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Abstract. We investigate the reasons behind students’ different responses to 
human versus machine tutors and explore possible solutions that will motivate 
students to offer more elaborated responses to computerized tutoring systems, 
and ultimately behave in a more “learning oriented” manner. We focus upon 
two sets of variables, one surrounding the students’ perceptions of tutor quali-
ties and the other surrounding the conversational dynamics of the dialogues 
themselves.  We offer recommendations based on our empirical investigations. 

1   Introduction 

Recent classroom and laboratory evaluations of a wide range of learning technologies 
have revealed a disturbing phenomenon of unproductive student behavior 
[4,11,17,15] where students approach their interactions with them in a “performance 
oriented” manner, i.e., resorting to shallow strategies for getting through material as 
quickly as possible, rather than a “learning oriented” manner, i.e., trying to learn as 
much as possible.  In this paper we explore the extent to which these patterns may be 
the result of a combination of a priori expectations and attitudes about the technology 
and features of the technology that enable students to engage in performance oriented 
behavior.  We focus our investigations on tutorial dialogue systems [2,22,14,3,13,12].  
A tutorial dialogue system is a type of state-of-the-art learning technology modeled 
after one-on-one human tutoring that engages students in natural language dialogues.   

In tutorial dialogue interactions, the distinction between learning oriented and per-
formance oriented behavior can be characterized in terms of patterns of student verbal 
behavior.  For example, it may be manifest in terms of extremely terse, and some-
times non-existent, student responses to tutor questions, and an almost total lack of 
elaboration. Comparing student verbal behavior in response to humans and to tutorial 
dialogue systems both employing an equivalent typed chat interface, it was observed 
that students do not spontaneously offer the kinds of self-explanations they freely 
offer to human tutors when responding to equivalent questions from a computer tutor 
[21,22].  This poverty of self-explanation has a detrimental effect both on the tutoring 
system’s ability to create an accurate model of student understanding and on the stu-
dent’s ability to master the material.  

In this paper, we investigate the reasons behind students’ different responses to 
human versus machine tutors and explore possible solutions that will motivate  
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students to offer more elaborated responses to tutoring systems, and ultimately behave 
in a more “learning oriented” manner.  Effecting a change in student behavior is one 
important step along the path towards increasing the effectiveness of tutorial dialogue 
technology.  We focus upon two sets of variables, one surrounding the students’ per-
ceptions of tutor qualities and the other surrounding the conversational dynamics of 
the dialogues themselves.  Our hypothesis is that the elaborations students freely offer 
to human tutors are motivated by interpersonal factors and by the interactive nature of 
dialogue with the tutor. Neither is commonly part of one’s experience with com-
puters. Thus, we hypothesize that we can induce students to generate more elaborated 
verbal responses generally, and self-explanations in particular, by elevating their a 
priori perceptions of the computer-based tutoring systems, by making the tutors more 
responsive and interactive, and especially by a combination of these two strategies.  

2   Tutorial Dialogue Technology 

We conduct our investigations of tutorial dialogue systems using a popular framework 
originally developed at the University of Pittsburgh, called Knowledge Construction 
Dialogues (KCDs) [22]. KCDs were motivated by the idea of Socratic tutoring, a 
highly interactive tutoring style evaluated favorably in comparison to a less interac-
tive didactic tutoring style in [23].  KCDs are interactive directed lines of reasoning 
that are each designed to lead students to learn as independently as possible one or a 
small number of concepts, thus implementing a preference for an “Ask, don’t tell” 
strategy.  When a question is presented to a student, the student types a response in a 
text box in natural language.  If the student enters a wrong or empty response, the 
system will engage the student in a remediation subdialogue designed to lead the 
student to the right answer to the corresponding question.  Once the remediation is 
complete, the KCD returns to the next question in the directed line of reasoning. 

