky factors when rows or
columns are added or deleted from the matrix. This algorithm relies
on dynamic supernodal updates of the Cholesky factor. Unfortu-
nately, the number of columns to be added or deleted (change in
the rank of the factor) during the cutting of meshes is much larger
than can be efficiently performed with this software since we need
to remesh around the cut. Hecht et al. [2012] have come to similar
conclusions for their problem. Furthermore, dynamic updates to the
large sparse Cholesky factor and update matrix data structure are
expensive; instead, we work with an implicit Schur complement
approach whose time complexity can be bounded linearly by the
size of the Cholesky factor.

2.2 Iterative Solvers

Iterative solvers do not share the same limitations as precomputation
methods because all of the calculations needed to produce a solu-
tion occur at runtime. Thus, iterative solvers can be successfully
applied when stiffness matrix updates are caused by topological
mesh changes. However, using an iterative solver does require that
attention be paid to issues of convergence and stability.

Conjugate Gradient (CG) solvers have been frequently used with
finite-element simulations [Frank et al. 2001; Nienhuys and van der
Stappen 2001; Courtecuisse et al. 2010b]. The popularity and rel-
atively straightforward implementation of the CG algorithm make
the method a good benchmark for comparisons with alternative so-
lution methods. CG implementations that take advantage of sparse
matrix-vector multiplication have been used for interactive applica-
tions and can be accelerated with parallel [Chentanez et al. 2009]
and GPU implementations [Wu and Heng 2004]. However, the sim-
ulation community continues to seek solution methods that out-
perform CG, as real-time performance on higher-resolution models
promises improved realism.

ACM Transactions on Graphics, Vol. 35, No. 2, Article 18, Publication date: February 2016.



18:4 • Y.-H. Yeung et al.

Some of the most recent work in interactive finite-element sim-
ulation has explored the use of multigrid solution methods [Dick
et al. 2011a; Zhu et al. 2010; Georgii and Westermann 2006; Wu
and Tendick 2004]. Multigrid methods are among the most efficient
iterative solution approaches and accelerate convergence by reduc-
ing error at multiple spatial resolutions. However, they also have
higher fixed overhead costs than methods such as Conjugate Gra-
dient. A GPU implementation of multigrid by Dick et al. [2011b]
has demonstrated further speed improvement. Preconditioning can
also be used to speed up the iterative solvers. Courtecuisse et al.
[2010a] have demonstrated the asynchronous update of Cholesky
factors for preconditioning on a separate thread. The asynchronous
update of the factors is similar to our refactorization scheme. The
need for a multiresolution mesh makes multigrid naturally suited
for structured meshes, with hexahedral grids typically being used.
Although hexahedral grids do not lend themselves to smooth cutting
surfaces, recent work by Zhu et al. [2010] has demonstrated a way
to incorporate cutting into a simulation with a multigrid solver.

A final category of iterative solvers is explicit integration meth-
ods. Explained in detail in Bathe [1996], it was originally suggested
for use in surgery simulation by Bro-Nielsen [1998] and also im-
plemented in the software suite described in Joldes et al. [2009].
Explicit integration has been successfully used in real-time simula-
tion with dynamic and nonlinear finite-element models [Wu et al.
2001], and has been used in simulations involving surgery [Wittek
et al. 2010] and cutting [Serby et al. 2001]. Care must be taken in
selecting the timestep size for explicit integration because it can be
numerically unstable if the timesteps are too large.

2.3 Hybrid Solution Methods

Some simulations have been implemented using hybrid approaches
that employ two or more solution methods. Typically, a portion
of a model is designated as susceptible to cuts and deformation,
while the remainder is subject only to deformation. The strategy is
to apply a fast precomputation approach to the portion of a model
that cannot be cut and apply a slower method that supports cutting
to the remainder. For example, Wu and Heng [2005] and Heng
et al. [2004] combine the use of condensation and CG solvers,
while Cotin et al. [2000] combine the use of a linear superposition
method with explicit integration applied selectively to the dynamic,
cuttable portion of a mesh. Koçak et al. [2009] provided further
support for this approach by describing a framework for building
a consistent finite-element simulation when different regions of the
mesh are solved at different update rates.

3. METHODS

The augmented matrix approach presented here is a hybrid solution
method that employs both direct and iterative solution algorithms
without restricting cutting to a specific part of a model. An LDL⊤

factorization computed by a direct solver is used in conjunction with
the generalized minimal residual method (GMRES), an iterative al-
gorithm. Applied together, these methods compute fast and accurate
solution updates for a finite element model as it undergoes stiffness
matrix changes, including topological changes due to cutting.

This section is organized into three parts. First, we show how
matrix augmentation can be used to express changes to a stiffness
matrix. Next, we outline the steps required to solve an augmented
system of finite-element equations. Finally, we detail how the
sparsity inherent in the equations can be exploited to maximize
the efficiency of the implementation.

3.1 Augmented Finite-Element Matrices

In an elastostatic finite-element model, an object is represented by
a discrete mesh governed by a system of linear equations Ka = f ,
where K is the n×n global stiffness matrix, a represents nodal dis-
placements, and f represents forces applied to mesh nodes. These
are finite-element matrices and vectors that are constructed using
standard finite-element methods [Bathe 1996]. Here, n is the num-
ber of degrees of freedom in the model; for a 3D solid model, n
equals three times the number of mesh nodes.

If the i th degree of freedom is involved in a change to the model,
the i th row and the i th column of K will be modified to reflect
the change in its relationship with the rest of the mesh. Changing
any portion of K invalidates a previous factorization, necessitat-
ing a refactorization or an update. For a 3D finite-element model
represented on a mesh with good aspect ratios, stiffness matrix
refactorization can be performed in O(n2) operations [Lipton et al.
1979]. While this is better than the O(n3) complexity of matrix in-
version, it does not provide the solution speed needed for interactive
simulations.

The augmented formulation reflects changes to any limited por-
tion of K while preserving the utility of its precomputed LDL⊤

factors. We rely on an effective column-replacement procedure ap-
plied to a matrix as follows. Suppose that we want to replace the
third column of a matrix K0 in a system with a vector k and com-
pute the solution to the modified system. We can form the following
augmented system of equations that, if exact arithmetic is used, will
yield the same solution as the modified system after appropriate
permutation of the solution vector.

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

K0 k

e⊤
3 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a1

a2

z3

a4

...
a3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f1

f2

f3

f4

...
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (1)

where e⊤
3 is the third row vector of the identity matrix, and z3 is a

placeholder variable at the third component of the solution vector.
Note that multiplying the a vector by the last row of the aug-

mented matrix constrains z3 to be 0; thus, the whole third column
of K0 is multiplied by 0, canceling its effect on the system of equa-
tions. As the variable a3 is multiplied by k, this column acts as a
replacement for the third column of K0. This augmentation can be
cascaded to replace multiple columns at the same time.

Suppose that K , the global stiffness matrix at time t > t0, differs
from K0, the initial stiffness matrix at time t0, by m columns. We can
use the effective column-replacement procedure mentioned earlier
on these m columns to form an equivalent augmented system of
equations

KAaA = f A, (2)

where superscript A suggests that the matrix and vectors are in
augmented forms.

All topological mesh changes, including those resulting from
cutting or element subdivision, can be represented in a finite
element system of equations by replacing or deleting existing
stiffness matrix columns and expanding the matrix to accommodate
new columns. As described in Bathe [1996], the global stiffness
matrix for a model is assembled by summing the contributions of
the stiffness matrices of the individual elements. When a mesh is
cut, the affected elements can be removed from the mesh by sub-
tracting their contributions from the global stiffness matrix. Then, a

ACM Transactions on Graphics, Vol. 35, No. 2, Article 18, Publication date: February 2016.



Interactively Cutting Meshes Using Augmented Matrices • 18:5

set of replacement elements that respect the cut can be added to the
global stiffness matrix using the standard assembly procedure. For
a large mesh with a localized cut, this results in a small percentage
of columns in the global stiffness matrix being changed. These
changes can be implemented for a previously factored matrix using
the matrix augmentation technique presented previously.

Similarly, the imposition of Dirichlet boundary conditions that
specify the displacements of selected mesh nodes is accomplished
through the removal of the associated degrees of freedom from the
finite-element equations. In the standard formulation, this is ac-
complished by deleting the associated rows and columns from the
stiffness matrix. In the augmented matrix formulation, degrees of
freedom are removed via steps that resemble the effective column
replacement procedure in Equation (1). The following example il-
lustrates removal of the third degree of freedom from the augmented
system.

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

K0 e3

e⊤
3 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a1

a2

z3

a4

...
−f3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f1

f2

0
f4

...
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

−

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a3Ke3

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (3)

As seen from Equation (1), the last row constrains z3 to be 0.
Performing the multiplication of the third row yields

K0
31a1 + K0

32a2 + K0
33z3 + K0

34a4 + · · · − f3 = −K0
33a3.

