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Abstract: We used the NASA Ocean Biogeochemical Model (NOBM) combined with 

remote sensing data via assimilation to evaluate the contribution of four phytoplankton 

groups to the total primary production. First, we assessed the contribution of each 

phytoplankton groups to the total primary production at a global scale for the period  

1998–2011. Globally, diatoms contributed the most to the total phytoplankton production 

(~50%, the equivalent of ~20 PgC·y
�1

). Coccolithophores and chlorophytes each 

contributed ~20% (~7 PgC·y
�1

) of the total primary production and cyanobacteria 

represented about 10% (~4 PgC·y
�1

) of the total primary production. Primary production 

by diatoms was highest in the high latitudes (>40°) and in major upwelling systems 

(Equatorial Pacific and Benguela system). We then assessed interannual variability of this 

group-specific primary production over the period 1998–2011. Globally the annual relative 

contribution of each phytoplankton groups to the total primary production varied by 

maximum 4% (1–2 PgC·y
�1

). We assessed the effects of climate variability on group-specific 

primary production using global (i.e., Multivariate El Niño Index, MEI) and “regional” 

climate indices (e.g., Southern Annular Mode (SAM), Pacific Decadal Oscillation (PDO) 

and North Atlantic Oscillation (NAO)). Most interannual variability occurred in the 

Equatorial Pacific and was associated with climate variability as indicated by significant 

correlation (p < 0.05) between the MEI and the group-specific primary production from all 

groups except coccolithophores. In the Atlantic, climate variability as indicated by NAO 

was significantly correlated to the primary production of 2 out of the 4 groups in the North 

Central Atlantic (diatoms/cyanobacteria) and in the North Atlantic (chlorophytes and 
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coccolithophores). We found that climate variability as indicated by SAM had only a 

limited effect on group-specific primary production in the Southern Ocean. These results 

provide a modeling and data assimilation perspective to phytoplankton partitioning of 

primary production and contribute to our understanding of the dynamics of the carbon 

cycle in the oceans at a global scale. 

Keywords: primary production; phytoplankton composition; Chl-a; remote sensing; 

MODIS; seaWiFS; biogeochemical models  

 

1. Introduction 

Phytoplankton is responsible for over half of the net primary production on Earth [1]. The 

observations by satellites coincide with the improvement of our knowledge on global dynamics of 

phytoplankton through the development of ocean color algorithms. More recently, progress has been 

made in discerning phytoplankton types using algorithms [2–6] and models [7–11]. Phytoplankton 

composition plays a major role in the biogeochemical cycle of the oceans. The intensity of carbon 

fixation and export is strongly dependent on the phytoplankton community composition. Yet, the 

contribution of various phytoplankton groups to the total primary production is still poorly understood. 

It is therefore crucial to quantify the spatial and temporal variability of the group-specific primary 

production to understand oceanic biogeochemical cycles and how they are likely to respond to climate 

variability and change. Data from satellite observations [12] suggest that for upwelling regions, 

photosynthetic rates by microplankton are higher than that of nanoplankton, but when the spatial extent 

is considered, the production by nanoplankton is comparable or even larger than microplankton. 

Climate variability has been shown to drive phytoplankton composition shifts in some regions [13–16]. 

These changes are likely to have an effect on primary production. The contribution of each group to 

the total primary production and how their contribution changes on seasonal and interannual scales 

remains poorly characterized. To our knowledge, there have been few attempts so far at estimating 

size-specific primary productivity at a global scale [17–19]. Uitz et al. [5] used the primary production 

model of Morel [20] to derive size-specific phytoplankton primary production over the upper water 

column. This approach estimated the contribution of pico-, nano- and microphytoplankton to the total 

primary production.  

Although there have been few attempts at estimating size-specific primary production, to our 

knowledge this paper represents the first attempt at estimating taxonomic/functional group-specific 

primary production at a global scale. We use the NASA Ocean Biogeochemical Model (NOBM) 

combined with ocean color remote sensing data assimilation to (1) assess the climatological  

group-specific primary production globally and (2) assess the contribution of each group to the total 

primary production on an interannual scale for the period 1998–2011. Group-specific primary 

production is reported globally and in 12 major oceanographic regions for total chlorophyll, diatoms, 

chlorophytes, coccolithophores and cyanobacteria.  