3   Learning Oriented Versus Performance Oriented Behavior in  
     Tutorial Dialogue Systems 

Explanation is one of the key learning oriented behaviors students may engage in in a 
tutorial dialogue context.  From a scientific viewpoint, one of the best substantiated 
educational findings in cognitive science research is the educational benefit of expla-
nation, and in particular, the self-explanation effect [8,19].  Self-explanation benefits 
learners by revealing knowledge gaps, abstracting problem specific knowledge into 
schemas that can be applied to other relevant cases, and elaborating the representation 
of knowledge in the learners mind so that it can be more easily retrieved [26]. The 
self-explanation effect appears to be related to the process of constructing an explana-
tion.  Previous studies of human tutoring have revealed a significant correlation be-
tween amount of student explanation and learning [21,10]. 

Self-explanation has been frequently studied in connection with studies of the edu-
cational benefit of studying worked out example problems for mathematics and other 
problem solving domains.  When students possess sufficient background knowledge 
and are sufficiently engaged, presenting them with correctly worked example  
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problems in math and science and directing them to “self-explain” has been proven 
highly effective, even more effective than problem solving at early stages of skill 
acquisition in the context of laboratory studies [19,16].  Nevertheless, in classroom 
settings neither the appropriate level of background knowledge nor the ideal level of 
engagement with the material can be assumed.  Thus, an important question for im-
proving the state of education is how to design interactions with instructional technol-
ogy that are effective for keeping students engaged and for supporting productive 
explanation activities in a way that would be practical to place in a classroom setting. 

Explanation in a tutorial dialogue context is also important from an assessment 
standpoint.  Previous studies of student-tutor interactions in a human tutoring setting 
have demonstrated a strong correlation between length of student response and likeli-
hood for negative feedback offered from the tutor [21].  Thus, elaborate student ex-
planations create more opportunities for valuable instruction by revealing knowledge 
gaps that might not otherwise come up.  Increased awareness of student knowledge 
gaps facilitates the tutor’s process of effectively adapting instruction to the individual 
needs of students.  It also increases the likelihood that students notice their knowledge 
gaps and strive for deeper understanding [26]. 

Human tutors are highly successful at eliciting elaborated explanations from stu-
dents [21,10] and highly successful at educating students [7,9].  In response to equiva-
lent questions from a tutor, we have observed human tutors typically eliciting an order 
of magnitude more talk in a typed chat environment, including verbal self-
explanation, from learners than a tutorial dialogue system in the same domain using 
similar prompts with an identical text-based chat interface. See Figure 1 for a typical 
interaction from the WHY-Atlas physics explanation tutor [25].  Notice the student 
offering a typical, one-word reply. Figure 2 presents an analogous interaction in a 
human tutoring scenario in the same domain using an equivalent typed chat interface.  
Not only does the student answer in a complete sentence, but, more importantly, the 
student also offers a justification for the answer.  Since both of these interactions are 
typed, rather than in speech, the difference between student behavior with a human 
tutor and with a tutorial dialogue system cannot be explained as a modality difference. 

 
 

 

 

Fig. 1. This example illustrates a typical typed KCD interaction 

 

Fig. 2. This example illustrates a typical human tutoring interaction 

Tutor: There is need for some clarification. A body’s motion is determined by 
the forces acting on it. So, what are the forces acting on earth? 

Student: Since space has no gravity, then the only force acting on the earth is 
the pull of the sun. 

Tutor: In order for your hand to feel pain from the impact, there must be a 
force acting on it. What force is acting on your hand? 

Student: wall 
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In this paper we describe two studies, each of which explores an alternative expla-
nation for this phenomenon in an attempt to understand better the reasons for unpro-
ductive student behavior with tutorial dialogue systems and to formulate a recom-
mendation for a solution.  First we explore the issue of the differences in student ex-
pectations of human tutors and of instructional technology.  As a starting place, one 
potential explanation for the difference in behavior in response to human tutors and to 
tutorial dialogue systems is that the same norms of cooperativeness and politeness 
that strongly influence dialogue behavior in human-human discourse do not routinely 
apply in human-machine discourse. In addition to frequent one or two word answers 
in response to tutor questions in a tutorial dialogue system context, we have also ob-
served students offering sarcastic comments about the system rather than answers or 
sometimes entirely neglecting to answer tutor questions when they figure out that the 
system will continue to offer instruction even in the total absence of student effort to 
offer an answer.  In rare cases, students proceed in this fashion for an entire dialogue. 

