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Interactome analyses revealed that 
the U1 snRNP machinery overlaps 
extensively with the RNAP II 
machinery and contains multiple 
ALS/SMA-causative proteins
Binkai Chi1, Jeremy D. O’Connell1,2, Tomohiro Yamazaki1, Jaya Gangopadhyay1, Steven P. Gygi1 

& Robin Reed1

Mutations in multiple RNA/DNA binding proteins cause Amyotrophic Lateral Sclerosis (ALS). Included 
among these are the three members of the FET family (FUS, EWSR1 and TAF15) and the structurally 
similar MATR3. Here, we characterized the interactomes of these four proteins, revealing that they 
largely have unique interactors, but share in common an association with U1 snRNP. The latter 
observation led us to analyze the interactome of the U1 snRNP machinery. Surprisingly, this analysis 
revealed the interactome contains ~220 components, and of these, >200 are shared with the RNA 
polymerase II (RNAP II) machinery. Among the shared components are multiple ALS and Spinal 
muscular Atrophy (SMA)-causative proteins and numerous discrete complexes, including the SMN 
complex, transcription factor complexes, and RNA processing complexes. Together, our data indicate 
that the RNAP II/U1 snRNP machinery functions in a wide variety of molecular pathways, and these 
pathways are candidates for playing roles in ALS/SMA pathogenesis.

�e neurodegenerative disease Amyotrophic Lateral Sclerosis (ALS) has no known treatment, and elucidation of 
disease mechanisms is urgently needed. �is problem has been especially daunting, as mutations in greater than 
30 genes are ALS-causative, and these genes function in numerous cellular pathways1. �ese include mitophagy, 
autophagy, cytoskeletal dynamics, vesicle transport, DNA damage repair, RNA dysfunction, apoptosis, and pro-
tein aggregation2–6. �e discovery that mutations in two RNA/DNA binding proteins, FUS and TARDBP, are 
ALS-causative �rst raised the possibility that dysfunction of RNA-related processes plays a role in the disease7–11. 
�is hypothesis gained traction when additional ALS-causative RNA/DNA binding proteins (EWSR1, TAF15, 
HNRNPA1, HNRNPA2B1, MATR3 and TIA1) were identi�ed12–16. At present, however, the roles of these pro-
teins in ALS pathogenesis are not known.

FUS, EWSR1 and TAF15 constitute the FET family of structurally related proteins17,18. �ey share in common 
RNA binding motifs and low complexity domains. Similar to the FET family members, MATR3 also contains 
both types of domains19. Although ample evidence exists that all four of these ALS-causative proteins function in 
transcription and splicing, much less is known about how their functions are distinguished from one another in 
these processes. We recently found that the four ALS-causative proteins associate with the RNAP II machinery 
and that several other ALS-causative proteins, including HNRNPA120, HNRNPA2B120, TIA116 and VCP21, do 
as well (BC et al., submitted). Moreover, multiple proteins that are mutated in the childhood motor neuron dis-
ease cause Spinal Muscular Atrophy (SMA) associate with the RNAP II machinery, including SMN1, EXOSC822, 
HSPB123,24 and two components (ASCC1 and TRIP4)25,26 of the ASC-1 transcriptional co-activator (BC et al., 
submitted). To investigate the roles of ALS-causative proteins within the RNAP II machinery, we used CRISPR 
to knock out the 3 FET family members or MATR3 in HeLa cells and then characterized the RNAP machinery 
isolated from these cell lines. One of the notable conclusions from this study was that all four ALS-causative 
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proteins are required for interaction of the SMA-causative ASC-1 complex with RNAP II (BC et al., submitted). 
�e observation that two di�erent components of the ASC-1 complex are mutated to cause SMA and that the 
ALS-causative proteins mediate the association of the ASC-1 complex with RNAP II provide excellent examples 
of the importance of identifying interaction partners of ALS/SMA-causative proteins, as these interaction part-
ners themselves are candidates for causing the diseases. In addition, identi�cation of their interaction partners 
will assist in identifying molecular pathways involved in the pathogenesis of motor neuron disease.