Total primary production from NOBM has been evaluated along with multiple satellite-derived and 

numerical models in three intercomparison efforts [21–23]. In these intercomparison efforts, primary 
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production from biogeochemical ocean circulation models was found to be overall overestimated in 

the tropical Pacific [21] but underestimated when comparing primary production from models with 

data collected at Bermuda Atlantic Time series Study and Hawaii Ocean Time series station [23]. 

Saba et al. [23] also found that satellite-based primary production had a significantly lower total RMSD 

at both stations but the biogeochemical models estimated the variability in primary production as well or 

better than the satellite-based approach. Friedrichs et al. [21] showed that the absolute bias for the 

primary production from the NOBM was of a factor of 1.31, meaning that the median value of modeled 

primary production was a factor of 1.31 greater than the median value of data (total RMSD = 0.27). In 

addition, the modeled primary production from the NOBM was (R = 0.6) correlated to the primary 

production data in the tropical Pacific. For sanity purposes, in this paper we explicitly compare NOBM 

total primary production with a commonly used satellite-derived method that has the advantage of 

public availability and heritage, the Vertically-Integrated Production Model [24] (data downloaded 

from www.science.oregonstate.edu). The purpose of this comparison is not to validate per se because 

there are many other models and we are not attributing an assessment of the quality of this particular 

one. However, we are interested in establishing a quantitative comparison of total primary production 

of NOBM with a common method that has been involved in many intercomparison efforts to place the 

NOBM total primary production estimates in perspective. Following this comparison, we compare the 

group-specific primary production from NOBM with an algorithm-based approach [17]. The model 

describes complex interactions between physics and biology in the oceans [7,8,10]. In the NOBM, the 

phytoplankton composition and primary production is based on biogeochemical processes in the 

context of physical and radiative dynamics. Additionally, satellite ocean color data assimilation is used 

to constrain the model total chlorophyll abundances. To our knowledge, Uitz et al. [17] is the only 

other approach to determine group-specific primary production at a global scale. Through this 

comparison, we improve our knowledge of group-specific primary production by highlighting the 

strengths and weaknesses of our approach. 

2. Results and Discussion 

2.1. Climatology of Primary Production and Comparison with VGPM 

Globally, the total primary production from the assimilated NOBM was 39 PgC·y
�1

, with the 

majority of this total production coming from the Equatorial Pacific (~17% or 6.5 PgC·y
�1

) and the 

South and North Central Pacific (~12%, Table 1). The Southern Ocean contributed the fourth most to 

the global primary production with 4.5 PgC (~11%) produced annually. This estimate of total primary 

production at a global scale falls in the lower range of values previously reported by Carr et al. [22] in 

an intercomparison of 24 models. In Carr et al. [22], total primary production ranged between 40 and 

60 PgC·y
�1

. This discrepancy can be explained by the fact that the northernmost latitude covered by 

NOBM is 72°N. Similarly to the spatial distribution of primary production in the NOBM, Carr et al. [22] 

found that most total primary production occurred in the Pacific Ocean (a total of 21 PgC·y
�1

 or 44% 

for the entire basin compared to 17 PgC·y
�1

 or 44% for the entire Pacific Ocean using the NOBM). 
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Table 1. Climatological primary production for the four phytoplankton groups in NOBM 

for 1998–2011, including relative contributions and total primary production. 

  Diatoms Chlorophytes Cyanobacteria Coccolithophores Total 

 PgC·y�1 % PgC·y�1 % PgC·y�1 % PgC·y�1 % PgC·y�1 

Southern Ocean (SOC) 4.0 89 0.2 5 0.0 0 0.3 7 4.5 

South Indian (SIND) 1.7 51 0.4 13 0.5 13 0.8 23 3.4 

South Pacific (SPAC) 2.2 46 0.6 13 0.6 12 1.4 29 4.7 

South Atlantic (SATL) 1.2 51 0.4 19 0.2 10 0.5 20 2.3 

Equatorial Indian (EIND) 1.9 52 1.0 28 0.5 14 0.2 6 3.7 

Equatorial Pacific (EPAC) 2.8 43 1.1 16 0.7 10 2.0 31 6.5 

Equatorial Atlantic (EATL) 1.1 36 1.2 42 0.2 8 0.4 13 2.9 

North Indian (NIND) 0.7 48 0.6 38 0.2 12 0.0 2 1.5 

North Central Pacific (NCPAC) 2.4 51 0.5 10 0.7 14 1.2 25 4.7 

North Central Atlantic (NCATL) 0.6 26 0.4 16 0.5 19 0.9 39 2.4 

North Pacific (NPAC) 1.1 86 0.1 10 0.0 0 0.1 4 1.3 

North Atlantic (NATL) 0.6 51 0.2 20 0.0 1 0.3 28 1.1 

Global 20.3 52 6.8 17 4.0 10 8.0 21 39.0 

Carr et al. [22] compared the global primary production fields corresponding to 8 months of 1998 

