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Abstract. Resolving and understanding the drivers of vari-

ability of CO2 in the Southern Ocean and its potential cli-

mate feedback is one of the major scientific challenges of

the ocean-climate community. Here we use a regional ap-

proach on empirical estimates of pCO2 to understand the role

that seasonal variability has in long-term CO2 changes in the

Southern Ocean. Machine learning has become the preferred

empirical modelling tool to interpolate time- and location-

restricted ship measurements of pCO2. In this study we use

an ensemble of three machine-learning products: support

vector regression (SVR) and random forest regression (RFR)

from Gregor et al. (2017), and the self-organising-map feed-

forward neural network (SOM-FFN) method from Land-

schützer et al. (2016). The interpolated estimates of 1pCO2

are separated into nine regions in the Southern Ocean defined

by basin (Indian, Pacific, and Atlantic) and biomes (as de-

fined by Fay and McKinley, 2014a). The regional approach

shows that, while there is good agreement in the overall trend

of the products, there are periods and regions where the con-

fidence in estimated 1pCO2 is low due to disagreement be-

tween the products. The regional breakdown of the data high-

lighted the seasonal decoupling of the modes for summer

and winter interannual variability. Winter interannual vari-

ability had a longer mode of variability compared to sum-

mer, which varied on a 4–6-year timescale. We separate the

analysis of the 1pCO2 and its drivers into summer and win-

ter. We find that understanding the variability of 1pCO2 and

its drivers on shorter timescales is critical to resolving the

long-term variability of 1pCO2. Results show that 1pCO2

is rarely driven by thermodynamics during winter, but rather

by mixing and stratification due to the stronger correlation of

1pCO2 variability with mixed layer depth. Summer pCO2

variability is consistent with chlorophyll a variability, where

higher concentrations of chlorophyll a correspond with lower

pCO2 concentrations. In regions of low chlorophyll a con-

centrations, wind stress and sea surface temperature emerged

as stronger drivers of 1pCO2. In summary we propose that

sub-decadal variability is explained by summer drivers, while

winter variability contributes to the long-term changes asso-

ciated with the SAM. This approach is a useful framework to

assess the drivers of 1pCO2 but would greatly benefit from

improved estimates of 1pCO2 and a longer time series.

1 Introduction

The Southern Ocean plays a key role in the uptake of an-

thropogenic CO2 (Khatiwala et al., 2013; DeVries et al.,

2017). Moreover, it has been shown that the Southern Ocean

is sensitive to anthropogenically influenced climate variabil-

ity, such as the intensification of the westerlies (Le Quéré et

al., 2007; Lenton et al., 2009; Swart and Fyfe, 2012; DeVries

et al., 2017). Until recently, the research community has not

been able to quantify the contemporary changes of CO2 in

the Southern Ocean accurately due to a paucity of observa-

tions, let alone understand the drivers (Bakker et al., 2016).

Empirical models provide an interim solution to this chal-

lenge until prognostic ocean biogeochemical models are able

to represent Southern Ocean CO2 fluxes adequately (Lenton

et al., 2013; Rödenbeck et al., 2015; Mongwe et al., 2016).
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The research community agrees on large changes in CO2

fluxes in the Southern Ocean from a weakening sink in the

1990s to a strengthening sink in the 2000s; however, there is

disagreement over the drivers of the changes in CO2 uptake

(Lovenduski et al., 2008; Landschützer et al., 2015; DeVries

et al., 2017; Ritter et al., 2017). This study aims to under-

stand the drivers of the changing CO2 sink in the Southern

Ocean, based on an ensemble of empirical estimates using a

seasonal analysis framework.

Empirical methods estimate CO2 by extrapolating sparse

ship-based CO2 measurements using proxy variables. The

proxies are often observable by satellite but may include

climatologies or output from assimilative models. Empirical

methods have improved our understanding of CO2 trends in

the Southern Ocean by increasing the data coverage. How-

ever, there is still disagreement between many of the methods

due to the paucity of data and the way in which each method

interpolates sparse data (Rödenbeck et al., 2015; Ritter et al.,

2017).

In a key study, Landschützer et al. (2015) showed, using

an artificial neural network (ANN), that there was signif-

icant strengthening of Southern Ocean CO2 uptake during

the period 2002–2010. While previous studies suggested that

changes in wind strength have led to changes in meridional

overturning and thus CO2 uptake (Lenton and Matear, 2007;

Lovenduski et al., 2007; Lenton et al., 2009; DeVries et al.,

2017), Landschützer et al. (2015) suggested that atmospheric

circulation has become more zonally asymmetric since the

mid-2000s, which has led to an oceanic dipole of cooling and

warming. The net impact of cooling and warming, together

with changes in the DIC and TA (dissolved inorganic carbon

and total alkalinity), led to an increase in the uptake of CO2

(Landschützer et al., 2015). During this period, southward

advection in the Atlantic basin reduced upwelled DIC in sur-

face waters, overcoming the effect of the concomitant warm-

ing in the region. Conversely, in the eastern Pacific sector of

the Southern Ocean, strong cooling overwhelmed increased

upwelling (Landschützer et al., 2015). This is supported by

observations from the Drake Passage and south of Australia

showing that variability of upwelling has affected 1pCO2

(Munro et al., 2015; Xue et al., 2015).

In a subsequent study, Landschützer et al. (2016) proposed

that interannual variability of CO2 in the Southern Ocean

is tied to the decadal variability of the Southern Annular

Mode (SAM) – the dominant mode of atmospheric variabil-

ity in the Southern Hemisphere (Marshall, 2003). This con-

curs with previous studies, which suggested that the increase

in the SAM during the 1990s resulted in the weakening of

the Southern Ocean sink (Le Quéré et al., 2007; Lenton and

Matear, 2007; Lovenduski et al., 2007; Lenton et al., 2009;

Xue et al., 2015). The work by Fogt et al. (2012) bridges

the gap between the proposed asymmetric atmospheric cir-

culation of Landschützer et al. (2015) and the observed cor-

relation with the SAM of Landschützer et al. (2016). Fogt

et al. (2012) show that changes in the SAM have been zon-

ally asymmetric and that this variability is highly seasonal,

thus amplifying or suppressing the amplitude of the seasonal

mode.