In the present study, we report the interactomes of FUS, EWSR1, TAF15 and MATR3, and show that all four of 
these proteins associate with U1 snRNP. Unexpectedly, comparison of the interactome of the U1 snRNP machin-
ery with that of the RNAP II machinery shows that virtually the entire U1 snRNP machinery overlaps with 
the RNAP II machinery. Among the proteins present in the U1 snRNP/RNAP II machinery are multiple ALS/
SMA-causative proteins. �ese data raise the possibility that the RNAP II/U1 snRNP machinery and the pathways 
in which it functions may underlie the pathogenesis caused by a host of motor neuron disease-causative proteins.

Results and Discussion
FUS, EWSR1, TAF15 and MATR3 associate with U1 snRNP. To characterize the interactomes of FUS, 
EWSR1, TAF15 and MATR3 (herea�er referred to as ALS proteins) we immunopuri�ed (IP’d) these proteins 
from HeLa cell nuclear extracts. To identify the highly abundant interactors, we excised individual bands from 
a Coomassie-stained gel and carried out mass spectrometry. �is analysis revealed that U1 snRNP components 
are enriched in the FUS, EWSR1 and TAF15 IPs. �ese components include all of the U1 snRNP-speci�c pro-
teins (SNRNP70, SNRPA, SNRPC) as well as the snRNP core proteins (SNRP proteins) (Fig. 1a, lanes 1–3). U1 
snRNP components were not observed in the MATR3 IP (Fig. 1a, lane 4). We next carried out reciprocal IP/
westerns using an antibody against the SNRPC core component of U1 snRNP. As shown in Fig. 1b, the three FET 
family members and MATR3 co-IP’d with U1 snRNP, but not with the negative control nuclear protein EIF4A3. 
Although U1 components were not detected on the Coomassie gel in the MATR3 IP, this may be due to a buried 
epitope (see below for mass spectrometry data of the U1 snRNP machinery that support this conclusion).

To determine whether the association between the ALS proteins and U1 snRNP was speci�c, we treated 
nuclear extracts with an anti-sense morpholino (AMO) that binds to the 5’ end of U1 snRNA and blocks splic-
ing27. �is U1 AMO also disrupted the association of FUS with U1 snRNP28. We obtained the same results in the 
present study (Fig. 1c, lanes 5–8). In addition, the U1 AMO disrupted the interactions between U1 snRNP and 
TAF15, EWSR1 and MATR3 (Fig. 1c, lanes 9–14). We further con�rmed these associations by carrying out IPs 
and analyzing total RNA on an ethidium bromide stained gel. As shown in Fig. 1d, all of the ALS proteins co-IP’d 
with U1 snRNA, and the interaction was speci�c as it was disrupted by the U1 AMO. We conclude that FUS, 
TAF15, EWSR1 and MATR3 associate with U1 snRNP.

FUS, EWSR1, TAF15 and MATR3 interactomes. To gain further insight into the interactomes of the 
four ALS-causative proteins, we carried out shotgun mass spectrometry of each IP. �ese data revealed 156, 68, 
132 and 91 interactors for FUS, EWSR1, TAF15 and MATR3, respectively (Table S1). We listed the well-known 
functions and/or functions potentially relevant to motor neuron disease in the table for all of the interactors (color 
coded in Table S1). �e top 15 hits in each interactome are shown in Fig. 2. Consistent with the Coomassie gel, 
canonical U1 snRNP components are among the top hits in the FUS, EWSR1 and TAF15 interactomes (marked 
by stars). In the EWSR1 interactome, multiple ALS-causative proteins are present (color coded red, Fig. 2). A 
top interactor of TAF15 is PABPC1, which is known to be mislocalized in ALS patient motor neurons29. A top 
hit in both the FUS and TAF15 interactomes is HNRNPR, which interacts with SMN1 in the axons of motor 
neurons30,31. HNRNPR is also found in the EWSR1 and MATR3 interactomes (ranked 34 and 19, respectively 
in Table S1). �e observation that HNRNPR is a common interactor of ALS proteins and SMN1 reveals a new 
molecular link between ALS and SMA. Among the top hits in the MATR3 interactome are numerous proteins 
that function in the DNA damage response, including NUMA1, CAD, RUVBL1, RUVBL2, HNRNPK and DDB1. 
Consistent with these results, MATR3 itself is involved in the DNA damage response32, which has emerged as a 
pathway disrupted in multiple types of ALS and SMA33–39. Moreover, both RUVBL1 and RUVBL2 are compo-
nents of the HSP90/R2TP chaperone complex, which interacts with the SMN complex and functions in facilitat-
ing snRNP assembly40,41, suggesting an involvement of MATR3 in snRNP assembly.