and 1999. Comparing one satellite-based approach with the NOBM for a longer period (1998–2011), 

we found that the primary production from the model was greater than the satellite-based approach 

(VGPM) by ~6 PgC·y
�1

 (Figure 1).  

Figure 1. The 12 major oceanographic basins in the oceans. 

 

The reason our global primary production using VGPM is lower than previously published  

values [25,26] is two-fold. (1) We have regridded the data so that it would be on the same grid as the 

NOBM and therefore comparing the same resolution. This turns out to be an important step since 

global averages can change because of small scale features that are smoothed out during regridding in 

order to make the VGPM comparable to the NOBM. (2) Since the NOBM does not include water 
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shallower than 200 m and is restricted to 72°N and 84°S, we applied this mask to the VGPM data. This 

results in masking of coastal areas that are often high in primary productivity. Within the 12 regions, 

annual regional means from both approaches was always within ~2 PgC·y
�1

 (Figures 2 and 3). The 

greatest difference was observed in the Equatorial regions (model between 1.4 and 2.3 PgC·y
�1

 higher 

than VGPM) and in the Southern Ocean (VGPM 1.2 PgC·y
�1

 higher than the model). In all regions 

except in the Southern Ocean, the North Pacific and North Atlantic, i.e., the high latitudes, primary 

production from the model was greater than that from the satellite-based approach. 

Figure 2. Climatological map of primary production for (a) NOBM and (b) VGPM for the 

period from 1998 to 2011. 

 

(a) 

 

(b) 

Globally, diatoms were the group that contributed the most to the total phytoplankton production 

(~50%, the equivalent of ~20 PgC·y
�1

, Figure 4). Coccolithophores and chlorophytes each contributed 

to ~20% (~7 PgC·y
�1

) of the total primary production. Cyanobacteria represented about 10% (~4 PgC·y
�1

) 

of the total primary production. Primary production by diatoms was highest in high latitudes (>40°) 

and in major upwelling systems (Equatorial Pacific and Benguela system, Figure 5a). In the Southern 

Ocean and the North Pacific, diatoms contributed more than 85% to the total primary production. The 

only region where diatoms contributed to <40% of the primary production was in the Equatorial 
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Atlantic and the North Central Atlantic. Maximum primary production for chlorophytes occurred in 

regions directly adjacent to those regions where maximum primary production from diatoms was 

encountered (i.e., Equatorial Pacific and Benguela systems, Figure 5b) and in the Equatorial Indian. 

Coccolithophores contributed considerably to the total primary production in the North Central 

Atlantic (38%, see Table 1 for an equivalence in PgC·y
�1

 for all regions and groups) and Western 

Equatorial Pacific (31%). In the southern sub-polar regions (South Indian, South Pacific, South 

Atlantic), primary production by coccolithophores was ~20%–30% of the total primary production. 

Some local high primary production by coccolithophores led to average >20% in the North Atlantic 

and North Central Pacific (Figure 5c). Finally, although globally cyanobacteria only contributed to 

~10% of the total primary production, their contribution reached ~80% in the ocean gyres (Figure 5d). 

Figure 3. Difference between total primary production from NOBM and VGPM for the  

12 basins and globally, averaged over the period from 1998 to 2011. See Table 1 for a list  

of abbreviations. 