Assessing the changes through a seasonal framework may

thus help shed light on the drivers of CO2 in the South-

ern Ocean. Southern Ocean seasonal dynamics suggest that

the processes driving pCO2 are complex, but with two clear

contrasting extremes. In winter, the dominant deep mixing

and entrainment processes are zonally uniform, driving an

increase in pCO2, with the region south of the Polar Front

(PF) becoming a net source and weakening the net sink north

of the PF (Lenton et al., 2013). In summer, the picture is

more spatially heterogeneous, with net primary production

being the primary driver of variability (Mahadevan et al.,

2011; Thomalla et al., 2011; Lenton et al., 2013). The com-

peting influence between light and iron limitation results in

heterogeneous distribution of chlorophyll a (Chl a) in both

space and time, with similar implications for pCO2 (Thoma-

lla et al., 2011; Carranza and Gille, 2015). The interaction

between the large-scale drivers, such as wind stress, sur-

face heating, and mesoscale ocean dynamics, are the primary

cause of this complex picture (McGillicuddy, 2016; Mahade-

van et al., 2012). Some regions of elevated mesoscale and

sub-mesoscale dynamics, mainly in the Sub-Antarctic Zone

(SAZ), are also characterized by strong intra-seasonal modes

in summer primary production and pCO2 (Thomalla et al.,

2011; Monteiro et al., 2015). In general, the opposing effects

of mixing and primary production result in the seasonal cy-

cle being the dominant mode of variability in the Southern

Ocean (Lenton et al., 2013).

In this study we examine winter and summer interannual

variability of 1pCO2 in the Southern Ocean between 1998

and 2014 to understand the drivers of long-term changes in

CO2 uptake.

2 Methodology

2.1 Empirical methods and data

In this study we use three machine-learning methods: random

forest regression (RFR), support vector regression (SVR) and

a self-organising-map feed-forward neural network (SOM-

FFN). RFR and SVR are introduced in Gregor et al. (2017)

and SOM-FFN is presented in Landschützer et al. (2014).

In brief, the RFR approach is an ensemble of decision trees

that provides non-linear regression by combining many high

variance–low bias estimators (Gregor et al., 2017). SVRs

are in principle similar to a single-hidden-layer FFN, except

that SVR statistically determines the complexity of the prob-

lem, which is analogous to the hidden layer structure that is

typically determined heuristically. The SOM-FFN method is

a two-step neural network approach that first clusters data

(SOM) and then applies a regression model (FFN) to each

cluster.
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The SVR and RFR implementations used in this study

are trained with the monthly 1 by 1◦ gridded SOCAT (Sur-

face Ocean CO2 Atlas) v3 dataset (Bakker et al., 2016). The

SOM-FFN (run ID: netGO5) used in this study was trained

with SOCAT v4 (Landschützer et al., 2017).

Table 1 shows the proxy variables used for each of the

methods. Sea surface salinity (SSS) and mixed layer depth

(MLD) for SVR and RFR are from Estimating the Circula-

tion and Climate of the Ocean, Phase II (ECCO2) (Mene-

menlis et al., 2008). The use of these assimilative modelled

products may in some cases produce results that are unre-

alistic. This may have influenced the use of the de Boyer

Montégut et al. (2004) MLD climatology in the SOM-FFN,

where ECCO2 was used in previous iterations of the prod-

uct. The trade-off of using the climatology is that no in-

terannual changes in MLD are taken into account. We ac-

knowledge that using different proxy variables could re-

sult in different 1pCO2 estimates, but comparing the dif-

ferent proxies used in each of the CO2 products is beyond

the scope of this study. Other data sources that are con-

sistent between methods are sea surface temperature (SST)

and sea-ice fraction by Reynolds et al. (2007), Chl a by

Maritorena and Siegel (2005), absolute dynamic topogra-

phy (ADT) generated by DUACS and distributed by AVISO

(ftp://ftp.aviso.oceanobs.com, last access: 12 July 2012), and

xCO2 (CDIAC, 2016) with pCO2(atm) calculated from inter-

polated xCO2 using NCEP2 sea level pressure (Kanamitsu

et al., 2002). In the case of Chl a for SVR and RFR, Gregor

et al. (2017) filled the cloud gaps with climatological Chl a.

Note that ADT coverage is limited to regions of no to very

low concentrations of sea-ice cover, so estimates for SVR

and RFR do not extend into the ice-covered regions during

winter. Our analyses are thus limited to the region north of

the maximum sea-ice extent.

Seasonality of the data is preserved by transforming the

day of the year (j ) and is included in both SVR and RFR

analyses:

t =









cos

(

j ·
2π

365

)

sin

(

j ·
2π

365

)









. (1)

Transformed coordinate vectors are passed to SVR only

using n-vector transformations of latitude (λ) and longitude

(µ) (Gade, 2010; Sasse et al., 2013), with N containing the

following:

N = 8





sin(λ)

sin(µ) · cos(λ)

−cos(µ) · sin(λ)



 (2)

Wind speed, while not used in the empirical methods, is

used in the assessment of the drivers of CO2. We use CCMP

v2, which is an observation-based product that combines re-

mote sensing, ship, and weather buoy data (originally pub-

lished by Atlas et al., 2011 and updated by Wentz et al.,

2015). Swart et al. (2015a) compared a number of wind re-

analysis products with CCMP v1 (where CCMP was the

benchmark). The authors found that many of the reanaly-

sis products had spurious trends, particularly in the South-

ern Hemisphere where data are sparse. Our choice of CCMP,

which is based on observations, aims to minimise the as-

sumptions that are otherwise made by reanalysis products.

2.2 Uncertainties

The machine-learning approaches used in this study are by

no means able to estimate 1pCO2 with absolute certainty.

To account for the uncertainty, we use the same approach as

Landschützer et al. (2014) to calculate total errors for each of

the methods:

e(t) =

√

e2
meas + e2

grid + e2
map, (3)

where em(t) is the total error associated with a method (m);

emeas is the error associated with SOCAT measurements,

which is fixed at 5 µatm (Pfeil et al., 2013), where 1 µatm

is 101 325 Pa; egrid is the 5 µatm error associated with grid-

ding the data into monthly by 1◦ bins (Sabine et al., 2013).

Lastly emap is the root mean squared error (RMSE) calculated

for each method, as shown in Table 1 taken from Gregor et

al. (2017).

These errors are used to calculate the average “within-

method” error as defined by Gurney et al. (2004):

Ew =

√

1

M
·
∑M

m=1

(

em(t)

)2
, (4)

where em(t) is the method-specific error as defined in Eq. (3)

and M is the number of methods (three in this case). For

a measure of the difference between methods we use the

“between-method” approach used in Gurney et al. (2004):

Eb =

√

1

M
·
∑M

m=1

(

Sm − S
)2

, (5)

where Sm is the method estimate of 1pCO2 and S is the

mean of the methods. This is analogous to the standard devi-

ation (for a known population size). We later use an adapta-

tion of this metric as a threshold to determine the confidence

around anomalies.