Thinking about the issue of a priori expectations more broadly, some previously 
published evidence already supports the position that the perception of computers as 
different from humans is a key factor leading to lack of explanation with tutorial dia-
logue systems specifically, and perhaps “performance oriented” behavior with com-
puter tutors in general.  Whereas a series of human-computer interaction studies by 
Reeves and Nass (2002) suggests that on some level people subconsciously treat 
computers like people, others have found that humans speak differently when they 
believe they are speaking to a computer rather than to a human, even when their part-
ner uses identical language with them [24].  Schechtman and Horowitz (2003) fo-
cused on social issues such as politeness rituals, and not learning oriented behavior 
such as explanation.  A similar recently published comparison between student verbal 
behavior with human tutors and with computer tutors shows that students not only 
display more politeness indicators in their natural language contributions to human 
tutors, but more “hedges” as well, perhaps as a face saving device [6].  Nevertheless, 
none of these previous studies focus on the specific issue of student explanations, 
although the specific issue of eliciting deep explanation behavior from students is 
particularly important for designing effective tutorial dialogue environments.  We 
hypothesize that students will offer more explanation to an agent they believe is a 
human because of differences in expectations students bring with them about how 
they typically interact with humans versus how they typically interact with computers.  
Note that we are not attempting to overturn “The Media Equation” [18].  We are ad-
dressing HCI issues that affect the extent to which students engage in productive 
behavior for learning with instructional technology.  Here we are simply arguing that 
while previous studies touch on similar issues, they do not specifically address this 
question, which is an important initial step for improving the effectiveness of instruc-
tional technology, particularly tutorial dialogue technology.  Thus, our first study 
explores the impact of student expectations on explanation behavior. 

From a different angle, we explore the contribution of limitations in the capabilities 
of the technology as a contributing factor to the problem.  An alternative hypothesis 
along these lines is that students will offer more explanation to a tutor agent that is 
more interactive because it will be perceived as more interested in their thoughts.  
One can easily hypothesize, for example, that the reason why students behave differ-
ently with tutorial dialogue agents than with human tutors is simply because the  
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technology is still too rigid to engage in realistically natural dialogue interactions.  
Focused feedback is one important aspect of human tutorial discourse that sets it apart 
from tutorial dialogue agents.  Human tutors exhibit a high degree of responsiveness 
to students. In contrast to human tutoring dialogues, no current tutorial dialogue sys-
tems are capable of acknowledging and offering tailored feedback for extended ex-
planations that do more than answer a direct question asked by the tutor [2,22,12].  
Focused feedback is one way that human tutors demonstrate to students that they are 
listening and understanding what the student is saying. Previous studies have substan-
tiated the benefits of tutor feedback in assisting students in problem-solving tasks [5].  
For this reason, our second study explores the impact of focused feedback on student 
explanation behavior. 

4   Experimental Setup 

The two studies reported in this paper shared many common experimental setup fea-
tures, which we will describe in this section.  Features that are specific to a single 
study will be described in the section below related to the specific study. 

In both studies, students interacted independently with a tutor agent through a text-
based chat interface at a computer terminal in a small student lab space.  The chat 
setup can be configured in three different ways.  In one mode, the student receives 
only automatically generated messages, produced by the KCD engine.  In another, a 
human can edit each automatically generated message before sending it to the student.  
In a third mode, a human can compose the entire message.  All three modes appeared 
identical to the student.  Both the student and the tutor were able to view the history 
of the conversation in a scrolling dialogue history window at the top of the chat inter-
face.  A separate text input window was used for entering a text, and in the case of the 
tutor, entering and/or modifying an automatically generated text, before it was  
submitted. 