 

Figure 4. Global relative contributions of the four phytoplankton groups in NOBM to total 

primary production averaged over the period from 1998 to 2011. See Table 1 for a list  

of abbreviations. 
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Figure 5. Distribution of model class-specific primary production for the period from 1998 

to 2011. (a–d) shows the primary production in absolute units. (e–h) shows the percent 

contribution of class-specific production to total primary production. Note the different 

scale for each plot. 
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Using a satellite-derived approach, Uitz et al. [17] estimated the global total primary production to 

be ~46 PgC·y
�1

, which is 7 PgC·y
�1 

higher than NOBM (39 PgG·y
�1

). Except for the primary 

production by microphytoplankton, a similar tendency (satellite-derived approach higher than the 

NOBM) was found for the group-specific primary production: ~15 PgC·y
�1

 for microphytoplankton 

(~20 PgC·y
�1

 for NOBM), 20 PgC·y
�1

 (~8 PgC·y
�1

 for NOBM) for nanophytoplankton and 11 PgC·y
�1

 

(~11 PgC·y
�1

 for NOBM) for picophytoplankton. In the satellite-derived approach, microphytoplankton 

were identified as “mostly diatoms” and, therefore, was close to the classification of the NOBM. In 

Uitz et al. [17], nanophytoplankton included prymnesiophytes, pelagophytes and cryptophytes and was 

therefore compared to coccolithophores (prymnesiophytes) from the NOBM. Picophytoplankton of the 

Uitz et al. [17] approach included cyanobacteria, prochlorophytes, chlorophytes and were, therefore, 

compared to the sum of cyanobacteria and chlorophytes from the NOBM. The group of 

nanophytoplankton, and to a lesser extent picophytoplankton, in the satellite-derived approach 

encompassed more groups than in the NOBM. In the NOBM, the sum of the group-specific primary 

production equals the total primary production. Although nominal, some of the differences between the 

two approaches can also be attributed to the difference in the depth of integration: primary production 

in the NOBM is calculated over the entire water column whereas the satellite-derived approach 

integrated over the upper water column (0–1.5 Zeu). This would lead to a higher primary production in 

the model than in the satellite-derived approach. The satellite-derived approach of Uitz et al. [17] was 

developed using data sets collected in case-1 waters only and therefore pixel in water shallower than 

200 m were disregarded. Both approaches therefore do not take into account the primary production of 

coastal waters. 

Uitz et al. [17] divided the global ocean into six basins and provided the size-specific primary 

production for those six basins as well as the breakdown numbers for the north and south of each 

basin. We can therefore compare these regions with the group-specific primary production from the 

NOBM. Regionally, the greatest difference (4.3 PgC·y
�1

) was observed for nanophytoplankton in the 

Pacific Ocean. For all the other regions (Atlantic, Pacific, Equatorial, Indian and Southern Ocean), the 

size/group-specific primary production from the two approaches was always within 3.5 PgC·y
�1

 of 

each other. As mentioned previously, the group of nanophytoplankton in the satellite-derived 

approach, and to a lesser extent picophytoplankton, encompassed more groups than in the NOBM. 

Therefore, it is expected that the estimates of primary production from the satellite-derived approach 

for this group would be greater than the one from the NOBM. By looking at individual regions, we can 

attempt to narrow down the reasons, other than the classification difference described earlier, why the 

satellite-derived approach was globally higher than the NOBM (nothing changed just need to check 

this sentence). If we compare the latitudes between 10°S and 10°N, we find that except for 

nanophytoplankton, the total and the primary production by micro- and picophytoplankton using the 

NOBM was higher than those from the satellite-derived approach (by 2.3–2.4 PgC·y
�1

). This is the 

opposite of what was observed at a global scale. This suggests that the reasons behind the global 

satellite-derived approach having larger estimates than the NOBM may be related to the difference in 

coverage. The northernmost latitude covered by the NOBM being 72°N would lead to a global 

underestimate of total and group-specific primary production using NOBM, as was observed for total, 

nano- and picophytoplankton primary production. Some of the discrepancies between the two 

approaches may also be linked to the inherent sampling bias resulting from clouds, thick aerosols, 
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interorbit gaps, sunglint and high solar zenith angle in the satellite-derived approach. This sampling 

bias can lead to 6%–8% annual mean bias [27] with the largest bias caused by the exclusion of data 

with high solar zenith angle. Aerosol-related sampling biases occur in regions such as North Indian, 

Equatorial Atlantic, etc., which unfortunately were not regions for which Uitz et al. [17] reported  

size-specific primary production values. 