Substituting z3 = 0 and rearranging the terms would get back the
third row of the standard formulation. Similarly, performing the
multiplication of the i th row other than the third row yields

K0
i1a1 + K0

i2a2 + K0
i3z3 + K0

i4a4 + · · · = fi − K0
i3a3,

which is identical to the i th row of the standard formulation after
substitution of z3 = 0 and rearrangements of terms.

Here f3 is moved from the right-hand-side vector to the solution
vector since the force applied to the third degree of freedom becomes
unknown after the imposition of the Dirichlet boundary condition.
Note the similar structure of Equations (1) and (3), demonstrating
that both topological changes and imposition of Dirichlet boundary
conditions can be accomplished using a unified augmentation proce-
dure. Next, we provide the complete algorithm for formulating the
augmented system that supports both replacement and expansion
affecting multiple matrix columns.

In the ensuing discussion, any matrix or vector without a 0 su-
perscript is assumed to reference the model at some time t > t0. At
the beginning of a simulation, the augmented system is identical to
the standard finite-element system at time t0. For timesteps t > t0,
KA retains K0 as a submatrix so that precomputed factors of K0

remain useful, and new rows and columns contained in rectangular
matrices J and H are appended to account for the updates in K .
Mathematically, KA has the form

(4)

Here, I is the identity matrix with dimension equal to the number
of degrees of freedom added to K at times t > t0 corresponding to

possible new nodes added to the mesh due to the cut. The columns
of I inserted into KA are effectively replaced by new columns in
K . As shown here, J contains a copy of all columns of K that
have been added or changed, and H contains rows from the identity
matrix. The matrices J and H are defined as

J∗,i =

{

K∗,Li
if Li /∈ D

I∗,Li
if Li ∈ D

, and (5)

Hi,∗ = ILi ,∗. (6)

Here, D is the set of degrees of freedom constrained by Dirichlet
boundary conditions, and L is an accessory data structure that maps
the indices of columns and rows in J and H to the indices of
columns in K0 to be replaced, that is, the i th column of J replaces
the Lth

i column of K0. Hence, the i th column of J contains a copy
of the Lth

i column of K .
Augmented displacement and force vectors must have sizes and

degree-of-freedom orderings consistent with the augmented stiff-
ness matrix. The augmented displacement vector, aA, can be par-
titioned into two parts denoted a1, a vector of length n, and a2, a
vector of length m. Here,

aA =

[

a1

a2

]

, (7)

(a1)i =

{

ai if i /∈ L,
zi if i ∈ L.

(8)

(a2)i =

{

aLi
if i /∈ D,

−fLi
if i ∈ D.

(9)

As in Equations (1) and (3), the z terms are constrained to have a
value of zero, the a terms represent unknown nodal displacements,
and the f terms represent the unknown nodal forces when a new
Dirichlet boundary condition is imposed.

The augmented force vector is also partitioned into two parts: f̂
of length n, and a zero vector of length m. Some components of
f̂ have terms subtracted to account for imposition of new Dirichlet
boundary conditions. Here,

f A
i =

[

f̂
0

]

, (10)

f̂ =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

fi −
∑

j∈D

Ki,jaj i /∈ D,

−
∑

j∈D

Ki,jaj i ∈ D.
(11)

The augmentation procedure can be summarized by the following
four steps.

(1) Construct the accessory data structures L and D.
(2) Form matrices J and H using Equations (5) and (6). Append

J to the right side of the stiffness matrix, K0, and append H to
its bottom, as shown in Equation (4).

(3) Form the right-hand-side vector f A using Equations (10) and
(11).

(4) After computing the solution, copy terms in aA to the appro-
priate positions in the nodal displacement and force vectors as
indicated by Equations (8) and (9), discarding the zLi

terms.

ACM Transactions on Graphics, Vol. 35, No. 2, Article 18, Publication date: February 2016.



18:6 • Y.-H. Yeung et al.

3.2 Solution Method

Since we assume a conservative material model, the reduced stiff-
ness matrix K is guaranteed to be symmetric positive definite. Thus,
it can be factored as K0 = L0 D0 L⊤

0 , where L0 is a lower triangu-
lar matrix and D0 is a diagonal matrix. If new degrees of freedom
are added to the model in subsequent timesteps, the factors can be
padded as follows.

[

K0 0
0 I

]

R

=

[

L0 0
0 I

]

L

[

D0 0
0 I

]

D

[

L⊤
0 0

0 I

]

L⊤

, (12)

where I is the identity matrix with dimension equal to the number
of columns added to K , as in Equation (4). Using the matrix names
shown earlier, the equation can be stated more compactly as R =

LDL⊤. Note, particularly, that R refers to the global-stiffness matrix
from time t0 padded so that its dimension matches that of K in the
current timestep.

Substituting the definitions provided in Equations (4), (7), (10),
and (12) into the augmented system of equations given in Equa-
tion (2) gives

[

R J
H 0

] [

a1

a2

]

=

[

f̂
0

]

. (13)

Performing the multiplication in Equation (13) yields the following
two equations:

R a1 + J a2 = f̂ , (14)

H a1 = 0. (15)

Equation (14) can be rewritten as

a1 = R−1
(

f̂ − J a2

)

. (16)

Substituting Equation (16) into Equation (15) yields
(

HR−1J
)

a2 = HR−1f̂ . (17)

The solution of Equation (13) can then be broken into three
steps.

(1) Calculate the right-hand side of Equation (17). Each occur-
rence of the multiplication R−1 x, for any vector x, can be
efficiently calculated using the precomputed LDL⊤ factors of
R via triangular matrix solves with forward and back substi-
tution. We use this observation to first calculate the vector y,
where y = R−1f̂ , then calculate the product H y to arrive at
the vector on the right-hand side of Equation (17).

(2) Solve Equation (17) to find a2 using an iterative solver. Since
the right-hand side of Equation (17) is known from Step 1,
an iterative solver can be used to successively improve es-
timates of a2 if the multiplication (HR−1J )a2 can be per-
formed. J and H have known values, and by making use of
the LDL⊤ factors of R again, multiplication with R−1 can
be accomplished. As in Step 1, performing this multiplication
requires triangular matrix solves with forward and back sub-
stitution. We use GMRES, a Krylov space iterative solver that
requires only one or two matrix-vector multiplications per it-
eration. This choice minimizes the number of triangular solves
needed.

(3) Substitute a2 into Equation (16), then solve for a1. This step
requires the use of the LDL⊤ factors a final time to perform
the multiplication of R−1 with the known vector (f̂ − J a2).

3.3 Accelerated Implementation Using Sparsity

3.3.1 Exploiting Sparsity in the Solution Steps. A careful ex-
amination of the sparsity of the matrices and vectors in Equa-
tions (17) and (16) allows us to maximize the efficiency of our
implementation. The sparsity analysis is expressed using concepts
from graph theory that are outlined in the Appendix. Each of the
three solution steps outlined for Equations (16) and (17) in Sec-
tion 3.2 involves computation with sparse vectors and matrices. We
carefully exploit this sparsity to avoid unnecessary computation.

Sparsity of Solution Step 1: The right-hand side of Equation (17)
is evaluated by computing

HR−1f = H L−⊤D−1
(

L−1f
)

©y

. (18)

By applying Theorem 1 given in the Appendix, we find that
struct(L−1f ) ⊆ closureL(f ). This result says that the nonzero com-
ponents in the vector in the left-hand side are given by components
that can reach the nonzero components in the vector f by an edge
in a directed graph representation of the matrix L. Details are in
the Appendix. Hence, only the submatrix of L corresponding to
closureL(f ) is needed to evaluate the term L−1f . We observe that
the vector f is typically sparse because external forces are applied
to only a small fraction of the nodes while a mesh is being cut or
deformed.

Consider that after we have computed the vector y in Equa-
tion (18), it is projected through multiplication by the sparse matrix
H . H is composed of a few rows from an identity matrix, and
has many more columns than rows. Only m columns of H contain
nonzero components; consequently, all but m components of y are
multiplied by 0 and do not contribute to the value of the right-hand-
side vector. Let the components of y necessary for the calculation
be denoted ŷ, such that Hŷ = Hy. Then,

ŷi =

{

yi if H∗,i �= 0,

0 otherwise.
(19)

By applying Theorem 2 from the Appendix, we find that only the
submatrix of L⊤ corresponding to closureL(ŷ) is needed to complete
the evaluation of the right-hand side of Equation (17).

Sparsity of Solution Step 2: During each GMRES iteration in
solution Step 2, the solution estimate a2 is projected by a sparse
matrix J to a larger space.

(

HR−1J
)

a2 = H L−⊤D−1L−1 (Ja2)

©w

. (20)

Because the product vector Ja2 is sparse, only the submatrix of L
corresponding to closureL(Ja2) is useful. As in Step 1, the vector
w is projected through multiplication by H . Hence, during the
backward substitution, only a submatrix of L⊤ corresponding to
closureL(w) is needed for the computation.