The tutoring domain was basic college-level Newtonian physics, a domain in 
which the first author has researched the relative effectiveness of alternative instruc-
tional technologies for the past five years [20,21,22].  In both studies, the instructional 
manipulation was short, consisting of exactly one KCD dialogue designed to teach the 
concept of normal force, which is the force that every hard surface exerts on any ob-
ject resting on its surface.  As is common practice for tutoring studies, learning was 
assessed using a pre and post test.  We used the same test for pre and post-test, which 
consisted of 5 multiple choice conceptual physics questions related to the concept of 
normal force covering all major points raised in the dialogue on normal force that is 
part of the experimental manipulation.   

5   The Impact of Expectations Related to Humanness 

In the first study we measured the impact of student expectations on student explana-
tion behavior by comparing students interacting with a computer agent in two condi-
tions.  40 university students participated in the experiment, one at a time, randomly 
assigned to each of the two conditions.  In the experimental condition, students were 
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told that they would be chatting with a human tutor.  For the initial segment of their 
interaction through the chat interface, they conversed freely with a human about their 
extra-curricular interests.  The purpose of this social interaction was to reinforce the 
idea that they were talking to a human.  After several turns, the human shifted the chat 
mode to automatic tutoring using the KCD engine so that the topic shifted to the dia-
logue about normal force, and the tutor turns were generated completely automati-
cally.  The human remained in the loop just to introduce a delay in order to maintain 
the illusion that the student was still interacting with a human.  In the control condi-
tion, the students were told that they would be chatting with a computer agent.  There 
was no initial conversation about extra-curricular interests.  And there was no delay 
introduced between when the student entered a conversational contribution and the 
tutor’s automatically generated response was delivered.  Note that there were two 
differences between the experimental and control conditions in this study.  For our 
purposes it is not important to disentangle the source of elevated student expectation.  
The important point was to measure the impact that expectations about a tutor agent 
formed before a tutoring interaction affect student’s behavior within that interaction. 

After signing a consent form, each student took the pretest.  The students then read 
a set of instructions that explained that they would be engaged in a dialogue about 
physics with a tutor agent.  The only difference in the instructions between the two 
conditions was that in the experimental condition the students were told they would 
be interacting with a human tutor and in the control condition the students were told 
they would be interacting with a computer tutor.  After the dialogue, the students took 
the post-test.  After the post-test, the students filled out a questionnaire assessing the 
students’ perceptions of the tutor agent as a manipulation check.  One-on-one inter-
views with students after filling out the questionnaire served as an additional manipu-
lation check.  90% of the students participating in the study believed what they were 
told about the tutor agent being either computer or machine.  During this time the 
deception was also explained to the students, and they had the opportunity to make 
comments or ask any desired questions.   

5.1   Contrasting Dialogue Behavior in Experimental and Control Conditions 

While student verbal behavior in the control condition  (see Figure 3) was similar to 
that observed in previous evaluations of KCDs [20], behavior in the experimental 
condition (see Figure 4) was strikingly different and much more like what had been 
observed in human tutoring corpora.   

Notice in Figure 3, the control condition student answers two of the tutor’s ques-
tions with one word answers.  The third question, which is a why question, elicits a 
longer response as expected.  Nevertheless, even the longer student response does not 
offer much discussion.  In contrast, in Figure 4, we see a student in the experimental 
condition answering the same three questions.  Notice how much additional discus-
sion the student offers in response to the second tutor question. 

Two separate factors distinguished the control condition from the experimental 
condition and may have separately or jointly contributed to elevated student expecta-
tion in the experimental condition.  First, the instructions explained that students 
would be talking to a human.  Secondly, the initial portion of the chat discussion that 
was about their extra-curricular interests was highly interactive, showing great interest 
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in the details of student interests.  As mentioned above, for our purposes it is not im-
portant to disentangle the source of elevated student expectation.  See Figure 5 for an 
example of one of these social interactions.  Note that this initial conversation was 
completely devoid of physics content and could not contribute to the students’ learn-
ing nor demonstrate any specific knowledge of physics on the part of the tutor.   