2.2. Interannual Variability  

Globally the magnitude of interannual variability was of maximum 3 PgC·y
�1

 which compares 

favorably with the previous estimates of an average magnitude of 2 PgC·y
�1

 based on a period from 

1992 to 2010 [28]. Over the period 1998–2011, the relative contribution of each phytoplankton group to 

the total primary production varied by ~4% except for cyanobacteria, for which the highest interannual 

variability was of only ~2%. This was the equivalent of ~2 PgC·y
�1

 for diatoms and chlorophytes and 

~1 PgC·y
�1

 for cyanobacteria and coccolithophores. In both the Atlantic and the Pacific, the 

interannual variability in group-specific primary production increased at low latitude (Figure 6). 

Figure 6. Interannual variation of model class-specific primary production for diatoms, 

chlorophytes, cyanobacteria and coccolithophores in (a) North Pacific, (b) North Atlantic, 

(c) North Central Pacific, (d) North Central Atlantic, (e) Equatorial Pacific and  

(f) Equatorial Atlantic. 
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The region where all groups displayed the greatest interannual variation was the Equatorial Pacific 

(Figure 6). Here, the magnitude of interannual variability in primary production by diatoms and 

chlorophytes was ~1 PgC·y
�1

 and 0.3–0.4 PgC·y
�1

 for cyanobacteria and coccolithophores, respectively. 

Phytoplankton composition in the Equatorial Pacific is known to be strongly influenced by climate 

variability. Numerous studies have shown the impact of climate variability in this region [29–32]. 

Rousseaux & Gregg [15] reported a phytoplankton composition shift in this region during the 

transition from El Niño to La Niña conditions. The group-specific primary production followed a 

similar pattern (Figure 6) with diatoms and chlorophytes reaching their maximum primary production 

in 1999 (La Niña) while primary production by cyanobacteria was at its maximum in 1998 (El Niño).  

Interannual variability in group-specific primary production was also high in the North Central 

Pacific (Figure 6). Here, the magnitude over which the primary production varied was comparable to 

that found in the Equatorial Pacific for diatoms (~0.85 PgC·y
�1

) but was lower for the other 3 groups 

(0.10–0.30 PgC·y
�1

). 

By using climate indices, we can assess the factors driving this interannual variability. The MEI 

attempts to characterize climate variability using six relevant atmospheric and ocean variables  

(sea-level pressure, surface wind vector, sea surface temperature, surface air temperature, and total 

cloudiness fraction [33]). The MEI has been widely used in assessing the effects of climate variability 

on ocean biology [34–38]. Positive values of MEI represent the warm ENSO phase (e.g., El Niño 

phase) while negative values represent the cold ENSO phase (e.g., La Niña). Globally, the primary 

production of all groups except coccolithophores were significantly correlated with the Multivariate El 

Niño Index (MEI). Behrenfeld et al. [38] showed that for the permanently stratified ocean (between 

40°S and 40°N) there was a significant correlation between primary production and MEI. Dave and 

Loizier [39] attributed this correlation between primary production and MEI across all of the 

permanently stratified oceans to be dominated by the correlation in the Equatorial Pacific. Regionally, 

there was a significant correlation between the MEI and the primary production from the NOBM for  

2 phytoplankton groups or more in 7 out of the 12 regions (Table 2). In the Equatorial Pacific for 

example, primary production by cyanobacteria was significantly (p < 0.05) positively correlated while 

primary production by diatoms and chlorophytes were negatively correlated. This was similar to the 

changes in phytoplankton composition that have been reported for this region: during El Niño (positive 

MEI) the upwelling of nutrient rich waters is suppressed and leads to a shift from a community 

dominated by diatoms to a community dominated by cyanobacteria [15]. In the North Central Pacific, 

primary production by chlorophytes and diatoms were significantly correlated with MEI, but here 

diatoms were positively correlated while chlorophytes were negatively correlated. Unlike the 

Equatorial Pacific, there is no feature like the upwelling tongue here. Instead, this region is more 

biogeographically diverse with a large central gyre bounded by regions of modest to large productivity 

at the lateral and northern margins. 