Sparsity of Solution Step 3: Since in Step 3 both f and Ja2

are sparse, the difference vector f − Ja2 is also sparse. Hence,
the forward substitution can be sped up by considering only those
needed rows of L. However, since the solution vector α1 is not
projected by a sparse matrix, the whole matrix L⊤ is needed in the
backward substitution.

We note that, in both Steps 1 and 3, the triangular solves are only
done once; thus, we modify these routines to accept two additional
inputs that indicate the sparsity of the right-hand-side vector and the

ACM Transactions on Graphics, Vol. 35, No. 2, Article 18, Publication date: February 2016.



Interactively Cutting Meshes Using Augmented Matrices • 18:7

Table I. A Summary of the Calculation Steps Required by the Augmented Method,

along with a Complexity Bound for Each Step

Computation Complexity

Initialization: t = t0
1 Compute LDL⊤ factorization of KA0 O(n2) for 3D meshes; O(n3/2) for 2D meshes
Real-time update steps: t > t0
1 Update K O(m)
2 Compute J and H O(m)
3 Solution Step 1 O(| closureL(f ) | + | closureL(ŷ) |) ≤ O(|L|)
4 Solution Step 2 O(| closureL(Ja2) | + | closureL(ŷ) |) · niter ≤ O(|L| · niter )
5 Solution Step 3 O(|L|)
Note: n is the order of the initial stiffness matrix, m is the number of columns changed by cutting, and |L| in solution Steps 1, 2, and 3 is the number of

nonzeros in L, which is bounded by o(n4/3) for 3D meshes and O(n log n) for 2D meshes. The complexity upper bound for an entire update iteration is

O(|L| · niter ), where niter is the number of GMRES iterations needed for convergence.

indices of needed components in the solution vector. However, the
situation is different for Step 2, in which GMRES executes multiple
iterations before converging. In this case, to reduce the overhead
of indirect indexing, we explicitly form the needed submatrices by
copying the needed rows and columns from L and L⊤.

3.4 Complexity Analysis

Key parts of the complexity analysis hinge on the sparsity of the
stiffness matrix, the complexity of the LDL⊤ factorization, and the
sparsity of the factors. The number of nonzeros in each column of
the global stiffness matrix is dependent on the connectivity between
nodes. Since in a well-formed mesh the number of edges incident on
a single node is limited by geometric considerations, the number of
nonzeros per column can be bounded by a constant that is indepen-
dent of the total number of degrees of freedom in the model. Due to
this assumption and since sparse matrix data structures are used in
this work, the complexity of all the steps in the augmented algorithm
that update or otherwise operate on stiffness matrix columns is de-
pendent only on the number of columns affected, not the number of
rows in the matrix.

The derivation of complexity bounds for the LDL⊤ factorization
can be found in Lipton et al. [1979]. Their work shows that using ef-
ficient sparse matrix algorithms, an LDL⊤ factorization of an n×n
stiffness matrix for a 3D finite-element model can be accomplished
with O(n2) operations; the resulting lower triangular matrix L will
contain O(n4/3) nonzeros if the mesh elements have good aspect
ratios. Therefore, without imposing any restrictions on the force
vector, we can say that the triangular solves needed in Steps 1 and 3
of the solution algorithm described in Section 3.2 can be completed
in O(n4/3) operations.

Considering the sparsity analysis in the previous section raises
the question of whether sparsity could provide a basis for a tighter
complexity bound. In solution Step 1, the complexity depends on
| closureL(f ) | and | closureL(ŷ) |. Theorem 3 from the Appendix
informs us that the sizes of the closures depend on the length of the
path from the root of the elimination tree to the nodes in struct(f )
and struct(ŷ). If those nodes are close to the root, the sizes would
be small constants, independent of n. On the other hand, if they are
leaves of the elimination tree, the sizes would be close to n, and the
cost of the triangular solve step would be linear in the number of
nonzeros in L, O(n4/3). In general, the cost lies in between these
two extremes, and the upper bound of O(n4/3) is not tight.

The complexity for each step in the algorithm, including the
precomputation phase and the real-time update loop, is detailed in
Table I. Summing the complexity of each of the real-time update
steps for a 3D model and simplifying the expression to retain only
the dominant terms results in a complexity bound for an update

Fig. 1. Refactorization process.

iteration of O(n4/3 · niter ), where niter is the number of GMRES
iterations needed for convergence. Note that niter is influenced by
m, the number of columns updated, rather than n, the dimension of
the stiffness matrix.

3.5 Preconditioning

The GMRES iteration in Step 2 can be preconditioned to reduce
the number of iterations. One possible preconditioner is a matrix
M that approximates HR−1J in Equation (17). However, there are
two drawbacks of this approach: neither forming the matrix HR−1J
nor minimizing ‖M(HR−1J ) − I‖ is computationally cheap. Also,
M has to be recomputed whenever there is a change to the mesh.
Another possible preconditioner is a matrix product HSJ such that
S approximates R−1. In this case, S needs to be computed only
once and can be reused in later timesteps, even after changes to the
mesh. In this article, we use two approximations of S: the inverse
of D in the precomputed LDL⊤ factors of R (for all meshes),
and a tridiagonal sparse approximate inverse (SPAI) [Benson and
Federickson 1982] of the matrix R (for Stanford Bunny, brain, and
eye meshes).

3.6 Refactorization

The augmented matrix approach produces a solution for a finite-
element model with a time-varying stiffness matrix more quickly
than a full refactorization would allow so long as m, the number of
modified columns, is sufficiently small. As changes to a stiffness
matrix accumulate across a growing number of columns, the aug-
mented method begins to slow down because the size of the a2 vector
also increases. To maintain fast solution speeds for an interactive
simulation, we prevent m from growing indefinitely by periodically
recomputing a full LDL⊤ factorization of K in a process that runs
concurrently with the simulation loop. Figure 1 shows the changes
in the equations before and after refactorization. Let m′ denote the
number of columns modified due to cutting after the refactorization
was initiated. When freshly computed factors are used to replace the

ACM Transactions on Graphics, Vol. 35, No. 2, Article 18, Publication date: February 2016.



18:8 • Y.-H. Yeung et al.

Fig. 2. Test meshes are shown after cuts described in the experiments in Section 4.2.

original factors, the size m + m′ is reduced to m′. The rate at which
matrix changes accumulate will vary widely and depend both on
the nature of a simulation and how quickly and aggressively a user
manipulates a model. Even considering a single user and a single
simulation, the growth rate of m will vary unevenly across time as
an interactive task progresses through moments of cutting, grasping,
and pulling. Since the speed of our solution method is dependent
on m + m′, the simulation update rate it provides is affected by
the speed of mesh cutting and other manipulations. The best way
to address this issue will depend on the application, but in some
contexts, it is reasonable to limit the rate at which cutting can occur
in order to maintain a desired update rate. Variability in the update
rate arising from the refactorization process can be smoothed by
buffering the computed solutions.

To provide some context for how refactorization will impact sim-
ulation speed, the results in Figures 5, 7, 10(a), 12, and 13 indicate
the simulation step at which the cumulative time for mesh updates
equals the time for matrix factorization, assuming one newly cut
node per update and beginning with an empty list of mesh modi-
fications. In practice, the list of recent mesh modifications will be
nonempty when a refactorization step completes, there will be up-
date steps that involve changes to multiple nodes, and many update
steps will not involve any topological mesh changes. Depending
on these factors, actual simulation update rates could be faster or
slower when refactorization concludes than the times shown in the
graphs. It is also feasible to run multiple refactorization processes
concurrently, so that mesh changes get incorporated into the factors
as quickly as possible and the size of m is kept to a minimum. If
multiple processors are available, this is one way to maximize the
update rate since it is not necessary for one factorization process to
complete before another begins.

4. RESULTS

The augmented matrix solution method was evaluated through
finite-element deformation and cutting experiments with five model
types. This section provides relevant implementation details and
presents experimental data, including comparisons with both non-
preconditioned and Jacobi-preconditioned CG solvers. ILU0 and
ILUT preconditioners for CG were tested, but the reduction in num-
ber of iterations did not compensate for the increased computation
complexity per iteration.

4.1 Implementation

All experiments were conducted on a desktop computer with four 8-
core Intel Xeon E5-2670 processors running at 2.6GHz with 20GB
cache and 256GB RAM. All data represent an average timing from
20 runs.

The precomputed LDL⊤ factorizations of the stiffness matrices
were computed using OBLIO, a sparse direct solver library [Dobrian
and Pothen 2006]. Both the GMRES iterative solver used in solution
Step 2 and the CG solver used for comparison purposes were from
the Intel Math Kernel Library (MKL). The remainder of the code
was written by the authors.

All matrices were stored in sparse matrix format to reduce both
the storage space and access time. Since the closure of a set of
indices in the graph of a triangular matrix can be found effectively
column by column, and OBLIO uses supernodes in matrix factoriza-
tion, all matrices were stored in compressed sparse column (CSC)
format for efficient column access.