To identify complexes in each of the interactomes, we analyzed the data in Table S1 using the STRING data-
base (https://string-db.org). �is analysis showed that each of the interactomes contain numerous distinct com-
plexes. Several well-known complexes were not separated into clusters by STRING. �us, we manually clustered 
these proteins (Figs 3–6). �ese data revealed complexes in common among the ALS protein interactomes so we 
next analyzed the proteins shared by all four ALS interactomes (Fig. S1). �ese interactomes share three dead box 
helicases (DHX9, DDX5 and DDX17), which, similar to the ALS proteins, are DNA/RNA binding proteins with 
roles in transcription and splicing. �e DBIRD complex, reported to function in coupling transcription to alter-
native splicing42, as well as hnRNP proteins, are also shared by the four interactomes. �e factors that are shared 
by the 4 ALS protein interactomes are good candidates for being disease-relevant. Consistent with this possibility, 
several ALS-causative proteins are also shared among the 4 interactomes, including HNRNPA1, HNRNPA2B1, 
FUS and MATR3.

�e data in Figs 3–6 reveal complexes/factors unique to one or more of the ALS protein interactomes. FUS and 
TAF15 interactomes contain the SMN complex, thereby linking both of these ALS proteins to the SMA-causative 
SMN1 protein (Figs 3 and 5). �e FUS and TAF15 interactomes also contain the transcription elongation factor 
P-TEFb, and the FUS interactome uniquely contains many other factors/complexes that function in transcrip-
tion, including subunits of RNAP II, and BAF, PAF and integrator complex components (Fig. 3). �e TAF15 
interactome also contains the TREX mRNA export complex, which has been tied to ALS previously43–46. In addi-
tion, ASAP RNA processing/apoptosis complex is present in the TAF15 interactome, and apoptosis is a pathway 
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associated with ALS (Fig. 5)47,48. Finally, the MATR3 interactome contains CUL1 and CUL2, factors that are 
components of the ubiquitin proteasome pathway. �is pathway is known to be important in ALS via genes such 
as UBQLN2, which is mutated to cause the disease (Fig. 6)49,50. We conclude that the four ALS-causative proteins 
have multiple interaction partners, many of which are linked to di�erent pathways involved in ALS/SMA, and 
these interaction partners are new candidates for factors involved in pathogenesis via these known pathways. 
Moreover, on a more basic science note, our data reveal that, despite the structural similarities and their common 
association with U1 snRNP, the four ALS proteins have many unique interaction partners that likely explain the 
distinct roles that these proteins have been reported to play in such processes as transcription and splicing.

Figure 1. FET proteins and MATR3 associate with U1 snRNP. (a) Immunoprecipitations (IPs) were carried 
out with antibodies to FET proteins or MATR3 followed by analysis on a Coomassie-stained gel. Molecular 
weight markers and protein identi�ed by mass spectrometry are indicated. (b) IPs were carried out from nuclear 
extract using a negative control antibody (EIF4A3) or an antibody to the SNRPC subunit of the U1 snRNP 
followed by Westerns with the indicated antibodies. (c) IPs were carried out with the indicated antibodies 
from nuclear extract treated with a U1 snRNA AMO or a negative control AMO followed by Western using 
the SNRPC antibody. (d) Same as (c) except that total RNAs from the IPs were examined on a denaturing gel 
stained with ethidium bromide.
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The U1 snRNP machinery overlaps extensively with the RNAP II machinery. In light of the obser-
vation that FUS, EWSR1, TAF15 and MATR3 all associate with U1 snRNP, we next investigated the interac-
tome of this machinery, identifying 226 proteins within it. �ese proteins and their functions are color coded in 
Table S2. As expected, the top two hits are core components (SNRNP70 and SNRPA) of U1 snRNP and the other 