2.3 Regional coherence framework

Southern Ocean CO2 is spatially heterogeneous, both zonally

and meridionally (Jones et al., 2012). In order to understand

this heterogeneity, we used the three southernmost biomes

defined by Fay and McKinley (2014a), as done in Röden-

beck et al. (2015). From north to south these are the subtrop-

ical seasonally stratified (STSS), sub-polar seasonally strati-

fied (SPSS), and seasonally ice-covered region (ICE). These

three biomes are comparable to the SAZ, PFZ (Polar-Frontal

Zone) and MIZ (Marginal Ice Zone) respectively and will be

www.biogeosciences.net/15/2361/2018/ Biogeosciences, 15, 2361–2378, 2018

ftp://ftp.aviso.oceanobs.com


2364 L. Gregor et al.: Interannual drivers of the seasonal cycle of CO2 in the Southern Ocean

Table 1. Three empirical methods used in the ensemble. RFR and SVR are described in Gregor et al. (2017). SOM-FFN is from Land-

schützer et al. (2016). SST = sea surface temperature, MLD = mixed layer depth, SSS = sea surface salinity, ADT = absolute dynamic

topography, Chl a = chlorophyll a, pCO2(atm) = fugacity of atmospheric CO2, xCO2(atm) = mole fraction of atmospheric CO2, 8 (lat.,

long.) = N−vector transformations of latitude and longitude, t(day of year) = trigonometric transformation of the day of the year. Note that

SOM-FFN uses the de Boyer Montégut et al. (2004) climatology for MLD (dBM2004). The root mean squared errors (RMSEs) listed in the

last column are for the Southern Ocean from Gregor et al. (2017).

Method Input variables RMSE

(µatm)

RFR SST, MLD, SSS, ADT, Chl-a(clim), pCO2(atm), 8(lat., long.), t(day of year) 16.45

SVR SST, MLD, SSS, ADT, Chl-a(clim), pCO2(atm), 8(lat., long.), t(day of year) 24.04

SOM-FFN SST, MLDdBM2004, SSS, Chl a, xCO2(atm) 14.84

used throughout the rest of the study. The Southern Ocean

is further split into basins where the boundaries are defined

by lines of longitude (70◦ W – Atlantic – 20◦ E – Indian –

145◦ E – Pacific – 70◦ W).

3 Results and discussion

The first section of the results examines the uncertainties of

the ensemble and its members. We then look at the seasonal

cycle of the ensemble mean in time and space. This is done to

lay the foundation for the interpretation of the results when

assessed with the regional framework. In the regional inter-

pretation the estimates are decomposed into nine regions, as

shown in Fig. 1. Lastly, we implement a seasonal decompo-

sition of the estimates to interpret the drivers of the changes

observed in 1pCO2.

3.1 Ensemble member performance and variability

We use the RMSE scores as presented in Gregor et al. (2017)

with abbreviated results shown in Table 1. The SOM-FFN

method has the best score (14.84 µatm). SVR scores the low-

est (24.04 µatm), but is still included due to the method’s

sensitivity to sparse data, which is favourable to the poorly

sampled winter period (Gregor et al., 2017). This compli-

ments the RFR method, which scores well (16.45 µatm) but

is prone to being insensitive to sparse data (Gregor et al.,

2017). These RMSE scores are used to calculate the total

errors for each method and region using Eq. (3), where the

measurement and mapping errors are both 5 µatm each (Pfeil

et al., 2013; Sabine et al., 2013). These results are shown in

Table 2.

Total errors are used to calculate the within-method error,

which is an estimate of the combined total error of the three

machine-learning methods (Eq. 4). The between-method er-

rors are the mean of the standard deviation between the meth-

ods (Eq. 5). The within-method errors are much larger than

the between-method errors (Table 2). However, the within-

method errors are normally distributed and are mechanisti-

cally consistent (Gregor et al., 2017). The between-method

Figure 1. A map showing the regions used throughout this study.

The three biomes used in this study, SAZ, PFZ, and MIZ, are de-

fined by Fay and McKinley (2014a). The regions are also split by

basin.

error (shown in Fig. 2c) is thus used to determine whether

observed variability is consistent between the three methods.

Figure 2 shows the 1pCO2 time series for the SAZ and

PFZ. Note that we exclude the MIZ from the remaining

analyses due to large Eb and Ew (Table 2) and inconsis-

tent coverage between products due to sea-ice cover (MIZ

data are shown in the Supplement S2, S4). In general, there

is good agreement amongst the methods and the magnitude

of these differences is within the average within-method er-

ror (Ew), but the differences are important to highlight as

they contribute to the between-method error (Eb). In the

SAZ (Fig. 2a), the SOM-FFN differs from the other meth-

ods for summer and autumn from 1998 to 2008. The SVR

method overestimates the seasonal amplitude 1pCO2 (where

the seasonal amplitude is the difference between the winter

maxima and summer minima of 1pCO2) relative to the other

Biogeosciences, 15, 2361–2378, 2018 www.biogeosciences.net/15/2361/2018/
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Table 2. A regional summary of the errors for the different methods. Note that the propagated errors are calculated as shown in Eq. (3) where

the measurement and gridding errors are assumed to be constant at 5 µatm each (Pfeil et al., 2013; Sabine et al., 2013). The within-method

and between-method errors are calculated using Eqs. (4) and (5) respectively.

Propagated errors (µatm)

Biome SVR RFR SOM- Within- Between-

FFN method error method error

(µatm) (µatm)

SAZ 17.48 14.50 12.30 14.91 4.88

PFZ 15.94 12.71 13.09 13.99 4.78

MIZ 36.38 24.53 22.46 28.46 10.81

Southern Ocean 25.06 17.91 16.44 20.16 6.79

methods for 2012 to 2014. In the PFZ (Fig. 2b), the SVR

overestimates 1pCO2 relative to the other methods during

winter from 1998 to 2004, likely due to the method’s sensi-

tivity to sparse winter data (Gregor et al., 2017).

Figure 2c shows the time evolution of between-method er-

rors for each biome. This panel highlights the seasonality

of the estimates, specifically the increased heterogeneity of

1pCO2 in summer and the impact this has on 1pCO2 esti-

mates. This is due to the more complex competing processes

affecting pCO2 during summer. To gain a better understand-

ing of the seasonal processes, we consider the mean state of

each season to characterise the drivers of opposing fluxes.