4.2 Model Meshes

Five types of solid tetrahedral meshes were used to evaluate the
augmented matrix solution method in comparison to a traditional
CG method. Meshes are shown in Figures 2 and 3.

(1) Elongated Beam: A group of five elongated rectangular solids
with varying lengths were generated. Nodes were placed at reg-
ularly spaced grid points on a 5 × 5 × h grid, where h ranged
from 4 to 1024. The largest beam mesh has 25, 600 nodes and
81, 840 elements. Each block mesh was anchored at one end of
the solid. All elements had good aspect ratios and were arranged
in a regular pattern. However, models with greater degrees of
elongation produced more poorly conditioned systems of equa-
tions, as fixation at only one end meant that longer structures
were less stable. Thus, experiments with this group of meshes
illuminates the way that solver performance varies with stiff-
ness matrix conditioning. The estimated condition numbers of
the beam mesh stiffness matrices range from 1.14 × 103 to
3.29 × 1012.

(2) Brick: A group of five rectangular brick solids with varying
mesh resolutions were generated. Each of the models had
the same compact physical dimension of 1 × 1 × 2. An ini-
tial good-quality mesh was uniformly subdivided to produce
meshes of increasingly fine resolution. These meshes allowed

ACM Transactions on Graphics, Vol. 35, No. 2, Article 18, Publication date: February 2016.



Interactively Cutting Meshes Using Augmented Matrices • 18:9

Fig. 3. Renderings of brain and eye models are shown with incisions used in the experiments reported in Section 4.2. (a) The incision on the brain model

shown is on the superior portion of the right frontal lobe. (b) The incision on the eye model shown is along the corneal limbus, to correct for astigmatism.

us to examine solver performance relative to node count for
fixed model geometry. Similar to the beam meshes, zero-
displacement boundary conditions were applied to one face of
the block. The largest brick mesh has 18, 081 nodes and 80, 000
elements. The estimated condition numbers of the brick mesh
stiffness matrices range from 2.19 × 103 to 1.18 × 105.

(3) Stanford bunny: A 20, 133 node, 62, 698 element mesh of the
Stanford bunny [Turk and Levoy 1994] is used to demonstrate
solver performance on an irregular mesh. Zero-displacement
boundary conditions are applied to nodes on the bottom of the
bunny’s feet. The bunny mesh stiffness matrix has an estimated
condition number of 6.17 × 107.

(4) Eye: Incisions into a human eye model [Crouch and Cherry
2007] were used to demonstrate applicability to surgery simula-
tion. Clear cornea cataract incisions were made into two models
with resolutions containing 4, 444 nodes and 14, 841 elements,
and 16, 176 nodes and 52,772 elements. Zero-displacement
boundary conditions were applied to the posterior portion of
the globe. The eye mesh stiffness matrices have estimated con-
dition numbers of 2.66 × 106 and 1.62 × 107, respectively.

Relaxing limbal incisions used to treat severe astigmatism
were also simulated using the eye models. Simulation of the
relaxing limbal incision procedure is of particular interest be-
cause the deformation induced by the incisions is not incidental
to the procedure but rather is the motivating reason for per-
forming the procedure. Astigmatism causes blurred vision due
to an aspherical corneal surface, meaning that the corneal cur-
vature is higher along some cross-sections than others. This
variation in curvature can be reduced for patients through lim-
bal incisions that are carefully placed around the periphery of
the cornea to create a flattening effect along the meridian of
highest curvature. Although guidelines exist for selecting ap-
propriate placement, depth, and length for these incisions, such
guidelines make a number of assumptions about a patient’s eye
anatomy and cannot fully account for individual variations in
corneal topography and thickness. Thus, simulations of this
procedure might be useful both for individualizing treatment
plans and as a teaching tool in medical education. While the
tissue motion that is induced by relaxing limbal incisions is
measured in millimeters, the resulting change in the optics of
the cornea can be very significant, correcting up to 3 diopters
of astigmatism. Since the cornea is responsible for two-thirds

Fig. 4. | closureL(Ja2) | versus node count, shown for cutting Steps 2, 8,

and 16.

of the focusing power of the eye, small changes in corneal cur-
vature can have a large impact on visual acuity. A linear elastic
material model is appropriate for this application because the
deformations are small in absolute terms. However, large, med-
ically important changes in patients’ refractive error result from
these small deformations.

(5) Brain: Two resolutions of a human brain model (contributed by
INRIA to the AIM@SHAPE Shape Repository) were used to
demonstrate applicability to surgery simulation on an organ of
complicated structure. The models contained 23, 734 nodes and
81, 746 elements, and 50, 737 nodes and 167, 366 elements.
Zero-displacement boundary conditions were applied to the
interior portion of the brain. The small brain mesh stiffness
matrix has an estimated condition number of 4.64 × 107. The
condition estimation failed for the large brain mesh due to
insufficient memory.

On average, the nodes in the brick meshes have a higher degree of
connectivity than those in the elongated beam meshes. This is due
to a greater proportion of surface nodes in the beam models versus
interior nodes in the brick models. The increased connectivity leads

ACM Transactions on Graphics, Vol. 35, No. 2, Article 18, Publication date: February 2016.



18:10 • Y.-H. Yeung et al.

Fig. 5. Deformation update rates are shown for both the augmented and

CG methods as constraints are progressively added to an increasing number

of nodes in (a) beam and (b) brick meshes.

to a higher percentage of nonzeros in the stiffness matrix factors and
larger sizes for the closures referenced in Table I. These differences
have a significant impact on the relative performance of the solution
methods. Figure 4 compares | closureL(Ja2) | for the different test
meshes during the cutting experiments. The set closureL(Ja2) is
the largest of the closures referenced in the complexity analysis in
Table I, and is a measure of the size of the triangular system to
be solved. As expected, brick meshes have larger closures than the
other two meshes.

4.3 Experiments

Performance was examined through two types of experiments: de-
formation of intact meshes, and deformation of meshes undergoing
cutting.

4.3.1 Deformation of Intact Meshes. In this group of experi-
ments, we applied an increasing number of nonzero essential bound-
ary conditions to mesh nodes to create deformation. Figure 5 shows
how solution time varied with the number of constrained nodes for

Fig. 6. Update rates are shown for the series of (a) beam and (b) brick

meshes. CG results are shown with red lines, and augmented method results

are shown with blue lines. Dotted lines show the results for deformation

Step 2 across the series of test mesh sizes. Dashed lines show results for

deformation Step 8, and solid lines for deformation Step 16.

instances of the beam and brick meshes. It is interesting to note the
dramatically different results for the beam meshes versus the brick
meshes in these experiments. As shown in Figure 5(a), the aug-
mented method maintained a high update rate for the beam meshes
throughout, and vastly outperformed the CG method. The beam
deformation experiments ran so fast with the augmented method
that the experiments concluded before there was time to compute
a refactorization. In the example shown in the figure, the update
cycles ran at rates between 137–263Hz.

For brick meshes, the augmented method outperformed CG as
constraints were applied to the first one to two dozen nodes, but
performance dropped as the number of constrained nodes increased,
eventually resulting in similar update rates between the augmented
method and CG. However, since the brick mesh experiments ran
more slowly overall, refactorization played a meaningful role in the
augmented solution process. In the results shown in Figure 5(b), a
refactorization process running concurrently with the solution loop

ACM Transactions on Graphics, Vol. 35, No. 2, Article 18, Publication date: February 2016.



Interactively Cutting Meshes Using Augmented Matrices • 18:11

Fig. 7. Update rates are shown for the augmented and CG methods as a

cut is advanced through a (a) beam mesh and (b) brick mesh.

Fig. 8. A portion of the tetrahedral brick test mesh. Node A has 13 con-

nected nodes (colored in orange) whereas Node B only has 5 (colored in

red).

completed after approximately 16 deformation steps. Thus, we see
that the augmented method outperformed CG by a modest margin
in the brick deformation experiment.

Figure 6 is a log-log plot that shows how solution times varied
for different sizes of beam and brick meshes. These graphs show
that the augmented method ran significantly faster than CG for the

Fig. 9. Update rates are shown for the series of (a) beam and (b) brick

meshes. CG results are shown with red lines, and augmented method results

are shown with blue lines. Dotted lines show the results for cutting Step 2

across the series of test mesh sizes. Dashed lines show results for cutting

Step 8, and solid lines for cutting Step 16.

beam meshes except for the very smallest instance that had only 100
nodes. Most strikingly, on the largest beam mesh, which had 25,600
nodes, the augmented method provided updates at a rate of 113Hz,
while CG ran at 3 × 10−5Hz. For the brick meshes, the augmented
method ran faster than CG, although the margin was smaller.