Rank Symbol kD Function Total Unique 

1 FUS 58 Txn, splicing 100 15 

2 SRSF1                     27 SR protein family member SF2 89 28 

3 TRIM28 92 Mediates gene silencing by recruiting CHD3 81 33 

4 HNRNPA2B1 39 Txn, splicing, neuronal transport of specific mRNAs to cytoplasm 74 20 

5 SNRPD2                  13 SnRNP Core Protein SmD2 72 11 

6 SNRNP70                48 U1 snRNP component U1 70K 70 39 

7 SNRPA                    31 U1 snRNP component U1A  69 22 

8 SNRPB                    26 snRNP core protein B, B' 63 13 

9 HNRNPR 70 Splicing, interaction partner of SMN in axons of MNs  59 41 
10 PPP1R10 103 Component of PTW/PP1 phosphatase complex, control chromatin structure 48 33 
11 ILF2 43 Txn factor associates with ILF3 48 17 

12 DHX9 140 Splicing, txn activator 43 39 

13 PABPC1 70 PolyA binding protein mislocalized in motor neurons in ALS 43 33 
14 DDX3X 73 Splicing, txn, translation initation 43 31 

15 HNRNPU 91 Txn, splicing 43 31 

Rank Symbol kD Function Total Unique 

1 RBMX 43 Txn, splicing 113 21 
2 EWSR1 72 Txn, splicing 100 29 

3 HNRNPUL1 94 Txn, splicing 96 33 

4 HNRNPM 80 Txn, splicing 92 92 
5 SNRNP70                48 U1 snRNP component U170K 75 38 

6 HNRNPA2B1 39 Txn, splicing, neuronal transport of specific mRNAs to cytoplasm 75 25 

7 TAF15 65 Txn,splicing 63 17 

8 DDX3X 73 Splicing, txn, translation initation 58 29 

9 TARDBP 46 Txn, splicing 58 25 
10 

FUS 58 Txn, splicing  

50 

29 11 

SRSF1                     27 SR protein family member SF2 

50 

38 

12 CLINT1 69 Transport via clathrin-coated vesicles 42 33 

13 AKAP8 76 Nuclear A-kinase anchor protein that binds to PKA 38 25 
14 DDX5 68 Txn, splicing   33 17 

15 SNRPA  31   33 17 

Rank Symbol kD Function Total  Unique   
1 SNRPA                    31 U1 snRNP component U1A  164 17 

2 TAF15 65 Txn, splicing 100 13 

3 SNRPB                    26 snRNP core protein B, B' 80 14 
4 SNRPD2                  13 snRNP core protein SmD2 80 12 

5 SNRPF                     9 snRNP core protein SmF 74 3 

6 SNRNP70                48 U1 snRNP component U170K 68 24 

7 SNRNP200 235 U5 snRNP component 58 55 
8 SRSF1                     27 SR protein family member SF2 54 17 

9 PABPC1 70 PolyA binding protein mislocalized in motor neurons in ALS 53 18 

10 SNRPE 10 snRNP core protein SmE 42 8 

11 HNRNPR 70 Splicing, interaction partner of SMN in axons of MNs  38 29 
12 SNRPD3                  14 snRNP Core Protein SmD3  36 5 

13 HNRNPA1 41 Txn, splicing 33 12 

14 SNRPC                    17 U1 snRNP component U1C 33 4 

15 ACIN1 148 ASAP complex component, EJC component and promotes apoptosis  30 29 

Rank Symbol kD Function Total Unique 
1 MATR3 93 Nuclear matrix protein, txn, splicing, DNA damage response 100 34 

2 HNRNPM 80 Txn, splicing 54 41 

3 NUMA1 233 DNA damage response; functions in mitotic spindle formation  38 36 
4 CAD 245 Functions in pyrimidine biosynthesis; DNA damage response  31 30 