3.2 Ensemble seasonal cycle

The seasonal cycle of the 1pCO2 for each biome (Figs. 2a–b

and 3a–d) is coherent with seasonal processes reported in the

literature (Metzl et al., 2006; Thomalla et al., 2011; Lenton et

al., 2012, 2013). In all biomes, uptake of CO2 is stronger dur-

ing summer than in winter, giving rise to the strong seasonal

cycle. This is due to the opposing influences of the domi-

nant winter and summer drivers, partially damped by the sea-

sonal cycle of temperature (Takahashi et al., 2002; Thoma-

lla et al., 2011; Lenton et al., 2013). In winter, the domi-

nant processes of mixing and entrainment results in increased

surface pCO2 and thus outgassing (Takahashi et al., 2009;

Lenton et al., 2013; Rodgers et al., 2014). In summer, strat-

ification allows for increased biological production and the

consequent uptake of CO2, thus reducing the entrained win-

ter DIC and associated pCO2 (Bakker et al., 2008; Thomalla

et al., 2011). However, stratification typically limits entrain-

ment other than during periods of intense mixing driven by

storms. This has an impact on primary productivity, DIC and

pCO2 (Lévy et al., 2012; Monteiro et al., 2015; Nicholson et

al., 2016; Whitt et al., 2017).

The SAZ (Fig. 2a) is a continuous sink, where summer

uptake (Fig. 3a) is enhanced by biological production and

winter (Fig. 3c) mixing results in a weaker sink (Metzl et al.,

2006; Lenton et al., 2012, 2013). The same processes pro-

duce a similar seasonal amplitude in the PFZ (Fig. 2b), but

stronger upwelling and weaker biological uptake result in a

positive shift of the mean. This results in an opposing net

summer sink and winter source. However, this is according

to the mean state in the PFZ, and winter estimates of 1pCO2

do in fact approach 0 µatm toward the end of the time series

(Fig. 2b).

Also apparent from Fig. 3 is that, over and above the

latitudinal gradient, 1pCO2 is zonally asymmetric within

each biome during summer (Fig. 3a), when biological up-

take of CO2 increases. Zonal integration of 1pCO2 could

thus dampen magnitudes of regional 1pCO2. A regional ap-

proach is therefore needed to examine the regional character-

istics of seasonal and interannual variability of 1pCO2 and

to understand its drivers.

3.3 Regional 1pCO2 variability: zonal and basin

contrasts

In Fig. 4, 1pCO2 is decomposed into nine domains by biome

and basin, with the boundaries defined in Fig. 1 (showing the

SAZ and PFZ; air–sea CO2 fluxes displayed in Fig. S4 in the

Supplement). The regional estimates are plotted as time se-

ries for 1pCO2 (black lines). The blue and orange lines show

the respective annual maxima (typically winter) and minima

(typically summer). The projected summer minima (dashed

blue lines) are calculated by subtracting the mean seasonal

amplitude from the winter maxima (Fig. 4). The projected

summer minima are the expected summer 1pCO2 under the

assumption that summer 1pCO2 is dependent on, but not re-

stricted to, the baseline set by winter.

As found by Landschützer et al. (2015), the estimates of

1pCO2 (Fig. 4) show that the Southern Ocean sink strength-

ens from 2002 to 2011 in all domains, referred to as the rein-

vigoration. This is preceded by a period of a net weakening

sink (Fig. 4b, d, e) in the 1990s, referred to as the saturation

period by Le Quéré et al. (2007). In other words, the ensem-

ble shows the same trend found in past literature (Rödenbeck

et al., 2015; Ritter et al., 2017), but as with these studies we

also find that there is large uncertainty in the interannual vari-

ability of the ensemble estimate, as shown by the between-

www.biogeosciences.net/15/2361/2018/ Biogeosciences, 15, 2361–2378, 2018
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Figure 2. Time series of the three ensemble methods for each biome, as defined by Fay and McKinley (2014a): (a) SAZ, (b) PFZ and

(c) the standard deviation between ensemble members for the three biomes, which is analogous to the between-method error (Eq. 5). The

within-method (Ew) and between-method (Eb) errors are shown for each biome. For a more detailed breakdown of the errors see Table 2.

method error in Fig. 4 (see Fig. S4 for the spread of the prod-

uct estimates, including the Jena mixed layer scheme by Rö-

denbeck et al., 2014). This disagreement between methods is

likely driven by the sparse coverage of pCO2 measurements

in the Southern Ocean, with empirical methods interpolat-

ing the sparse data differently (Rödenbeck et al., 2015; Ritter

et al., 2017). We thus present our methods and results as a

framework to assess the drivers of interannual variability of

1pCO2.

Key to understanding the mean interannual variability is

that it is the net effect of the decoupled seasonal modes of

variability for summer and winter. This is particularly evident

in the PFZ (Fig. 4d–f). Here, and in the other biomes, the net

strengthening of the CO2 sink is mainly linked to a reduction

of 1pCO2 in winter for the majority of the time series. This

corresponds with the findings of Landschützer et al. (2016),

who linked the reinvigoration to the decadal variability of

the SAM – the dominant mode of atmospheric variability in

the Southern Hemisphere (Marshall, 2003). In contrast, sum-

mer 1pCO2 variability is shorter (roughly 4–6 years), thus

providing interannual modulation of longer-timescale winter

variability. This is demonstrated well in the Indian sector of

the PFZ, where a decrease in winter 1pCO2 from 2002 to

2011 is offset by weakening of the summer sink from 2006

to 2010 (Fig. 4d). Similarly, in the Atlantic and Pacific sec-

tors of the PFZ, decoupling occurs from ∼ 2011 to the end

of 2014, with a rapid increase in the strength of the summer

sink.

The mean amplitude of the seasonal cycle of 1pCO2 – the

mean difference between the summer minima and the win-

Biogeosciences, 15, 2361–2378, 2018 www.biogeosciences.net/15/2361/2018/
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Figure 3. The mean seasonal states of 1pCO2 of the empirical ensemble mean. These are shown for (a) summer, (b) autumn, (c) winter, and

(d) spring. The black contour lines show the SAZ, PFZ, and MIZ (masked) from north to south, as defined by Fay and McKinley (2014a).