In the Atlantic Ocean, all 4 regions except the Equatorial Atlantic had two or more phytoplankton 

groups whose primary production was significantly correlated to MEI. In the South Atlantic, diatoms 

and chlorophytes were negatively correlated and cyanobacteria positively correlated with MEI. In the 

North and North Central Atlantic, primary production by coccolithophores was significantly positively 

correlated to MEI while primary production by cyanobacteria was significantly negatively correlated 

with the MEI. In the North Atlantic, physical forcing that impact the vertical stability of the water 
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column has been shown to be the largest factor determining the timing and magnitude of the spring 

bloom [40,41]. Shutler et al. [42] showed that the surface area covered by coccolithophores (Emiliania 

huxleyi) in the North Atlantic was strongly positively correlated with ENSO climate oscillation  

(r = 0.75, p < 0.02). The variability in the coverage of coccolithophores has important consequences in 

the carbon cycle leading to an average reduction in the monthly air-sea flux of ~55% in regions where 

blooms are prevalent [42]. It has also been shown that >89% of the variability in the E. huxleyi 

coverage is explained by variation in physical conditions of solar radiation, mixed layer depth and 

water temperature [43]. In the North and North Central Atlantic, El Niño conditions seem to promote 

increasing primary productivity of coccolithophores through changes of physical forcing. These 

physical connections between MEI and the northern Atlantic remain, however, difficult to verify and 

therefore statistical noise cannot be ruled out. 

Table 2. Correlation coefficients between group-specific primary production and the 

Multivariate El Niño Index (MEI) in 12 major oceanographic basins. Bold and (*) indicates 

statistical significance (p < 0.05). See Table 1 for a list of abbreviations. 

 SOC SIND SPAC SATL EIND EPAC EATL NIND NCPAC NCATL NPAC NATL 

Diatoms �0.12 �0.14 �0.10 �0.17* �0.46* �0.68* �0.05 �0.09* 0.21* 0.10* 0.13 0.18* 

Chlorophytes �0.13 �0.09 �0.06 �0.17* �0.38* �0.28* �0.14 �0.35* �0.18* 0.06* 0.01 0.00* 

Cyanobacteria �0.05 0.00 �0.07 0.33* 0.13* 0.61* 0.10 0.18* 0.03* �0.17* 0.01 �0.17* 

Coccolithophores 0.01 �0.13 �0.06 �0.14* 0.09* 0.12* �0.14 0.18* 0.08* 0.23* 0.12 0.15* 

Some of the regions such as the North Atlantic, the Pacific Ocean and the Southern Ocean have 

well established climate indices. In the Southern Ocean for example, the Southern Annular Mode 

(SAM) is the dominant climate pattern. It is defined as the leading mode of Empirical Orthogonal 

Function analysis of monthly atmospheric pressure gradient. It has been suggested that a positive 

SAM, characterized by stronger westerly wind anomaly would intensify the upwelling therefore 

resulting in an increase in phytoplankton biomass [44]. Arrigo et al. [45] found a significant 

correlation between SAM and SST in the Southern Ocean. In this region, the MEI was not correlated 

to the primary production for any groups (Table 2) and SAM was only correlated to chlorophytes 

(Table 3). Similarly, Arrigo et al. [45] found that only 31% of the variation in annual primary 

production could be explained by SAM index. Instead, Arrigo et al. [45] found that most of the 

interannual variability in primary production was driven by changes in sea ice cover. Although 

changes in surface nutrient induced by processed associated with atmospheric variability (e.g., SAM) 

are also likely to play a role, especially at regional scales through enhanced upwelling, it seems that its 

effect is relatively limited on both the total and group-specific primary production in this region. 

The North Atlantic Oscillation index (NAO) is calculated as the normalized sea level pressure 

difference between the Azores and Iceland [46]. When the NAO is high, the westerlies are stronger than 

average, which in turn transport warm and moist air toward Europe. In the North Central Atlantic, a 

positive NAO was associated with significantly less primary production by diatoms and significantly 

more by cyanobacteria (Table 3). A few local scale studies have shown a positive correlation between 

NAO and phytoplankton concentration [47–50] as well as a phytoplankton composition shift from a 

diatom-dominated community during positive NAO to a dinoflagellates-dominated community during 



Remote Sens. 2014, 6 12 

 

negative phase of NAO in the North Atlantic [51]. At the Bermuda Atlantic Time Series station (North 

Central Pacific in this paper), Bates et al. [52] found that high NAO was associated with a warming of 

the subtropical gyre and decreasing MLD and primary production. The decrease in mixed layer depth in 

this region and the warming of the subtropical gyre are conditions that are not favorable for the growth of 

diatoms and may therefore explain the significant negative relationship between NAO and the primary 

production from diatoms. These conditions on the other hand are favorable for the growth of 

cyanobacteria and support the significant positive relationship observed between the NAO and primary 

production of cyanobacteria in this region. Further north, in the North Atlantic, a significant negative 

correlation was found between NAO and primary production by chlorophytes and coccolithophores, but 

no correlation was found with the primary production from cyanobacteria and diatoms. As noted by 