5 RUVBL2 51 Txn and DNA damage response 30 22 

6 DDX3X 73 Splicing, txn, translation initation 25 18 

7 

HNRNPA1 41 Txn, splicing 22 11 

8 HNRNPL 65 Splicing  22 14 

9 

RUVBL1 50 Txn and DNA damage response 22 18 

10 HNRNPK 51 Txn, splicing, DNA damage response 21 13 

11 COPA 135 Coatomer component 20 20 

U1 snRNP component U1A

12 SKIV2L2 115 Splicing, associate with RNA exosome complex  19 
13 HSPA8  71 Molecular chaperone  17 

14 DDB1  125  Component of DNA damage (DDB) complex  

15 DDX5 68  Coatomer component 16 

20 
20 

19 

19 

19 

Top FUS interactors

Top EWSR1 interactors

Top TAF15 interactors

Top MATR3 interactors

Figure 2. Top hit interactors in the FET proteins and MATR3 interactomes. �e top ranked (by total peptide 
number) proteins in each interactome are shown. �e rank, HGNC o�cial symbol, calculated molecular weight, 
best-known function, total and unique peptide counts are shown. Functions in splicing (pink), transcription 
(txn, orange), DNA damage response (green), neuronal (blue) and other (black) are indicated. �e symbols of 
ALS-causative proteins are in red. �e stars indicate U1 snRNP components.
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core component (SNRPC), which is low molecular weight, is 48th on the list. Numerous SRSFs and the snRNP 
core proteins (SNRPs) that are known U1 snRNP components are also in the interactome. We next investigated 
the U1 interactome using STRING (Fig. 7). Unexpectedly, this analysis revealed numerous complexes not typ-
ically associated with the role of U1 snRNP as a canonical splicing factor. Indeed, the U1 snRNP interactome 
contained many complexes that we recently identi�ed in the interactome of the RNAP II machinery. �e latter 
machinery contains 274 proteins (BC et al., submitted). �us, we next directly compared the U1 snRNP and 
RNAP II machineries to one another. Remarkably, as shown in the Venn diagram, we found that virtually the 
entire U1 snRNP machinery interactome (>90%) overlaps with the RNAP II machinery interactome (Fig. 8a). 
�e extent of the overlap between the U1 snRNP and RNAP II machineries is exempli�ed by the observation that 
core U1 snRNP components (SNRNP70, SNRPC, SNRNA) and SNRP core proteins are among the most abun-
dant components of both the U1 snRNP and RNAP II machineries (Table S2 and BC et al., submitted). �e abun-
dance of the U1 snRNP components is readily apparent on a Commassie stained gel in which high levels of these 
components can be seen in both the U1 snRNP and RNAP II machineries (Fig. S2). Moreover, consistent with 
our observation that that the two machineries overlap, we found that RNAP II elutes in the same fractions as U1 
snRNP components (SNRPA and SNRPC) in the high molecular weight region of a gel �ltration column (Fig. 8b).

To validate the association of components of the U1 snRNP machinery with the RNAP II machinery, we 
carried out IP/Westerns. As shown in Fig. 8c, three DEAD box helicases, DHX9, DDX5, and DDX17, which 
are shared by both machineries all co-IP with both RNAP II and U1 snRNP, but not with the negative control 
EIF4A3. In addition, reciprocal IPs showed that all three proteins co-IP with U1 snRNP, and this association is 
speci�c as it is completely disrupted by the U1 AMO (Fig. 8d). Although the U1 snRNP machinery is highly 
abundant in RNAP II IPs, we do not observe reciprocal IPs of the RNAP II machinery using antibodies against 
U1 snRNP. One possible explanation for this is that the epitope on U1 snRNP that is recognized by the antibody is 
buried within the RNAP II machinery. We note that antibodies against the two other U1 snRNP core components 
also do not co-IP the RNAP machinery.
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In addition to the U1 snRNP components and the DEAD box helicases, the two machineries have numerous 
complexes in common. Included among these are transcription complexes (P-TEFb, the BAF complex, and the 
ASC-1 complex), the SMN complex, the tRNA ligase complex, the NONO-SFPQ complex, the DNA-PK complex 
and the ASAP complex. �e RNAP II and U1 snRNP machineries also share numerous proteins that are ALS 
or SMA causative. Both the ASC-1 complex and SMN complex contain SMA-causative proteins (ASCC1 and 
TRIP4, and SMN1, respectively). �e other shared SMN-causative proteins are HSPB1 and EXOSC8. Multiple 
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ALS-causative proteins are also in common, including FUS, EWSR1, TAF15, MATR3, TIA1, HNRNPA1, and 
HNRNPA2B1. �us, the RNAP II/U1 snRNP machinery is clearly extensively associated with motor neuron 
disease-causative proteins.