4.3.2 Deformation of Meshes Undergoing Cutting. In this
group of experiments, we made an advancing planar cut into the
volume of each mesh. As a cut progressed, a duplicate of each
node along the cut path was added to the mesh, and connectivity
was modified so that elements on opposite sides of the cut became
separated. These changes required expanding the stiffness matrix
and modifying existing entries in the stiffness matrix at dozens of
locations each time a node was duplicated. Opposing force vectors
were applied to selected surface nodes to pull the cut faces apart.
Figure 2 shows the three test meshes at the initial stages of cutting.

ACM Transactions on Graphics, Vol. 35, No. 2, Article 18, Publication date: February 2016.



18:12 • Y.-H. Yeung et al.

Fig. 10. Timing results are provided for the bunny mesh cutting experi-

ment. (a) Update rates are shown for the augmented and CG methods as

a cut is advanced. (b) The allocation of computation time to steps of the

augmented method is shown.

The differences between the results for the beam and brick meshes
are even more pronounced for the cutting experiment than for the
deformation experiment. Figure 7(a) shows that the augmented
method outperformed CG in the beam-cutting experiments, pro-
viding updates in the range 49–145Hz in the time period before
the refactorization completed. CG provided updates in the range
0.26–172Hz for the same cutting steps, but failed to converge to
any solution for seven of those steps. However, CG provided con-
sistently better performance for the brick mesh cutting experiment,
as shown in Figure 7(b). The zig-zag appearance of the CG results
was caused by the connectivity pattern of nodes in the tetrahedral
brick mesh. Periodically, nodes with a higher degree of connectivity
were cut. These cutting steps required a larger number of changes to
the stiffness matrix and resulted in periodically slower CG solution
times. The connectivity pattern is illustrated in Figure 8.

Figure 9 shows that the beam vs. brick performance trend held
over a variety of mesh sizes. The augmented method provided the
fastest updates when cutting a beam mesh, maintaining an update
rate over 50Hz even with a relatively large cut in a 25,600 node

Fig. 11. (a) The maximum number of GMRES iterations required by the

beam and brick meshes of a specific size. (b) Relative residual norm versus

cut depth. For a solution x̂ to the system Ax = b, relative residual norm is

defined as ‖Ax̂ − b‖2/‖b‖2.

mesh. Particularly for the larger beam meshes, CG was often unable
to provide any solution. However, CG reliably provided the fastest
updates when cutting a brick mesh.

Results from the bunny mesh-cutting experiment are shown in
Figure 10. Here, we find that the nonpreconditioned augmented
method performed best, with a minimum update rate of 14Hz dur-
ing the period before refactorization completes. As seen in some
of the previous experiments, the update rate provided by the aug-
mented method diminishes as the size of the cut and complexity of
the attendant remeshing grows. However, the augmented method
is still faster than the 0.3–6.8Hz update rate provided by precondi-
tioned CG in this experiment. Figure 10(b) shows that the bulk of the
computation time is spent in the GMRES iteration of Step 2 in the
bunny mesh-cutting experiment. The dominance of the GMRES it-
erations in the distribution of computing time is also a feature of the
experiments with beam and brick meshes. However, Figure 11(a)
demonstrates that the number of GMRES iterations needed for con-
vergence does not grow with model size.

ACM Transactions on Graphics, Vol. 35, No. 2, Article 18, Publication date: February 2016.



Interactively Cutting Meshes Using Augmented Matrices • 18:13

Fig. 12. Timing results are provided for the eye meshes of (a) 4,444 nodes

and (b) 16,176 nodes.

Results from the eye mesh-cutting experiments are shown in
Figure 12, and those from the brain mesh-cutting experiments are
shown in Figure 13. Here, we show that the augmented method
outperformed the CG method with and without preconditioning.
However, the update rate for the brain meshes remains lower than
desired for interactive simulation. Further reduction of the solution
times for large, dense meshes is a priority for future work.

The experimental results also indicate that the augmented so-
lution method does not lead to problems with solution accuracy.
Figure 11(b) shows that the relative error of the computed solutions
remains flat as a brick mesh is cut and increases only gradually as
the less stable beam mesh is cut.

5. CONCLUSIONS AND FUTURE WORK

There are two primary reasons for the disparity between the beam
mesh and brick mesh results. First, the beam meshes have a higher
percentage of surface nodes, resulting in sparser matrix factors and
smaller closure sizes, as shown in Figure 4. Smaller closures result
in faster execution of the augmented solution steps, particularly the
GMRES iterations in Step 2. Thus, we see that the structure of a

Fig. 13. Timing results are provided for the brain meshes of (a) 23,734

nodes and (b) 50,737 nodes.

mesh is an important factor in determining whether the augmented
method will be a particularly efficient solution method for a given
problem. In general, the augmented method is particularly attractive
for meshes that have greater amounts of surface area relative to their
volume.

The second reason for the wide disparity in results is that the brick
meshes had particularly well-conditioned stiffness matrices, while
the beam meshes had more poorly conditioned stiffness matrices.
Iterative methods can converge very slowly or fail to converge at
all when systems are not sufficiently well conditioned. In contrast,
the direct solution approach provided by the augmented factors
is more robust in poorly conditioned scenarios. We conclude that
the augmented method is particularly appropriate when a problem
would benefit from the robustness of a direct solution approach, but
also needs the flexibility to update the system due to cutting or other
changes.

In summary, we have demonstrated the feasibility of using aug-
mented matrices to provide fast updates for finite-element models
undergoing cutting and deformation. The augmented method has
been experimentally shown to offer advantages both in speed and

ACM Transactions on Graphics, Vol. 35, No. 2, Article 18, Publication date: February 2016.



18:14 • Y.-H. Yeung et al.

reliability for certain classes of problems. We plan to explore the
applicability of this method to a wider range of problems in future
work. One particular application to investigate is surgery simulation,
for which there is evidence that viscoelastic and hyperelastic ma-
terial models are often appropriate for soft-tissue modeling [Fung
1993; Lapeer et al. 2010; Marchesseau et al. 2010]. Nonlinear ma-
terial models can require stiffness matrix updates at each timestep,
even without cutting. However, in the case of tool-tissue interac-
tion, acceptable nonlinear accuracy might possibly be achieved by
updating the stiffness of a subset of only the most deformed ele-
ments or those closest to the contact area. This raises the interesting
possibility of using the augmented matrix method for fast updates
of nonlinear materials.

Another direction for future investigation is inspired by the vari-
ety of recent publications that have reported acceleration of solution
methods via GPU implementations [Dick et al. 2011b; Courtecuisse
et al. 2010b; Joldes et al. 2010; NVIDIA 2015]. Our augmented
matrix solution method could likely be similarly accelerated if the
triangular solves and/or GMRES algorithm were implemented in a
way that makes efficient use of GPU processing.

APPENDIX

Graph theory concepts relied on in the discussions of sparsity and
complexity are outlined here. Included are the definitions and the-
orems referenced in Section 3.3. Note that, in this discussion, the
matrix A is nonsymmetric. We apply these results to the lower
and upper triangular factors of the stiffness matrix K , although the
results here are more general.

Definition 1. An n × n sparse matrix A can be represented by
a directed graph G(A) whose vertices are the integers 1, . . . , n and
whose edges are

{(i, j ) : i �= j, and Aij �= 0}.

This set of indices is called the structure of A.

Definition 2. The transitive reduction of a directed graph G(L)
is the graph obtained by removing edges (i, j ) whenever there is a
directed path (that does not use the edge (i, j )) joining vertices i
and j . An elimination tree of a Cholesky factor L is the transitive
reduction of the directed graph G(L) (in this case, it is a tree rather
than a directed acyclic graph) [Liu 1990].

Definition 3. The structure of a vector x with n components is

struct(x) := {i : xi �= 0},

which can be interpreted as a set of vertices, W, of the directed
graph of G(A) such that i ∈ W if and only if xi �= 0 when solving
Ax = b or Ay = x. In this article, for a vector x, closureA(x) refers
to closureA(struct(x)).

Definition 4. Given a directed graph G(A) and a subset of its
vertices denoted by W, we say that W is closed with respect to A if
there is no edge of G(A) that joins a vertex not in W to a vertex in
W; that is, vj ∈ W and Aij �= 0 implies that vi ∈ W. The closure
of W with respect to A is the smallest closed set containing W,

closureA(W) :=
⋂

{U : W ⊆ U, and U is closed},

which is the set of vertices of G(A) from which there are directed
paths in G(A) to vertices in W.

THEOREM 1. Let the structures of A and b be given. Whatever
the values of the nonzeros in A and b, if A is nonsingular, then

struct(A−1b) ⊆ closureA(b) .

The proof of Theorem 1 can be found in Gilbert [1994].

THEOREM 2. Suppose that we need only some of the components
of the solution vector x of the system Ax = b. Denote the needed
components by x̂. If A is nonsingular, then the set of components in
b needed is closureA⊤ (x̂).