 

Fig. 3. This example illustrates a typical interaction from Control Condition 

 
 

 
Fig. 4. This example illustrates a typical interaction from then Experimental Condition 

 
We compared average student turn length between conditions focusing only on the 

portion of the dialogue interactions that were managed by the tutorial dialogue system 
so that the stimulus was the same between conditions and only the expectation set up 
prior to the physics interaction influenced the difference in students’ verbal behavior.   

As mentioned, average student turn length in the control condition was consistent 
with that in previous evaluations of KCDs (mean = 3.6, standard deviation = 2.3).  In 
the experimental condition, average turn length was much larger.  Although it was not 

Tutor: Ok,…So think about this: when a rock is falling, what force is acting 
upon the rock to make it fall? 

Student: Gravity. 
Tutor:  Good. If a rock is resting on a table, is there still a gravitational force 

acting on the rock? 
Student: Well, the force is present but the rock is not moving.  I used to think 

of acting as requiring movement, so I am confused about this.  I would think in 
this case the answer is supposed to be yes. 

Tutor:  Gravitational force exists everywhere on earth. If gravity is pulling 
the rock down, why does the rock not fall through the table? 

Student: An equal and opposite force is acting on the rock. 
Tutor:  Hard surfaces can support objects because they exert a normal force 

on the objects.  That normal force opposes the gravitational force…  

Tutor:  Ok, …So think about this: when a rock is falling, what force is acting 
upon the rock to make it fall? 

Student: gravity 
Tutor:  Good. If a rock is resting on a table, is there still a gravitational force 

acting on the rock? 
Student: Yes 
Tutor:  Correct. If gravity is pulling the rock down, why does the rock not fall 

through the table? 
Student: Because the table is exerting a force as well 
Tutor:  Hard surfaces can support objects because they exert a normal force 

on the objects.  That normal force opposes the gravitational force … 
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as large as previously reported average turn lengths of between 10 and 15 with human 
tutors in the same domain [20], it was significantly longer than in the control condi-
tion (mean = 8.6, standard deviation = 4.2, t(38) = 4.78, p = 0.000, effect size com-
puted with Cohen’s d=1.49).  Thus, we observed a strong main effect of condition on 
raw amount of student talk per turn.  Note that all t-test presented in this paper are 
unmatched 2-tailed t-tests except where otherwise noted.   

 

 

Fig. 5.  This example illustrates a typical social interaction 

 
We decomposed student turns into idea units at clause boundaries in order to take 

inventory of how much additional information was communicated in the experimental 
condition.  In the experimental condition, students uttered on average 1.86 idea units 
of elaboration per turn beyond the direct answer to the tutor’s question (standard de-
viation = 1.93).  In the control condition, students uttered only .5 idea units of elabo-
ration per turn (standard deviation = .89).  The difference was statistically significant 
(t(38) = 2.87, p < .05, effect size = .9 standard deviations). 

5.2   Learning Gains Analysis 

Our learning gains analysis provides some limited evidence that simply eliciting more 
explanation without any change in the actual interaction with students in the experi-
mental condition yielded an increase in instructional effectiveness of the KCD tech-
nology.  On average, students in both conditions knew about the same amount about 
the concept of normal force prior to their interaction with the instructional manipula-
tion.  Out of 11 possible points, students in the control condition earned a mean score 
of 7.8 on the pre-test, with a standard deviation of 2.44.  Mean pre-test score in the 
experimental condition was lower, although it did not differ significantly from this 
(mean = 6.9, standard deviation = 1.51).  There was a significant main effect of test 
phase on learning over the whole population.  Mean pre-test score was 7.34 with 
standard deviation 2.04.  Mean post-test score was 9.73 with standard deviation 1.48.  
t(38) = 6.06, p < .05.  So although the instructional manipulation as well as the 

Tutor: So before we get started with the physics part of the experiment, I 
would like to find out more about you. What do you like to do on the weekends? 

Student: I only like to work on Artificial Intelligence.  I am rather unusual in 
this regard.  I spend all my time working on software. 

Tutor: What kind of software are you working on right now? 
Student: Well, I have written software that makes Debian packages semi-

automatically out of large quantities of online software which is locates mainly 
using spidering and information extraction. 