Figure 4. Panels (a–f) show the ensemble mean of 1pCO2 (black) plotted by biome (rows) and basin (columns). Biomes are defined by Fay

and McKinley (2014a). The blue line shows the maximum for each year (winter outgassing) and the dashed blue line shows the same line

less the average seasonal amplitude (diff) – this is the expected amplitude. The orange line shows the minimum 1pCO2 for each summer

season. The shaded regions around the seasonal maxima and minima show the standard deviation of the three products. Eb is the average

between-method error and 1pCO2 is the average for the entire time series. Light grey shading in (a–f) shows the periods used in Figs. 5 and

6.
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ter maxima – is perhaps a better way of understanding the

strength of the seasonal drivers than the mean 1pCO2. For

example, the Atlantic sectors of the SAZ and PFZ (Fig. 4c, f)

have the strongest seasonal variability (14.11 and 25.83 µatm

respectively). This contrasts with the relatively weak sea-

sonal amplitude in the Indian sector of the Southern Ocean,

which has mean amplitudes of 7.06 and 13.64 µatm for the

SAZ and PFZ respectively (Fig. 4b, e). This contrast can also

be seen by comparing the mean seasonal maps of 1pCO2 in

Fig. 3a and c. In summer, strong uptake in the eastern At-

lantic sector of the Southern Ocean is indicative of large bio-

logical drawdown of CO2 by phytoplankton (Thomalla et al.,

2011). Conversely, relatively low primary production in the

Indian sectors of the SAZ and PFZ result in a small seasonal

amplitude (Thomalla et al., 2011). This large discrepancy in

biological primary production is related to the availability of

iron, a micronutrient required for photosynthesis. The lack of

large land masses, which are a source of iron, in the Indian

sector of the Southern Ocean could be a contributing factor

to the lack of biomass (Boyd and Ellwood, 2010; Thomalla

et al., 2011).

3.4 Framework: seasonal deconstruction of

interannual variability

Figure 4 gives us insight into the magnitude of interannual

1pCO2 variability as well as the character of these changes,

i.e. decoupling of interannual winter and summer modes of

variability. This alludes to the point that 1pCO2 is respond-

ing to different adjustments of seasonal large-scale atmo-

spheric forcing and/or responses of internal ocean dynamics

in the Southern Ocean (Landschützer et al., 2015, 2016; De-

Vries et al., 2017).

In order to capture the decoupled 4–6-year short-term vari-

ability observed in summer, the estimates are divided into

four objectively selected periods (P1 to P4). The periods are

each 4 years long with the exception of P1, which is 5 years

long due to the fact that the duration of the time series is

not divisible by 4 (with a total duration of 17 years). Given

a longer time series, this analysis would benefit from test-

ing different durations for each period, as well as varying the

starting and end years.

These four periods are too short for trend analyses (Fay et

al., 2014), but the intention here is to identify periods that are

short enough to resolve interannual changes of large-scale

drivers of the winter and summer pCO2 that would other-

wise be averaged out over longer periods. We then calculate

the relative anomaly between each successive period rather

than an anomaly of the mean state (e.g. P2–P1). As a result,

four periods give rise to three sub-decadal-scale transition

anomalies for summer and winter: A (P2–P1), B (P3–P2),

and C (P4–P3). We do this separately for each method rather

than using the ensemble mean (see Sect. 3.1.4 for calcula-

tions). The mean of the method anomalies for each transition

is then taken. These anomalies are considered significant if

the absolute estimate of the anomaly is larger than the stan-

dard deviation between the methods for each period.

Note that although only summer and winter anomalies

are discussed, it is recognised that autumn and spring could

be equally mechanistically important. Winter anomalies of

1pCO2, wind stress, SST, and MLD are shown in Fig. 6,

while summer anomalies of 1pCO2, wind stress, SST, and

Chl a are shown in Fig. 7. Chl a is potentially a more im-

portant driver in summer than the generally shallow summer

MLD (the omitted plots are shown in Figs. S5 and S6).

3.4.1 Uncertainty of transition anomalies

The transition anomalies are not calculated from the mean

of the three products. Rather, we calculate the anomalies for

each individual product with

an(p′) = Sn(p) − Sn(p−1), (6)

where s are the estimates for a particular product, n repre-

sents an individual product and p represents P1 to P4. The

result, an(p′) thus represents the anomaly for two periods for

a particular product. We then calculate the average of the

anomalies with

ap′ =
1

N
·
∑N

n=1
an(p′), (7)

where N is 3, the number of products. We then calculate the

standard deviation of the three anomalies (ep′), which is anal-

ogous to the between-method error, with

ep′ =

√

1

N
·
∑N

n=1

(

an(p′) − an(p′)

)2
, (8)

where the terms are consistent with those above. We use ep′

as an uncertainty threshold where anomalies are only con-

sidered significant if |ap′ | > ep′ . These regions are masked

in Figs. 6a–c and 7a–c. Figure 5 shows the winter (a–c) and

summer (d–f) ep′ for each transition anomaly.

3.5 Drivers of winter 1pCO2 variability

Figure 6 shows the three transition anomalies for the four

periods shown in Fig. 4. It is clear that there is large uncer-

tainty around the 1pCO2 anomalies in the Southern Ocean

owing to the differences between the three empirical meth-

ods, caused by a paucity of in situ measurements of 1pCO2.

However, there are still small regions that show anomalies

with confidence. Figure 6d–l also show the Pearson’s correla-

tion coefficients for each of the driver variables with 1pCO2

for the regions that are above the uncertainty threshold.

The correlations in Fig. 6 show that MLD is a dominant

predictor of pCO2 in winter (Fig. 6j–l), with wind stress be-

ing a stronger predictor only in Transition B (6e). However,

these correlations are all less than |0.3|, indicating that the

relationship between 1pCO2 and MLD is complex and non-

linear. Moreover, spatial inconsistency in the relationship be-

tween pCO2 and the drivers reduce the correlations, which
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Figure 5. Maps of the standard deviation between empirical methods for the anomalies. These are used as thresholds for 1pCO2 in Figs. 6a–c

and 7a–c for winter and summer respectively. When the standard deviation exceeds the absolute value average anomaly, the values are

masked, as shown in Figs. 6 and 7.

are applied for the entire domain (above the threshold). This

is likely due to MLD being a metric that measures the com-

plex interaction of heat, stratification, and mixing processes

(Abernathy et al., 2011) – mechanisms relating to SST and

wind stress. We now discuss the results by transition.

In Transition A (first column of Fig. 6), MLD is the

strongest driver. Deeper mixed layers in the Pacific and east-

ern Indian sectors of the Southern Ocean correspond with in-

creased deepening, correlating with increased 1pCO2. The

reduction of 1pCO2 along the boundary of the Atlantic and

Indian sectors of the SAZ corresponds with increased SST.

This agrees with the hypothesis put forward by Landschützer

et al. (2015) that warmer SSTs in the Atlantic led to increased

uptake of CO2. However, the same is not true for the western

Indian sector of the PFZ, where cooling and deepening MLD

results in a reduction of 1pCO2.