PROOF. Let values be given for which A is nonsingular. Renumber
the vertices of G(A⊤) so that closureA⊤ (x̂) = {1, 2, . . . , k} for some
k ≤ n. Then, Ax = b can be partitioned as

(

B D
C E

)(

y
z

)

=

(

d
e

)

,

where B is k × k. By the definition of closureA⊤ (x̂), there is no
edge (i, j ) with i ∈ closureA⊤ (x̂) and j /∈ closureA⊤ (x̂). Therefore,
D = 0. Then, By = d . Since A is nonsingular, B is also nonsin-
gular. Thus, x̂ can be computed by solving only By = d , which
implies that only closureA⊤ (x̂) is needed to compute the components
in x̂.

THEOREM 3. Let A = LL⊤ be a Cholesky factorization and W

be a subset of vertices in G(L). If r is the root of the elimination
tree T of L, then

closureL(W) =
⋃

v∈W

{r
T
⇒ v},

where r⇒T v is the path from r to v in T , including all intermediate
vertices along the path.

PROOF.

(i)
⋃

v∈W
{r⇒T v} ⊆ closureL(W) :

For any edge between a node v and its parent u in T , there is
an edge (u, v) in G(L). By definition, if v ∈ closureL(W), then
u ∈ closureL(W). Since W ∈ closureL(W), all ancestors of W
must be in closureL(W).

(ii) closureL(W) ⊆
⋃

v∈W
{r ⇒T v} :

If a node u /∈
⋃

v∈W
{r ⇒T v}, there must be a path from a

node w ∈
⋃

v∈W
{r ⇒T v} to u. Hence, there is also a directed

path from w to u in G(L). Since L is lower triangular, there is
no cycle in G(L). Hence, there is no directed path from u to w
and u /∈ closureL(W).

ACKNOWLEDGMENTS

We are grateful to the owners of the models used in the experiments.
The Stanford bunny model is provided courtesy of the Stanford
Computer Graphics Laboratory by the Stanford 3D Scanning
Repository. The human eye model was created by one of us (JRC).
The human brain model is provided courtesy of INRIA by the
AIM@SHAPE Shape Repository. We thank the reviewers for their
careful reading and helpful suggestions.

REFERENCES

Ugo Andreaus, Ivan Giorgio, and Angela Madeo. 2014. Modeling of the

interaction between bone tissue and resorbable biomaterial as linear elastic

materials with voids. Zeitschrift für angewandte Mathematik und Physik

66, 1, 209–237.

K. Bathe. 1996. Finite Element Procedures. Prentice-Hall, Upper Saddle

River, NJ.

ACM Transactions on Graphics, Vol. 35, No. 2, Article 18, Publication date: February 2016.



Interactively Cutting Meshes Using Augmented Matrices • 18:15

M. W. Benson and P. O. Federickson. 1982. Iterative solution of large

sparse linear systems arising in certain multidimensional approximation

problems. Utilitas Mathematica 22, 127–140.

J. Berkley, G. Turkiyyah, D. Berg, M. Ganter, and S. Weghorst. 2004. Real-

time finite element modeling for surgery simulation: An application to vir-

tual suturing. IEEE Transactions on Visualization and Computer Graphics

10, 3, 314–325. DOI:http://dx.doi.org/10.1109/TVCG.2004.1272730

J. Berkley, S. Weghorst, H. Gladstone, G. Raugi, D. Berg, and M. Ganter.

1999. Banded matrix approach to finite element modeling for soft tissue

simulation. Virtual Reality: Research, Development & Applications 4,

203–212.

M. Bro-Nielsen. 1998. Finite element modeling in surgery simula-

tion. Proceedings of the IEEE 86, 3, 490–503. DOI:http://dx.doi.org/

10.1109/5.662874

Morten Bro-Nielsen and Stephane Cotin. 1996. Real-time volumetric de-

formable models for surgery simulation using finite elements and conden-

sation. Computer Graphics Forum 15, 3, 57–66. DOI:http://dx.doi.org/

10.1111/1467-8659.1530057

Yanqing Chen, Timothy A. Davis, William W. Hager, and Sivasankaran

Rajamanickam. 2008. Algorithm 887: CHOLMOD, supernodal sparse

Cholesky factorization and update/downdate. ACM Transactions on Math-

ematical Software 35, 22:1–22:14.

Nuttapong Chentanez, Ron Alterovitz, Daniel Ritchie, Lita Cho, Kris K.

Hauser, Ken Goldberg, Jonathan R. Shewchuk, and James F. O’Brien.

2009. Interactive simulation of surgical needle insertion and steer-

ing. ACM Transactions on Graphics 28, 3, Article 88, 10 pages.

DOI:http://dx.doi.org/10.1145/1531326.1531394

Stephane Cotin, Herve Delingette, and Nicholas Ayache. 1999. Real-time

elastic deformations of soft tissues for surgery simulation. IEEE Trans-

actions on Visualization and Computer Graphics 5, 1, 62–73.

Stephane Cotin, Herve Delingette, and Nicholas Ayache. 2000. A hybrid

elastic model for real-time cutting, deformations, and force feedback for

surgery training and simulation. The Visual Computer 16, 7, 437–452.

Hadrien Courtecuisse, Jeremie Allard, Christian Duriez, and Stephane Cotin.

2010a. Asynchronous preconditioners for efficient solving of non-linear

deformations. In Proceedings of Virtual Reality Interaction and Physical

Simulation. 59–68.

Hadrien Courtecuisse, Hoeryong Jung, Jeremie Allard, Christian Duriez,

Doo Yong Lee, and Stphane Cotin. 2010b. GPU-based real-time soft

tissue deformation with cutting and haptic feedback. Progress in Bio-

physics & Molecular Biology 103, 23, 159–168. DOI:http://dx.doi.org/

10.1016/j.pbiomolbio.2010.09.016

S. A. Cover, N. F. Ezquerra, J. F. O’Brien, R. Rowe, T. Gadacz, and E. Palm.

1993. Interactively deformable models for surgery simulation. IEEE Com-

puter Graphics and Applicattions 13, 6, 68–75. DOI:http://dx.doi.org/

10.1109/38.252559

J. R. Crouch and A. Cherry. 2007. Parametric eye models. In Medicine

meets virtual reality, J. D. Westwood, R. S. Haluck, H. M. Hoffman, G.

T. Mogel, R. Phillips, R. A. Robb, and K. G. Vosburgh (Eds.), Vol. 15.

91–93.

J. R. Crouch, S. M. Pizer, E. L. Chaney, Yu-Chi Hu, G. S. Mageras, and M.

Zaider. 2007. Automated finite element analysis for deformable registra-

tion of prostate images. IEEE Transactions on Medical Imaging 26, 10,

1379–1390. DOI:http://dx.doi.org/10.1109/TMI.2007.898810

C. Dick, J. Georgii, and R. Westermann. 2011a. A hexahedral multi-

grid approach for simulating cuts in deformable objects. IEEE Trans-

actions on Visualization and Computer Graphics 17, 11, 1663–1675.

DOI:http://dx.doi.org/10.1109/TVCG.2010.268

Christian Dick, Joachim Georgii, and Rüdiger Westermann. 2011b. A real-

time multigrid finite hexahedra method for elasticity simulation using

CUDA. Simulation Modelling Practice & Theory 19, 2, 801–816.

S. E. DiMaio and S. P. Salcudean. 2003. Needle insertion modeling and

simulation. IEEE Transactions on Robotics and Automation 19, 5, 864–

875. DOI:http://dx.doi.org/10.1109/TRA.2003.817044

Simon P. DiMaio and S. E. Salcudean. 2002. Simulated interactive needle

insertion. In Proceedings of IEEE Symposium on Haptic Interfaces Virtual

Environment Teleoperator Systems, 344.

Florin Dobrian and Alex Pothen. 2006. Oblio: Design and performance.

In Applied Parallel Computing. State of the Art in Scientific Comput-

ing, Jack Dongarra, Kaj Madsen, and Jerzy Wasniewski (Eds.). Lec-

ture Notes in Computer Science, Vol. 3732. Springer, Berlin, 758–767.

DOI:http://dx.doi.org/10.1007/11558958_92

C. Forest, Herve Delingette, and Nicholas Ayache. 2002. Cutting simulation

of manifold volumetric meshes. In Proceedings of International Confer-

ence on Medical Image Computing and Computer-Assisted Intervention,

Part II. Springer-Verlag, London, 235–244.

Andreas O. Frank, I. Alexander Twombly, Timothy J. Barth, and Jeffrey

D. Smith. 2001. Finite element methods for real-time haptic feedback of

soft-tissue models in virtual reality simulators. In Proceedings of IEEE

Virtual Reality. 257.

Y. C. Fung. 1993. Biomechanics: Mechanical Properties of Living Tissues.

Springer-Verlag.

Amit Gefen, Ran Shalom, David Elad, and Yossi Mandel. 2009. Biome-

chanical analysis of the keratoconic cornea. Journal of the Mechanical

Behavior of Biomedical Materials 2, 3, 224–236.