Tutor: Do you have a dream job? If so, what would it be? 
Student: I would enjoy working at the higher end of military AI systems 

where I have access to all the tools and resources and can be isolated and de-
velop so-called autistic states of consciousness.  

Tutor: Sounds interesting! Ok, let's talk some physics now… 
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pre/post test was short, students learned a measurable amount of physics knowledge 
from their interaction with the system.  Based on previous results demonstrating a 
significant correlation between average student turn length and learning gains, and 
based on the large effect of condition on average student turn length, we expected to 
see a significant improvement in instructional effectiveness between the experimental 
condition and the control condition.  What we found was less conclusive.  There was 
a marginal effect approaching significance in favor of the experimental condition on 
learning gains in terms of adjusted post-test score using a 1-tailed t-test 
(Mean(experimental) = .66, standard deviation = .33, Mean(control) = .47, standard 
deviation = .44, t(39) = 1.55, p = .06).   

Because KCDs use very simple language understanding technology to process stu-
dent input, automatically generated tutor responses were not always appropriate to the 
student’s answers.  However, we verified that occasional inappropriate KCD feedback 
did not lead to a significant detrimental effect on student learning.  For each student 
we computed eight separate tallies indicating number of correct answers treated as 
correct, correct answers treated as incorrect, incorrect answers treated as correct, 
incorrect answers treated as incorrect, correct elaborations treated as correct, correct 
elaborations treated as incorrect, incorrect elaborations treated as correct, and incor-
rect elaborations treated as incorrect.  Since the KCD treated every answer as com-
pletely correct or completely incorrect, we treated each idea unit that was part of an 
answer as having been treated as correct or incorrect depending upon whether the 
answer to the question was classified as correct or incorrect by the KCD.  The reli-
ability of the human judgment for correctness versus incorrectness of idea units com-
puted using Cohen’s Kappa was computed at .78, so these tallies can be treated as 
reliable.  We did not find any significant correlation between percentage of idea units 
treated correctly and adjusted post-test score or raw post-test score with or without 
effect of pre-test score factored out, either within or across conditions.  Thus, we did 
not find any evidence that inappropriate feedback negatively impacted learning. 

As in the KCDs used in [22], the KCD used in this study stepped students through 
a line of reasoning where students were lead through a series of applications of rules 
of physics in order to provide a foundation for an understanding of an individual con-
ceptual rule of physics.  Students answered questions about things they experienced in 
their every day lives to help them understand.  For example, “If you hold a book in 
your hand, which way do you feel the book pushing?”  Students can answer these 
questions even if they don’t know any physics.  They simply require students to think 
about their experiences.  And yet, these questions help them to see laws of physics at 
work.  The ultimate goal of a KCD is to bring students to a place where they can re-
member and articulate a single rule of physics.  As part of that line of reasoning, stu-
dents are eventually asked to go one step further and apply that rule.  For example, 
after discussing the concept of normal force applied by a horizontally oriented object, 
students were asked to predict what would happen if the object was now tilted.  If 
students were not able to make the conceptual leap, their understanding was scaf-
folded using a subdialogue, which is an embedded line of reasoning.  Eventually, if 
the students were not able to apply the rule with help, the rule was applied for them.  
The focus of this work was to provide conceptual help when students displayed a gap 
in their understanding with faulty problem solving actions.  In the study reported in 
this paper, students were able to answer the KCD question most of the time.  In fact, 
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overall, only 10% of direct answers to KCD questions were incorrect, with equal 
numbers in both conditions.  Thus, based on answers to questions in the main line of 
reasoning of the KCD, little need of remedial instruction was indicated.  This is an 
indication that students were able to follow the KCD’s line of reasoning effectively.  
However, it might also be an indication that the material was too simple to observe a 
difference in instructional effectiveness due to our experimental manipulations. 