�ere are 24 proteins unique to the U1 snRNP interactome. Among these are key components of the 3’ end 
formation machinery, including CPSF1, which binds to the AAUAAA polyadenylation signal and CPSF3, which 
is the endonuclease that cleaves the transcript prior to addition of the polyA tail51–53. Previous studies showed that 
the binding of U1 snRNP to 5’ splice sites blocks 3’ end formation at cryptic polyA sites in a process known as 
telescripting54. �e mechanisms behind this are not understood. Our observation that critical 3’ end formation 
factors associate with U1 snRNP raises the possibility that these factors are the targets for U1 snRNP during 
telescripting.

70 proteins are speci�c to the RNAP II machinery, including the subunits of RNAP II itself as well as general 
transcription factors (e.g. TFIIF and NELF complex). It is not clear why some transcription factors are shared 
by the U1 snRNP and RNAP II machineries, whereas others are speci�c to RNAP II. One possibility is that the 
shared transcription factors are involved in coupling between transcription and splicing. It is well known that 
transcription by RNAP II potently enhances splicing, and our previous work indicated that this enhancement is 
due to the association of U1 snRNP with the RNAP II machinery, which allows e�cient recruitment of U1 snRNP 
to 5’ splice sites during pre-mRNA synthesis28,55,56. �ere is also evidence that reciprocal coupling occurs in which 
splicing enhances transcription, but the mechanisms involved in this coupling are less well understood57. Our 
observation that the U1 snRNP machinery associates extensively with transcription factors and with the RNAP 
II machinery suggests that these interactions are involved in the reciprocal coupling. In particular, HTATSF1, 
which associates with p-TEFb, was previously identi�ed as a factor involved in the reciprocal coupling57, and 
both factors are present in the U1 snRNP and RNAP II machinery interactomes. �us, the association between 
the RNAP II and U1 snRNP machinery may be the molecular mechanism for bi-directional coupling between 
transcription and splicing.

As mentioned above, the RNAP II/U1 snRNP machinery contains numerous motor-neuron disease causa-
tive proteins and thus the processes in which the RNAP II/U1 snRNP machinery functions are candidates for 
pathways involved in the pathogenesis of motor neuron disease. �ese pathways include transcription, splicing, 
reciprocal coupling of transcription and splicing, snRNP biogenesis and DNA repair. In addition, the unexpected 
association of other factors, such as the ASAP complex and the tRNA ligase complex with the RNAP II/U1 
snRNP machinery raises the possibility that other pathways are involved in the pathogenesis of ALS/SMA.
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Material and Methods
Plasmids and Antibodies. �e monoclonal antibodies used in this study were 8WG16 (against POLR2A, 
the large subunit of RNAP II) from Biolegend (cat # 920102), SNRPC from Sigma (cat # SAB4200188), DHX9 
from Abcam (cat # ab26271), SNRPA (cat # sc-101149), DDX5 (cat # sc-166167), DDX17 (cat # sc-86409) from 
Santa Cruz. �e polyclonal antibodies were FUS (cat # A300–293A), EWSR1 (cat # A300–418A) and MATR3 (cat 
# A300–591A) from Bethyl, TAF15 from Novus (cat # NB100–567), DDX17 (cat # sc-86409) from Santa Cruz, 
and DHX9 (cat # ab 26271) from Abcam. Our rabbit polyclonal antibodies to THOC2, EIF4A3, and DDX39B 
have been described58,59.

Immunoprecipitations (IPs). For IPs, antibodies were coupled to Protein A Sepharose beads (GE health-
care) and covalently cross-linked using dimethylpimelimidate (Sigma). Reaction mixtures (1 ml) contains 
300 µl of HeLa nuclear extract60, 300 µl of SDB (20 mM HEPES, pH 7.9, 100 mM KCl), 500 µM ATP, 3.2 mM 
MgCl2 and 20 mM creatine phosphate. �e mixtures were incubated for 30 min at 30 °C to turn over endoge-
nous complexes in the nuclear extract56. Reaction mixtures were then added to 500 µl of bu�er A (1X PBS, 0.1% 
Triton, 0.2 mM PMSF, protease inhibitor EDTA-free [Roche]) and 40 µl of antibody-crosslinked beads. �e 
IPs were carried out overnight at 4 °C. A�er �ve washes with bu�er A, proteins were eluted at room tempera-
ture using 80 µl of protein gel loading bu�er (125 mM Tris, 5% SDS, 20% glycerol, 0.005% Bromophenol blue). 
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A�er elution, DTT was added to a �nal concentration of 40 mM, and 15 µl of each eluate was analyzed on a 
4–12% SDS-PAGE gradient gel (Life technologies). AMO treatment was performed by adding control AMO 
(5′-CCTCTTACCTCAGTTACAATTTATA-3′) or U1 AMO (5′-GGTATCTCCCCTGCCAGGTAAGTAT-3′)27,2