Joachim Georgii and Rdiger Westermann. 2006. A multigrid framework for

real-time simulation of deformable bodies. Computer and Graphics 30,

3, 408–415. DOI:http://dx.doi.org/10.1016/j.cag.2006.02.016

J. Gilbert. 1994. Predicting structure in sparse matrix computations. SIAM

Journal on Matrix Analysis and Applications 15, 1, 62–79.

O. Goksel and S. E. Salcudean. 2011. Image-based variational

meshing. IEEE Transactions on Medical Imaging 30, 1, 11–21.

DOI:http://dx.doi.org/10.1109/TMI.2010.2055884

W. W. Hager. 1989. Updating the inverse of a matrix. SIAM Review 31, 2,

221–239. DOI:http://dx.doi.org/10.1137/1031049

Florian Hecht, Yeon Jin Lee, Jonathan R. Shewchuk, and James F. O’Brien.

2012. Updated sparse Cholesky factors for corotational elastodynamics.

ACM Transactions on Graphics 31, 1–13.

P.-A. Heng, Chun-Yiu Cheng, Tien-Tsin Wong, Yangsheng Xu, Yim-Pan

Chui, Kai-Ming Chan, and Shiu-Kit Tso. 2004. A virtual-reality training

system for knee arthroscopic surgery. IEEE Transactions on Informa-

tion Technology in Biomedicine 8, 2, 217–227. DOI:http://dx.doi.org/

10.1109/TITB.2004.826720

Alex Jahya, Martijn G. Schouten, Jurgen J. Fütterer, and Sarthak Misra.

2014. On the importance of modelling organ geometry and boundary con-

ditions for predicting three-dimensional prostate deformation. Computer

Methods in Biomechanics and Biomedical Engineering 17, 5, 497–506.

Doug L. James and Dinesh K. Pai. 1999. ArtDefo: Accurate real

time deformable objects. In Proceedings of ACM SIGGRAPH. 65–72.

DOI:http://dx.doi.org/10.1145/311535.311542

Doug L. James and Dinesh K. Pai. 2003. Multiresolution Green’s function

methods for interactive simulation of large-scale elastostatic objects. ACM

Transactions on Graphics 22, 47–82.

Grand Roman Joldes, Adam Wittek, and Karol Miller. 2009. Suite

of finite element algorithms for accurate computation of soft tissue

deformation for surgical simulation. Medical Image Analysis 13, 6, 912–

919. DOI:http://dx.doi.org/10.1016/j.media.2008.12.001

Grand Roman Joldes, Adam Wittek, and Karol Miller. 2010. Real-time non-

linear finite element computations on GPU applications to neurosurgical

simulation. Computer Methods on Applied Mechanics and Engineering

199, 4952, 3305–3314.DOI:http://dx.doi.org/10.1016/j.cma.2010.06.037

ACM Transactions on Graphics, Vol. 35, No. 2, Article 18, Publication date: February 2016.

http://dx.doi.org/10.1109/TVCG.2004.1272730
http://dx.doi.org/10.1109/5.662874
http://dx.doi.org/10.1109/5.662874
http://dx.doi.org/10.1111/1467-8659.1530057
http://dx.doi.org/10.1111/1467-8659.1530057
http://dx.doi.org/10.1145/1531326.1531394
http://dx.doi.org/10.1016/j.pbiomolbio.2010.09.016
http://dx.doi.org/10.1016/j.pbiomolbio.2010.09.016
http://dx.doi.org/10.1109/38.252559
http://dx.doi.org/10.1109/38.252559
http://dx.doi.org/10.1109/TMI.2007.898810
http://dx.doi.org/10.1109/TVCG.2010.268
http://dx.doi.org/10.1109/TRA.2003.817044
http://dx.doi.org/10.1007/11558958_92
http://dx.doi.org/10.1016/j.cag.2006.02.016
http://dx.doi.org/10.1109/TMI.2010.2055884
http://dx.doi.org/10.1137/1031049
http://dx.doi.org/10.1109/TITB.2004.826720
http://dx.doi.org/10.1109/TITB.2004.826720
http://dx.doi.org/10.1145/311535.311542
http://dx.doi.org/10.1016/j.media.2008.12.001
http://dx.doi.org/10.1016/j.cma.2010.06.037


18:16 • Y.-H. Yeung et al.

Mateusz Maria Juszczyk, Luca Cristofolini, and Marco Viceconti. 2011.

The human proximal femur behaves linearly elastic up to failure under

physiological loading conditions. Journal of Biomechanics 44, 12, 2259–

2266.

Tony M. Keaveny, X. Edward Guo, Edward F. Wachtel, Thomas A.

McMahon, and Wilson C. Hayes. 1994. Trabecular bone exhibits fully

linear elastic behavior and yields at low strains. Journal of Biomechanics

27, 9, 1127–1136.

Umut Koçak, Karljohan Lundin Palmerius, and Matthew Cooper. 2009. Dy-

namic deformation using adaptable, linked asynchronous FEM regions. In

Proceedings of ACM Spring Conference on Computer Graphics. 197–204.

DOI:http://dx.doi.org/10.1145/1980462.1980500

R. J. Lapeer, P. D. Gasson, and V. Karri. 2010. Simulating plastic surgery:

From human skin tensile tests, through hyperelastic finite element mod-

els to real-time haptics. Progress in Biophysics & Molecular Biol-

ogy 103, 23, 208–216. DOI:http://dx.doi.org/10.1016/j.pbiomolbio.2010.

09.013

C. Lederman, A. Joshi, I. Dinov, J. D. Van Horn, L. Vese, and A.

Toga. 2010. Tetrahedral mesh generation for medical images with

multiple regions using active surfaces. In IEEE International Sym-

posium on Biomedical Imaging: From Nano to Macro. 436–439.

DOI:http://dx.doi.org/10.1109/ISBI.2010.5490317

Bryan Lee, Dan C. Popescu, and Sebastien Ourselin. 2010. Topol-

ogy modification for surgical simulation using precomputed fi-

nite element models based on linear elasticity. Progress in Bio-

physics & Molecular Biology 103, 23, 236–251. DOI:http://dx.doi.org/

10.1016/j.pbiomolbio.2010.09.011

Alex Lindblad and George Turkiyyah. 2007. A physically-based framework

for real-time haptic cutting and interaction with 3D continuum models.

In Proceedings of ACM Symposium on Solid and Physical Modeling.

421–429. DOI:http://dx.doi.org/10.1145/1236246.1236307

Richard J. Lipton, Donald J. Rose, and Robert E. Tarjan. 1979. Generalized

nested dissection. SIAM Journal on Numerical Analysis 16, 2, 346–358.

Joseph W. H. Liu. 1990. The role of elimination trees in sparse factorization.

SIAM Journal on Matrix Analysis and Applications 11, 1, 134–172.

Stephanie Marchesseau, Tobias Heimann, Simon Chatelin, Remy

Willinger, and Herv Delingette. 2010. Fast porous visco-hyperelastic

soft tissue model for surgery simulation: Application to liver surgery.

Progress in Biophysics and Molecular Biology 103, 23, 185–196.

DOI:http://dx.doi.org/10.1016/j.pbiomolbio.2010.09.005

M. Mikielewicz, R. Michael, G. Montenegro, L. Pinilla Cortes, and R. I.

Barraquer. 2013. Elastic properties of human lens zonules as a function

of age in presbyopes. Acta Ophthalmologica 91, s252, 0–0.

A. Mohamed and C. Davatzikos. 2004. Finite element mesh generation

and remeshing from segmented medical images. In IEEE International

Symposium on Biomedical Imaging: Nano to Macro, Vol. 1. 420–423.

DOI:http://dx.doi.org/10.1109/ISBI.2004.1398564

Andrew Mor and Takeo Kanade. 2000. Modifying soft tissue models: Pro-

gressive cutting with minimal new element creation. In Medical Image

Computing and Computer-Assisted Intervention, Scott Delp, Anthony

DiGoia, and Branislav Jaramaz (Eds.). Lecture Notes in Computer Sci-

ence, Vol. 1935. Springer, Berlin, CH412–CH412.

N. Mos, J. Dolbow, and T. Belytschko. 1999. A finite element method for

crack growth without remeshing. International Journal for Numerical

Methods in Engineering 46, 1, 131–150.

Han-Wen Nienhuys and A. Frank van der Stappen. 2001. A surgery sim-

ulation supporting cuts and finite element deformation. In Proceed-

ings of the 4th International Conference on Medical Image Comput-

ing and Computer-Assisted Intervention. Springer-Verlag, London, 145–

152.

Igor Nikitin, Lialia Nikitina, Pavel Frolov, Gernot Goebbels, Martin Göbel,

Stanislav Klimenko, and Gregory M. Nielson. 2002. Real-time simulation

of elastic objects in virtual environments using finite element method and

precomputed Green’s functions. In Proceedings of Eurographics Work-

shop on Virtual Environments. 47–52.