Increased uptake of 1pCO2 across the boundary of the

Atlantic and Indian sectors of the SAZ continues into Transi-

tion B (second column of Fig. 6). This is again accompanied

by an increase in SST (Fig. 6h). The reduction of 1pCO2

extends to the eastern Indian sector of the SAZ and Tasman

Sea. This corresponds with weak shoaling of the MLD, weak

warming and a reduction of wind stress (Fig. 6e, h, k). Con-

versely, in the eastern Pacific, cooling surface temperatures,

weaker winds, and shallower MLDs correspond with a re-

duction of 1pCO2, again in agreement with Landschützer et

al. (2015). The large reduction of 1pCO2 in the Indian sec-

tor of the PFZ corresponds with an increase in temperature;

however, there is also an increase in the depth of the MLD

– this interaction is mechanistically unlikely and may be an

artefact of the sparse data in this region.

In Transition C, the reduction of 1pCO2 in the Indian and

western Pacific sector of the SAZ corresponds with warmer

SST and shallower MLDs. Once again there is a region in the

Indian sector of the PFZ that experiences a potentially spuri-

ous reduction of 1pCO2 corresponding with deeper MLDs.

The anomalies in the rest of the domain are not significant.

3.5.1 MLD-driven interannual variability of pCO2 in

winter

Our results indicate that there is not one dominant driver

of 1pCO2 interannual transition anomalies in winter. While

MLD is on average the stronger driver, its dominance of

1pCO2 is only marginal over SST and wind stress (Fig. 6).

This marginal dominance over the two other drivers is likely

due to MLD being a metric that integrates the complex inter-

action between wind-driven mixing and winter heat loss to

the atmosphere, of which SST is a response (De Boyer Mon-

tégut et al., 2004; Sallée et al., 2010). Mechanistically, deeper

MLDs would result in greater entrainment of DIC-rich deep

waters, while shallower MLDs entrain less DIC-rich waters,

thus reducing the DIC pool in winter resulting in potentially

stronger 1pCO2 uptake in the surface ocean (Lenton et al.,

2013).

An important point to note is that SST is negatively corre-

lated with 1pCO2 in Fig. 6g–i. This is contrary to what is ex-

pected for solubility-driven changes of pCO2 (Takahashi et
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Figure 6. Transitions (relative anomalies) of winter 1pCO2 (a–c), wind stress (d–f), sea surface temperature (g–i), and mixed layer depth

(j–l) for four periods. The thin black lines show the boundaries for each of the nine regions described by the biomes (Fay and McKinley,

2014a) and basin boundaries. Regions with dots are where 1pCO2 anomalies are not significant; i.e. standard deviation of the anomalies

between methods are greater than the absolute mean of method anomalies, as described in Eqs. (6)–(8).

al., 1993). This indicates that SST – a response to underlying

variability and trends in winter buoyancy and mixing – is not

a driver of 1pCO2 changes in most regions of the Southern

Ocean. There are some small sub-regions, where SST could

drive the 1pCO2 trend, such as in the eastern Pacific sec-

tor of the PFZ during Transition B (Fig. 6b, h) but they are

spatially and temporally limited. Our results suggest that, in

winter, a complex interaction of changing wind stress and

buoyancy fluxes that influence MLD and entrainment may

play a stronger role than thermodynamics in explaining the

1pCO2 interannual transitions.
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Wind-stress anomalies (Fig. 6d–f) do not correlate

strongly with pCO2 anomalies, with the exception of Tran-

sition B, when it has the strongest correlation. We propose

that this lack of coherence between the two variables may

be a result of two compounding points. Firstly, wind stress

is the only truly independent driver in the analysis, with

SST and MLD both being used as proxies for 1pCO2 in

each of the products. Secondly, the wind stress shown in

Fig. 6d–f considers only wind strength, so it does not take

into account potential meridional changes in atmospheric cir-

culation. This is the primary hypothesis presented in Land-

schützer et al. (2015), suggesting that atmospheric circula-

tion became more zonally asymmetric. This induced a south-

ward shift of warmer waters over the Atlantic and Indian

sectors, reducing the depth of the MLD. Conversely, in the

eastern Pacific cold winds induced colder SST and thus an

increase in solubility.

Past studies have related the variability of Southern Ocean

wind stress to the SAM, where the multi-decadal increas-

ing trend has been cited as a reason for the saturation in the

1990s (Marshall, 2003; Le Quéré et al., 2007; Lenton and

Matear, 2007; Lovenduski et al., 2008). The SAM is often

represented as a zonally integrating index (Marshall, 2003),

but more recent studies have shown that the SAM, as the first

empirical mode of atmospheric variability, is zonally asym-

metric (Fogt et al., 2012). The zonal asymmetry of the SAM

is thought to be linked with the El Niño–Southern Oscillation

and is strongest in winter, particularly over the Pacific sec-

tor of the Southern Ocean during a positive phase, in accord

with the dipole nature of the Pacific–Indian winter wind-

stress transition observed in Fig. 6d, e (Barnes and Hartmann,

2010; Fogt et al., 2012). Fogt et al. (2012) noted that the

SAM has become more zonally symmetric in summer since

the 1980s, matching the characteristics of the anomalies of

wind-stress transitions seen in Fig. 6d–f and the hypothesis

of Landschützer et al. (2015).

In summary, our analysis of the drivers of 1pCO2 is con-

sistent with the atmospheric asymmetry (dipole) conceptual

model associated with the SAM proposed by Landschützer

et al. (2015). However, our results suggest that interannual

1pCO2 trends are explained by DIC dynamics rather than

by the thermodynamic response of pCO2. A key part of this

emphasis on DIC is that our results indicate that 1pCO2 and

SST are not correlated in a way that supports a thermody-

namic control of 1pCO2. The reasons for these differences

are not clear at this stage, but they could include differences

in the temporal resolution of the two studies: the resolution

of the seasonal extremes in this study (seasonal modes) vs.

annual mean in Landschützer et al. (2015).

3.6 Anomalies of 1pCO2 and its summer drivers

Compared to the winter transitions, summer transitions

(Fig. 7) have larger areas where the anomalies between prod-

ucts are within the bounds of the uncertainty. This may be

due to the larger magnitude of the anomalies in summer com-

pared to winter (Fig. 6). In summer we also see that Chl a

(Fig. 7j–l) is likely the first-order driver with the highest cor-

relation scores for transitions A and B.