8 to HeLa nuclear extract to a �nal concentration of 12 µM before IP. For analysis of total RNAs in the IPs, beads 
were treated with proteinase K for 10 min at 37 °C, and RNAs were recovered by phenol/chloroform extraction 
and ethanol precipitation. RNAs were run on 8% denaturing polyacrylamide gels and stained with Ethidium 
Bromide.

Mass Spectrometry. To identify the interactomes of FUS, EWSR1, TAF15 and MATR3, the IP samples were 
trichloroacetic acid (TCA) precipitated and subjected to shotgun mass spectrometry. �e total peptide number of 
the antigen in each IP was set as 100 and the relative peptide numbers of each interactors are shown in Table S1. 
Abundant cytoplasmic proteins, ribosomal proteins, proteins greater than 250 kDa, and proteins for which the 
relative total peptide number is smaller than 5 were omitted. For mass spectrometry of the U1 snRNP machin-
ery, the IP was TCA precipitated and the digested peptides were labeled by tandem mass tag61 for MS3 analysis 
on an Orbitrap Fusion mass spectrometer coupled to a Proxeon EASY-nLC 1000 liquid chromatography (LC) 
pump (�ermo Scienti�c). Abundant cytoplasmic proteins, ribosomal proteins, proteins greater than 200 kDa 
with less than 10 spectral counts, proteins greater than 70 kDa with less than 4 spectral counts, and proteins with 
one spectral count were not included in Table S2. �e proteins in Tables S1 and S2 were annotated with functions 
using the Gene Cards database (www.genecards.org)62 and/or searching the literature. To compare the U1 snRNP 
machinery and the RNAP II machinery, the quantitative mass spectrometry data of the WT RNAP II machinery 
(BC et al., submitted) was �ltered using the same criteria used for the U1 snRNP machinery as mentioned above.

Gel filtration. A reaction mixture containing 300 µl of HeLa nuclear extract60, 300 µl of SDB (20 mM HEPES, 
pH 7.9, 100 mM KCl), 500 µM ATP, 3.2 mM MgCl2 and 20 mM creatine phosphate was incubated for 30 min at 
30 °C. A�er incubation, the mixture was separated on a Sephacryl S500 (GE Healthcare) gel �ltration column. �e 
gel �ltration column bu�er contains 20 mM HEPES, 60 mM KCl, 2.5 mM EDTA and 0.1% Triton X-100.

Data availability statement. �e materials and datasets generated during and/or analyzed during the 
current study are available from the corresponding author upon request.

Figure 8. �e U1 snRNP machinery overlaps with the RNAP II machinery. (a) Venn diagram showing overlap 
of the U1 snRNP and RNAP II machineries. (b) HeLa cell nuclear extract was separated on a Sephacryl-S500 
column. �e indicated fractions were used for Western analyses with antibodies against RNAP II and U1 snRNP 
components (SNRPA and SNRPC). Fraction 25 is the void volume and 69 is the included volume. (c) IPs were 
carried out from nuclear extract using an antibody to the POLR2A subunit of the RNAP II (le� panel) or an 
antibody to the SNRPC subunit of the U1 snRNP (right panel) as well as a negative control antibody (EIF4A3) 
followed by Westerns with antibodies to the DEAD box helicases (DHX9, DDX5 and DDX17). (d) IPs were 
carried out with the indicated antibodies from nuclear extract treated with a U1 snRNA AMO or a negative 
control AMO followed by Western using the SNRPC antibody.

http://www.genecards.org
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