NVIDIA. 2015. CUDA 7.0 Performance Report. http://developer.download.

nvidia.com/compute/cuda/compute-docs/cuda-performance-report.pdf.

Guillaume Picinbono, Jean-Christophe Lombardo, Herv Delingette, and

Nicholas Ayache. 2002. Improving realism of a surgery simulator: lin-

ear anisotropic elasticity, complex interactions and force extrapolation.

The Journal of Visualization and Computer Animation 13, 3, 147–167.

DOI:http://dx.doi.org/10.1002/vis.257

M. Sedef, E. Samur, and C. Basdogan. 2006. Real-time finite-element

simulation of linear viscoelastic tissue behavior based on experimen-

tal data. IEEE Computer Graphics and Applications 26, 6, 58–68.

DOI:http://dx.doi.org/10.1109/MCG.2006.135

Guy Sela, Jacob Subag, Alex Lindblad, Dan Albocher, Sagi Schein, and

Gershon Elber. 2007. Real-time haptic incision simulation using FEM-

based discontinuous free-form deformation. Computer Aided Design 39,

8, 685–693. DOI:http://dx.doi.org/10.1016/j.cad.2007.05.011

D. Serby, Matthias Harders, and Gábor Székely. 2001. A new approach

to cutting into finite element models. In Proceedings of the 4th Interna-

tional Conference on Medical Image Computing and Computer-Assisted

Intervention. Springer-Verlag, London, 425–433.

J. Spillmann and M. Harders. 2012. Robust interactive collision han-

dling between tools and thin volumetric objects. IEEE Transac-

tions on Visualization and Computer Graphics 18, 8, 1241–1254.

DOI:http://dx.doi.org/10.1109/TVCG.2011.151

D. Steinemann, M. Harders, M. Gross, and G. Szekely. 2006. Hybrid cut-

ting of deformable solids. In IEEE Virtual Reality Conference. 35–42.

DOI:http://dx.doi.org/10.1109/VR.2006.74

Demetri Terzopoulos and Kurt Fleischer. 1988. Modeling inelastic deforma-

tion: Viscoelasticity, plasticity, fracture. SIGGRAPH Computer Graphics

22, 4, 269–278. DOI:http://dx.doi.org/10.1145/378456.378522

Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. 1987. Elas-

tically deformable models. SIGGRAPH Computer Graphics 21, 4, 205–

214. DOI:http://dx.doi.org/10.1145/37402.37427

M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghu-

pathi, A. Fuhrmann, M.-P. Cani, F. Faure, N. Magnenat-Thalmann, W.

Strasser, and P. Volino. 2005. Collision detection for deformable ob-

jects. Computer Graphics Forum 24, 1, 61–81. DOI:http://dx.doi.org/

10.1111/j.1467-8659.2005.00829.x

Greg Turk and Marc Levoy. 1994. Zippered polygon meshes from range

images. In Proceedings of ACM SIGGRAPH. 311–318. DOI:http://dx.

doi.org/10.1145/192161.192241

George M. Turkiyyah, Wajih Bou Karam, Zeina Ajami, and Ahmad Nasri.

2011. Mesh cutting during real-time physical simulation. Computer Aided

Design 43, 7, 809–819. DOI:http://dx.doi.org/10.1016/j.cad.2010.10.005

Lara M. Vigneron, Jacques G. Verly, and Simon K. Warfield. 2004. Mod-

elling surgical cuts, retractions, and resections via extended finite element

method. In Proceedings of the 7th International Conference on Medical

Image Computing and Computer-Assisted Intervention, Part II. Christian

Barillot, David R. Haynor, and Pierre Hellier (Eds.). Lecture Notes in

Computer Science, Vol. 3217. Springer, Berlin, 311–318.

Adam Wittek, Grand Joldes, Mathieu Couton, Simon K. Warfield, and Karol

Miller. 2010. Patient-specific non-linear finite element modelling for pre-

dicting soft organ deformation in real-time; Application to non-rigid neu-

roimage registration. Progress in Biophysics and Molecular Biology 103,

23, 292–303. DOI:http://dx.doi.org/10.1016/j.pbiomolbio.2010.09.001

Wen Wu and Pheng Ann Heng. 2004. A hybrid condensed finite ele-

ment model with GPU acceleration for interactive 3D soft tissue cutting:

ACM Transactions on Graphics, Vol. 35, No. 2, Article 18, Publication date: February 2016.

http://dx.doi.org/10.1145/1980462.1980500
http://dx.doi.org/10.1016/j.pbiomolbio.2010.09.013
http://dx.doi.org/10.1016/j.pbiomolbio.2010.09.013
http://dx.doi.org/10.1109/ISBI.2010.5490317
http://dx.doi.org/10.1016/j.pbiomolbio.2010.09.011
http://dx.doi.org/10.1016/j.pbiomolbio.2010.09.011
http://dx.doi.org/10.1145/1236246.1236307
http://dx.doi.org/10.1016/j.pbiomolbio.2010.09.005
http://dx.doi.org/10.1109/ISBI.2004.1398564
http://developer.download.nvidia.com/compute/cuda/compute-docs/cuda-performance-report.pdf
http://developer.download.nvidia.com/compute/cuda/compute-docs/cuda-performance-report.pdf
http://dx.doi.org/10.1002/vis.257
http://dx.doi.org/10.1109/MCG.2006.135
http://dx.doi.org/10.1016/j.cad.2007.05.011
http://dx.doi.org/10.1109/TVCG.2011.151
http://dx.doi.org/10.1109/VR.2006.74
http://dx.doi.org/10.1145/378456.378522
http://dx.doi.org/10.1145/37402.37427
http://dx.doi.org/10.1111/j.1467-8659.2005.00829.x
http://dx.doi.org/10.1111/j.1467-8659.2005.00829.x
http://dx.doi.org/10.1145/192161.192241
http://dx.doi.org/10.1145/192161.192241
http://dx.doi.org/10.1016/j.cad.2010.10.005
http://dx.doi.org/10.1016/j.pbiomolbio.2010.09.001


Interactively Cutting Meshes Using Augmented Matrices • 18:17

Research Articles. Computer Animation and Virtual Worlds 15, 3–4, 219–

227. DOI:http://dx.doi.org/10.1002/cav.v15:3/4

Wen Wu and Pheng Ann Heng. 2005. An improved scheme of an interac-

tive finite element model for 3D soft-tissue cutting and deformation.

The Visual Computer 21, 8, 707–716. DOI:http://dx.doi.org/10.1007/

s00371-005-0310-6

Xunlei Wu, Michael S. Downes, Tolga Goktekin, and Frank Tendick. 2001.

Adaptive nonlinear finite elements for deformable body simulation us-

ing dynamic progressive meshes. In Proceedings of Eurographics, A.

Chalmers and T.-M. Rhyne (Eds.). Vol. 20(3). Blackwell Publishing, 349–

358.

Xunlei Wu and Frank Tendick. 2004. Multigrid integration for interactive

deformable body simulation. In Medical Simulation, Stephane Cotin and

Dimitris Metaxas (Eds.). Lecture Notes in Computer Science, Vol. 3078.

Springer, Berlin, 92–104.

Xinyu Zhang and Y. J. Kim. 2012. Simple culling methods for con-

tinuous collision detection of deforming triangles. IEEE Transac-

tions on Visualization and Computer Graphics 18, 7, 1146–1155.

DOI:http://dx.doi.org/10.1109/TVCG.2011.120

Hualiang Zhong, Mark P. Wachowiak, and Terry M. Peters. 2005. Adaptive

finite element technique for cutting in surgical simulation. Medical Imag-

ing 2005: Visualization, Image-Guided Procedures, and Display 5744, 1,

604–611. DOI:http://dx.doi.org/10.1117/12.594379

Yongning Zhu, Eftychios Sifakis, Joseph Teran, and Achi Brandt. 2010.

An efficient multigrid method for the simulation of high-resolution elas-

tic solids. ACM Transactions on Graphics 29, 2, Article 16, 18 pages.

DOI:http://dx.doi.org/10.1145/1731047.1731054

Received April 2014; revised September 2015; accepted December 2015

ACM Transactions on Graphics, Vol. 35, No. 2, Article 18, Publication date: February 2016.

http://dx.doi.org/10.1002/cav.v15:3/4
http://dx.doi.org/10.1007/s00371-005-0310-6
http://dx.doi.org/10.1007/s00371-005-0310-6
http://dx.doi.org/10.1109/TVCG.2011.120
http://dx.doi.org/10.1117/12.594379
http://dx.doi.org/10.1145/1731047.1731054

	Old Dominion University
	ODU Digital Commons
	2016

	Interactively Cutting and Constraining Vertices in Meshes Using Augmented Matrices
	Yu-Hong Yeung
	Jessica Crouch
	Alex Pothen
	Repository Citation
	Original Publication Citation


	tmp.1532014841.pdf.6_YQY