Transition A (P2–P1 in Fig. 7a) is marked by a decrease

of CO2 in the SAZ (Tasman shelf region), coinciding with an

increase in Chl a. The Drake Passage region experiences a

strong reduction of 1pCO2 in the PFZ, as found by Munro

et al. (2015) and Landschützer et al. (2015). Unlike in the

Tasman basin, this reduction of 1pCO2 is not accompanied

by a strong increase in Chl a, but rather a reduction of wind

stress and an increase in SST. This is contrary to the annu-

ally integrated analysis of Landschützer et al. (2015), who

found that cooling drove a reduction of pCO2 in the eastern

Pacific sector of the PFZ. This difference likely arises from

the integration of seasons and a longer period (2002–2011)

compared to the framework used in this study. In the Indian

sector of the PFZ the products agree on a weak increase in

1pCO2 corresponding with a weak reduction of Chl a.

Transition B (P3–P2 in Fig. 7b) shows a large reduction

of 1pCO2 in the Atlantic sector of the PFZ and southern

SAZ. The reduction coincides with an increase in Chl a and

SST in the same region, in agreement with Landschützer et

al. (2015).

In Transition C (P4–P3 in Fig. 7c) the reduction of the

1pCO2 is widespread in the Indian and Pacific oceans in

both biomes, as the increase in Chl a is similarly widespread;

however, the increase in Chl a in the Indian sector of the SAZ

is not strong compared to other regions where 1pCO2 and

Chl a variability correspond. Conversely, there is a reduction

in Chl a and concomitant increase in 1pCO2 along the Polar

Front in the Atlantic sector, coinciding with the position of

the Antarctic Circumpolar Current (ACC) – a region with

high eddy kinetic energy (EKE) (Meredith, 2016).

Based on these cases we suggest that 1pCO2 is driven pri-

marily by Chl a in regions with high-Chl a concentrations.

Note that we will not try to explain Chl a variability, which

is complex due to the multitude of factors influencing phyto-

plankton growth (Thomalla et al., 2011). We further suggest

that in regions of low Chl a, buoyancy forcing and mixing

are higher-order drivers. As suggested for winter variability,

these two mechanisms are a complex interaction of variables

of which SST and wind stress are a part (Abernathy et al.,

2011).

This then raises the importance of the magnitudes of the

interannual variability of 1pCO2 and its drivers. For exam-

ple, the anomalies of 1pCO2 and SST are larger in sum-

mer than in winter. Conversely, the wind-stress anomalies

are larger for winter than in summer. This is an important

consideration for analyses that aim to understand the driv-

ing mechanisms, where annual averaging would weight sea-

sonally asymmetric responses of 1pCO2 and its drivers un-

equally.
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Figure 7. Relative anomalies of summer 1pCO2 (a–c), wind stress (d–f), sea surface temperature (g–i), and mixed-layer depth (j–l) for four

periods (as shown above each column). The thin black lines show the boundaries for each of the nine regions described by the biomes (Fay

and McKinley, 2014a) and basin boundaries. Regions with dots are where 1pCO2 anomalies are not significant; i.e. standard deviation of

the anomalies between methods are greater than the absolute mean of method anomalies, as described in Eqs. (6)–(7).

3.6.1 Chlorophyll-dominated interannual anomalies of

pCO2 in summer

Our finding that Chl a is the dominant driver of interannual

1pCO2 variability should not be surprising given that mod-

els and observations support this notion (Hoppema et al.,

1999; Bakker et al., 2008; Mahadevan et al., 2011; Wang et

al., 2012; Hauck et al., 2013, 2015; Shetye et al., 2015). How-

ever, our data show that the dominance of interannual Chl a

variability over 1pCO2 is largely limited to regions where

Chl a is high, such as the Atlantic, the Agulhas retroflection

and south of Australia and New Zealand (Fig. 8).
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Figure 8. Chl a seasonal cycle reproducibility and iron-supply

mechanisms in the Southern Ocean. Regions of chlorophyll biomass

and seasonal cycle reproducibility from Thomalla et al. (2011) (us-

ing SeaWIFS data). Seasonality is calculated as the correlation be-

tween the mean annual seasonal cycle compared to the observed

chlorophyll time series. A correlation threshold of 0.4 is applied

to each time series to distinguish between regions of high and low

seasonality; similarly, a threshold of 0.25 mg m−3 is used to distin-

guish between low or high chlorophyll waters. Black lines showing

the fronts are calculated using altimetry thresholds from Swart et

al. (2010).

The spatial variability of high Chl a regions in the South-

ern Ocean is complex due to the dynamics of light and iron

limitation (Arrigo et al., 2008; Boyd and Ellwood, 2010;

Thomalla et al., 2011; Tagliabue et al., 2014, 2017). This

complexity is highlighted in Thomalla et al. (2011), where

the Chl a is characterized into regions of concentration and

seasonal cycle reproducibility (SCR; Fig. 8). The SCR is cal-

culated as the correlation between the mean annual seasonal

cycle and the observed chlorophyll time series. Here we use

the approach of Thomalla et al. (2011), in Fig. 8, as a con-

ceptual framework to understand the interannual variability

of 1pCO2.

3.6.2 High-chlorophyll regions

While regions of high SCR (dark green in Fig. 8) do not cor-

respond with the interannual variability of Chl a (Fig. 7j–l),

the framework by Thomalla et al. (2011) does present a hy-

pothesis by which the variability of Chl a and its drivers can

be interpreted, i.e. that the variability of Chl a in a region

is a complex interaction of the response of the underlying

physics (mixing vs. buoyancy forcing, which modulate light

via MLD and iron supply) to the interannual variability in

the drivers (SST and wind stress). This complexity is exem-

plified by strong warming in the Atlantic during Transition

B, which results in both an increase and decrease in Chl a,

with inverse consequences for 1pCO2. The effect is even

stronger in Transition C, where strong cooling in the Atlantic

results in both a decrease and increase of Chl a (Fig. 7i, l).

In both transition A and B, the respective increase and de-

crease of Chl a occur roughly over the ACC, while the op-

posing effects during transitions A and B occur roughly to

the north and south of the ACC region. These temperature

changes may impact the stratification of the region, but com-

plex interaction with the underlying physics results in vari-

able changes in Chl a.

It is clear that, while there is a relationship between Chl a

and pCO2 as well as a relationship between wind stress

and SST in summer, the relationship between wind forcing,

Chl a, and pCO2 is not as strong as in the winter anoma-

lies (Fig. 6). It may be that enhanced summer buoyancy forc-

ing resulting from summer warming and mixed layer eddies

drives a more complex response to wind stress in the form

of vertical velocities and mixing, which influence the iron

supply and the depth of mixing (McGillicuddy, 2016; Ma-

hadevan et al., 2012).