6   Study 2: Raising Expectations Through Feedback 

The results of Study 1 confirmed our hypothesis that student expectation was a major 
factor leading to a lack of explanation behavior in previous tutorial dialogue research.  
Simply elevating expectations without any change in the technology significantly 
impacted the amount of learning oriented student behavior.  However, while the ex-
perimental manipulation was effective for testing our hypothesis, using deception to 
raise student expectations is not a viable solution in practice, and thus is not sufficient 
by itself to provide the HCI community with specific interface design recommenda-
tions.  Furthermore, while the increase in student explanation in the first study yielded 
a marginal increase in learning, an ideal solution would produce a statistically reliable 
effect on learning.   

We hypothesized that offering additional feedback to students in response to their 
explanation behavior would yield a larger impact on learning.  Thus, in a follow-up 
study we directly tested a second hypotheses, namely that increased interactivity in 
the form of focused feedback would yield an increase in student explanation behavior. 
We predicted that the enhanced interactivity and closer coordination would raise stu-
dent expectations about the technology and communicate to the student more interest 
in their thoughts.  We predicted this would lead to a similar increase in learning ori-
ented behavior to what we observed in the previous study.   

6.1   Experimental Design of Study 2 

In the experimental condition, students received targeted feedback in addition to typi-
cal KCD responses, whereas in the control condition students received only typical 
KCD responses.  Using the same chat setup but in a mode that allowed a human in the 
loop to edit tutor turns before they were presented to students, a human inserted fo-
cused feedback at the beginning of each tutor turn in the experimental condition, 
wherever possible.  Thus, only in the experimental condition the tutor turns would 
contain more explicit connections with the particulars of what students said.   

During a pilot testing phase, we noticed that increased interactivity by itself was 
not effective, in large part because the students’ default taciturn behavior did not offer 
the tutor many opportunities to offer feedback.  Thus, we introduced a modeling 
phase in both the experimental and control conditions in which students spent 5 min-
utes prior to their interaction with the tutor agent viewing a screen capture video of a 
student interacting with the tutor agent on an unrelated physics topic (i.e., the concept 
of displacement) and offering productive, learning oriented behavior. 

In order to rule out the possibility that a difference in learning gains we observe be-
tween conditions is the result of additional instruction offered in the experimental 
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condition, we assigned students to matched pairs when we randomly assigned them to 
conditions.  We tallied the list of idea units offered to each student in the experimental 
condition and offered the same instructional content to the student’s matched pair 
student in the control condition formulated as a reminder at the end of the KCD.  
Thus, we controlled for information presentation between conditions.  Note that stu-
dents were randomly matched.  Thus, paired students did not necessarily have the 
same instructional needs.  This is an important point since one key distinction be-
tween feedback per se and additional instruction more generally is whether it is tai-
lored to the specific needs of the student.  20 local university students and staff par-
ticipated in the study, 10 in each condition.  Thus, there were 10 matched pairs of 
students.   

Table 1. Types of Focused Feedback Used in Study 2 

Category Tag Line 

Missing Answer “You have not answered the question about___” 

CloseAnswer “___ is close.  I would say ___.” 

CorrectAnswer/No 
Elaboration 

“You’re right, but let’s think about why that is cor-
rect.” 

“You’re right, but let’s think about the implications.” 

CorrectElaboration “That’s a good point about ___.” 

CorrectAnswer/ 
Incorrect Elabora-
tion 

“You’re answer is correct, but your reasoning is not 
correct. It’s not true that ___. ” 

Wrong Answer “That’s not correct.  It’s not true that ___.” 

 

In order to ensure that students in the experimental condition were treated equally, 
we developed a set of tag lines to use with different categories of feedback (See Table 
1).  This allowed us to control for tone so that the tutor’s feedback would have a con-
sistent feel with the automatically generated KCD responses.  Correct Answer and 
Correct Elaboration feedback was meant to affirm students for positive behavior and 
encourage them to elaborate.  These two types of feedback did not contain any in-
struction since they were not directed at any specific deficiency in the student’s con-
tribution by definition.  The other classes of feedback were all forms of negative feed-
back, thus each referring specifically to at least one specific piece of content. 