Racault et al. [53] the effects of NAO on the North and North Central Atlantic are mixed. They describe 

the NAO influence on sea surface temperature as a tripole pattern with the subpolar gyre (north of 55°N) 

and the southern part of the subtropical gyre (south of 25°N) being positively correlated with the 

NAO while the western part of the subtropical gyre being negatively correlated. At a basin scale,  

Leterme et al. [54] showed that the influence of NAO on diatoms and dinoflagellates abundance was 

highly mixed across the North Atlantic basin. In the North Atlantic, positive NAO has been associated 

with enhanced sea-ice production and reduced stratification [55]. This in turns deepens the mixed layer 

depth, delaying the initiation of phytoplankton growth, reducing the chlorophyll maxima [41,56] and 

shortening the duration of the bloom [53]. This suggests that the NAO index has different effects on the 

biogeochemical cycles, including the primary production, in these different regions. Finally, both the 

MEI and NAO agreed on the limited effect of climate variability on group-specific primary production in 

the Equatorial Atlantic, both indices diverged on the effect of climate variability on the group-specific 

primary production in the North, North Central and South Atlantic (Tables 2 and 3). This is not totally 

unexpected since in contrast to the MEI, the NAO is largely an atmospheric mode.  

Table 3. Correlation coefficients between group-specific primary production and several 

region-specific climate indices: Antarctic Oscillation (AAO), North Atlantic Oscillation 

(NAO), and Pacific Decadal Oscillation (PDO). Bold and (*) indicates statistical 

significance (p < 0.05). 

    Diatoms Chlorophytes Cyanobacteria Coccolithophores 

AAO Southern Ocean 0.09 0.16* 0.08 0.14 

NAO North Atlantic �0.11* �0.22* �0.09 �0.25* 

  North Central Atlantic �0.17* �0.05 0.21*  �0.12 

 Equatorial Atlantic �0.06 �0.05 0.00 0.06 

 South Atlantic �0.02 0.12 �0.22* 0.14 

PDO North Pacific 0.02 �0.26* �0.19*  �0.07 

  North Central Pacific 0.40*  �0.25* 0.03 �0.07 

 Equatorial Pacific �0.24* �0.13 0.45* 0.17* 

 South Pacific �0.20* 0.04 0.09 0.00 

The Pacific Decadal Oscillation [57] is an index of oceanic climate variability with a similar 

expression to El Niño, but acting on a longer time scale. It is defined as the leading principal 

component of surface temperature variability north of 20°N. During the positive phase of the PDO, 
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trade winds generally weaken reducing the upwelling of nutrient-rich water. Using the PDO, we found 

that phytoplankton primary production correlations with this index in the North Central Pacific were 

the same as for the MEI (positive for diatom production and negative for chlorophytes). In the North 

Pacific however, the PDO was negatively correlated with chlorophytes and cyanobacteria whereas 

there was no significant correlation between the MEI and any of the group-specific primary 

production. These two climate phenomenon can vary independently and exhibit variable strength in 

both the warm and cold phase [33,58]. Corno et al. [59] suggested that the different timescale of 

ENSO and PDO would likely confound direct relationships. Several studies have shown a correlation 

between climate variability and chlorophyll concentration as well as primary production in the  

Pacific [59–62]. Chiba et al. [63] found a significant correlation between PDO and the timing of the 

annual bloom in the western North Pacific (average date occurring in mid-May) but could not find a 

relationship between the interannual variation of the summertime phytoplankton community structure 

and the PDO. Karl et al. [62,64] found that during a positive phase of the PDO (1965–1977), the 

plankton community composition shifted with prokaryotes becoming more dominant and coincided 

with changing new and export production, nutrient supply and fisheries yields. 

In the Equatorial Pacific, there was a significant positive correlation between both MEI and PDO 

and the primary production by cyanobacteria and a negative correlation for the production by diatoms. 

Climate variability seemed to have only a limited effect on the primary production in the South Pacific. 