Mesoscale and sub-mesoscale processes may have a part

to play in these dynamic responses of Chl a to changes in

SST and wind stress (amongst other drivers). For example,

eddy-driven slumping could act to shoal the mixed layer

rapidly (Mahadevan et al., 2012; Swart et al., 2015b; du

Plessis et al., 2017). This allows phytoplankton to remain

within the euphotic zone, thus ensuring growth as long as

iron is not limiting. Similarly, Nicholson et al. (2016) and

Whitt et al. (2017) demonstrated that sub-mesoscale pro-

cesses could supply iron to the mixed layer by sub-mesoscale

mixing. Importantly, these mechanisms rely on a mixing

transition layer that has sufficient iron to sustain growth –

weak dissolved iron gradients in the Pacific and eastern In-

dian sectors of the Southern Ocean could explain the lack

of phytoplankton in these regions (Tagliabue et al., 2014;

Nicholson et al., 2016). Much of the spatial character of the

transition anomalies occurs at mesoscale, which strengthens

the view that these mesoscale and sub-mesoscale processes

may be key to explaining changes in Chl a (Fig. 7j–l).

3.6.3 Low-chlorophyll regions

Entrainment and stratification can explain much of the vari-

ability in the eastern Pacific and Indian sectors of the PFZ

(with the exception of the wake of the Kerguelen Plateau).

For example, in the eastern Pacific in Transition A (Fig. 7a,

d, g), strong warming and weaker winds have little impact

on Chl a, but a decrease in 1pCO2 is observed. Conversely,
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cooling in the western Indian sector of the PFZ results in a

weak increase in 1pCO2 during the same transition. In both

these cases, the effect of cooling or warming on 1pCO2 is

negligible relative to the impact of entrainment or stratifica-

tion respectively. The effect is reversed in the eastern Pacific

during Transition B, where strong cooling results in a weak

reduction of 1pCO2 rather than the increase that would be

expected from entrainment. This is the mechanism that Land-

schützer et al. (2015) ascribed to the reduction of 1pCO2 in

the Pacific, but the effect observed in Fig. 6b is weak.

In summary, regions with high-biomass Chl a integrate

the complex interactions between SST, wind stress, MLD,

and sub-mesoscale variability, resulting in large interannual

pCO2 variability compared to low-biomass regions, where

wind-driven entrainment and stratification are more likely

drivers of 1pCO2.

4 Synthesis

In this study, an ensemble mean of empirically estimated

1pCO2 is used to investigate the trends and the drivers of

these trends in the Southern Ocean. The estimated 1pCO2

shows that the seasonal cycle is the dominant mode of vari-

ability imposed upon weaker interannual variability. The en-

semble estimates are separated into domains defined by func-

tional biomes and oceanic basins to account for the roughly

basin-scale zonal asymmetry observed in preliminary anal-

yses of 1pCO2 (Fay and McKinley, 2014a). A seasonal

framework is applied to the domains, revealing that winter

and summer variability is decoupled for each region. The in-

crease and subsequent decrease of pCO2 (and air–sea CO2

fluxes) is in accordance with recent studies showing a satura-

tion of the Southern Ocean CO2 sink in the 1990s, followed

by the reinvigoration in the 2000s (Le Quéré et al., 2007;

Landschützer et al., 2015).

While there is agreement around the mean of the ensem-

ble, there is a large amount of uncertainty around the esti-

mates due to a lack of agreement between products on a re-

gional level. This uncertainty likely stems from the way that

each method interpolates sparse winter data (Rödenbeck et

al., 2015; Gregor et al., 2017). We thus interpret only regions

where the three empirical products are in agreement.

We suggest that changes in the characteristics of the sea-

sonal cycle of the drivers of pCO2 define the interannual

variability of pCO2. In other words, the mechanisms that

drive interannual modes of variability are embedded in the

seasonal cycle.

Using this approach, we propose a refinement of the hy-

pothesis put forward by Landschützer et al. (2015) by adding

a seasonal constraint. The authors posit that 1pCO2 vari-

ability is driven by changes in atmospheric circulation that in

turn affect advection of water masses, thus impacting stratifi-

cation. Our results also show that winter 1pCO2 variabil-

ity is best correlated with MLD, which indicates that en-

trainment of deep DIC-rich water masses is an important

mechanism of 1pCO2 variability (Lenton et al., 2009, 2013;

Landschützer et al., 2015). The inverse relationship between

SST and 1pCO2 also suggests that in most cases 1pCO2

is not thermodynamically controlled. Winter 1pCO2 vari-

ability has a longer mode than summer variability, which we

attribute to the decadal-mode variability of the Southern An-

nular Mode (Lovenduski et al., 2008; Fogt et al., 2012; Land-

schützer et al., 2016). This mechanism is likely dominant in

winter due to its role in large seasonal net heat losses that

drive convective overturning of the water column.

We suggest that interannual summer variability of 1pCO2

occurs from a baseline set by an interannual winter trend.

Moreover, the shorter-timescale summer interannual vari-

ability of 1pCO2 (roughly 4–6 years) is driven primarily by

Chl a. Buoyancy forcing and mixing still influence 1pCO2

in summer but are lower-order drivers. We propose that the

interannual variability of the summer seasonal peak is linked

to the complex interaction of mid-latitude storms with the

strong mesoscale and sub-mesoscale gradients in the South-

ern Ocean.

Overall, we propose that although mechanisms linked to

winter wind stress explain the decadal trends in the strength-

ening and weakening of CO2 uptake by the Southern Ocean,

summer drivers may explain the shorter-term interannual

variability (Lovenduski et al., 2008; Landschützer et al.,

2015).

Lastly, it is important to note that this study can be im-

proved by two factors. Firstly, increasing the length of the

time series would allow for the identification of regular

seasonal modes of variability. Moreover, the length of the

anomaly periods could also then be adjusted to understand

the variability of the drivers better. Secondly, improving

machine-learning estimates of pCO2 so that there is better re-

gional agreement between products would decrease the area

of insignificant variability. Rödenbeck et al. (2015) and Ritter

et al. (2017) attribute the uncertainty to the individual meth-

ods’ interpolation of sparse data in the Southern Ocean. This

issue is being addressed by the community with autonomous

sampling platforms closing the “observation gap”. However,

strategic deployment and sampling strategies will be critical

to constrain and improve our understanding of CO2 in the

non-stationary context (McNeil and Matear, 2013; Monteiro

et al., 2015).
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