6.2   Impact on Student Explanation Behavior 

As in the previous study, we found an effect of condition on student explanation be-
havior.  In particular, there was a reliable difference in terms of number of idea units 
per turn included in elaborations according to a 1-tailed t-test (mean(experimental) = 
3.5, standard deviation = 3.5, mean(control) = 1, standard deviation = 1.6, t(19) = 2.3, 
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p < .05, effect size = 1.0). Thus, there is evidence that focused feedback has an impact 
on how much students say.  As a rough, informal comparison, the effect size for dif-
ference in number of idea units was consistent across studies.  However, in terms of 
raw average student turn length, the difference was only a statistical trend according 
to a 1-tailed t-test (Mean(experimental) = 5.83, standard deviation = 3.8, 
Mean(control) = 4.45, standard deviation = 2.3, t(19) = 1.4, p=.17).  Note that raw 
average student turn lengths in both conditions were in between the two extremes 
observed in the previous study. 

Another unexpected result was that a linear regression analysis demonstrated a 
stronger connection between positive feedback and average turn length and that be-
tween negative feedback and turn length.  There was no significant correlation be-
tween amount of negative feedback and average student turn length (N=10, R-
squared=.04, t=.53, p=.55).  However, there was a reliable correlation between 
amount of positive feedback and student turn length (N=10, R-squared=.54, t=3.07, p 
< .05).  It could be hypothesized that students who were correct more often became 
more confident because of their success at answering the tutor’s questions, and their 
success was more of a factor leading to their increased levels of explanation rather 
than the feedback itself.  Thus we examined explanation behavior in the control con-
dition to assess whether there was a correlation between number of correct student 
answers and average student turn length, but there was no significant correlation.  
This supports the interpretation that it was the feedback and not the number of correct 
responses that influenced how much students explained in the experimental condition.  

6.3   Learning Gains Analysis 

There was no difference in learning between conditions.  Difference in adjusted post 
test scores was not significantly different even with a 1-tailed t-test 
(Mean(experimental) = .64, standard deviation = .38, Mean(control) = .75, standard 
deviation = .33, t(19) = 1.2, p = .24).  There was, however, a significant correlation 
between amount of explanation and learning within the control condition, even with 
effect of pretest score factored out (N=10, R2=.45, t=2.6, p < .05). 

We then examined more closely the substantive feedback offered to students in 
connection with deficiencies on their pre-tests and corresponding performance on 
their post-tests.  Only 3 students in the experimental condition received any substan-
tive negative feedback.  For two of those students the substantive feedback was di-
rected at topics that were not tested on the post-test.  The other student showed a 
knowledge gain between pre-test and post-test on the relevant concept addressed by 
the tutor’s feedback.  Thus, further exploration on the topic of feedback is required. 

7   Recommendations and Future Work 

While the results in this paper do not offer the final solution for overcoming the prob-
lem of unproductive student behavior and dramatically improving the instructional 
effectiveness of the technology, these studies yield some new insights and promising 
directions for continued investigation.  We have presented two studies that demon-
strate that both expectation and interactivity have a measurable impact on the extent 
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to which students engage in productive behavior with instructional technology.  The 
strong impact of artificially elevated expectations on explanation behavior and weak 
impact on learning observed in the first study offers confirmation that exploring ways 
of elevating student expectation is promising for improving student behavior and 
potentially contributes to enhancing the effectiveness of instructional technology, 
although it is not sufficient in itself for yielding a significant impact on learning gains.  
While increasing the amount of targeted feedback offered to students is a more viable 
option in practice than artificially elevating expectations through deception, the im-
pact on student behavior based on that manipulation was not quite as pronounced and 
yielded no effect on learning.  However, since our analysis from the second study 
demonstrated that only the types of feedback offered in response to correct answers in 
this study correlated with average student turn length, we plan to continue to investi-
gate the potential use of this form of feedback in connection with other types of an-
swers in order to yield a stronger impact on behavior overall.  Here we only explored 
the use of positive feedback in connection with correct answers, but it is possible that 
similar forms of feedback in connection with incorrect responses would encourage 
students to elaborate more when they were less certain.   
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