Here, there was a significant correlation between the PDO and the primary production only by 

diatoms. The effects of climate variability in the South Pacific remain poorly characterized. For this 

region, Thomas et al. [60] suggested some correlation between PDO and coastal chlorophyll at least at 

specific latitudes. The effects that PDO has on the phytoplankton composition and productivity are 

similarly poorly characterized. Furthermore, since the PDO is a decadal scale phenomena, the satellite 

observations currently available do not cover a period long enough to identify possible relationships 

between PDO and phytoplankton dynamics (whether in terms of composition or primary production). 

3. Experimental Section 

Global primary production is derived from an established coupled ocean biogeochemical model, the 

NASA Ocean Biogeochemical Model [65]. It is a three-dimensional representation of 

circulation/biogeochemical/radiative processes in a domain that spans from �84° to 72° at a 1.25° 

resolution in water deeper than 200 m. NOBM is coupled with the Poseidon ocean general circulation 

model, which is driven by wind stress, sea surface temperature, and shortwave radiation [65]. The 

model includes 3 detrital pools (silica, N/C and iron detritus), 4 phytoplankton groups (diatoms, 

coccolithophores, chlorophytes and cyanobacteria) and 4 nutrients (ammonium, nitrate, iron and 

silicate). The phytoplankton groups differ in their maximum growth rates, sinking rates, nutrient 

requirements, and optical properties. 

Satellite ocean chlorophyll from SeaWiFS and MODIS-Aqua for the years 1998–2012 is 

assimilated into NOBM following Gregg [66]. Multi-variate nutrient adjustments corresponding to the 

chlorophyll assimilation [15] are also included. Bias-correction of the satellite chlorophyll data is 

performed prior to assimilation using public in situ archives in the Empirical Satellite Radiance-In situ 

Data (ESRID) methodology [67]. The ESRID method also has the attribute of reducing discontinuities 
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between the two satellite data sets [68]. The time series uses SeaWiFS data from 1998 to 2002, then 

switches to MODIS-Aqua data. 

Primary production is computed in the model as a function of growth rate multiplied by the carbon: 

chlorophyll ratio:  

�� � �����	� 
�� 

where μi is the growth rate of phytoplankton component i, Ci is the chlorophyll concentration of 

component i, � is the carbon:chlorophyll ratio, and the product is integrated over depth. It is a 

diagnostic variable in the model, representing the integral of net carbon uptake in the water column. 

Photoadaptation is simulated by stipulating three states: 50, 150, and 200 (mmol·quanta·m
�2

·s
�1

). This 

is based on laboratory studies, which typically divide experiments into low, medium, and high classes 

of light adaptation [65]. Carbon:chlorophyll ratios (�) correspond to the photoadaptation state, to 

represent the tendency of phytoplankton to preferentially synthesize chlorophyll in low light 

conditions, to enable more efficient photon capture. The three � states corresponding to the three light 

states are 25, 50, and 80 g·g
�1

. For irradiance levels falling between the three light states, the C: chl 

ratios are linearly interpolated. 

Irradiance data to drive phytoplankton growth is taken from the Ocean-Atmosphere Spectral 

Irradiance Model [69] for the years of interest. This model computes spectral irradiance in 33 bands for 

the domain 200 nm to 4 μm, at the ocean surface as a function of atmospheric optical properties [69], 

and then propagates the spectral irradiance downward and upward through the water column as a 

function of ocean optical properties [70,71]. Surface spectral irradiance and photosynthetically 

available irradiance data are publicly available at gmao.gsfc.nasa.gov/research/oceanbiology/data.php. 

Climate indices were downloaded from the NOAA Climate Prediction Center 

(http://www.cpc.ncep.noaa.gov). 

4. Conclusions 

To our knowledge, this paper represents the first attempt at estimating taxonomic/functional  

group-specific primary production at a global scale. Globally, diatoms contributed the most to the total 

phytoplankton production (~50%) followed by coccolithophores and chlorophytes (~20%) and 

cyanobacteria (10%). Primary production by diatoms was highest in the high latitudes (>40°) and in 

major upwelling systems (Equatorial Pacific and Benguela system). These results provide a modeling 

and data assimilation perspective to phytoplankton partitioning of primary production and contribute to 

our understanding of the dynamics of the carbon cycle in the oceans at a global scale. Although the 

comparison with group-specific primary production derived from the satellite approach was 

complicated by differences in methodology and classification, it is reassuring that the two approaches 

agreed on the overall distribution. The continuous improvements of biogeochemical models will 

ultimately allow for not only prediction, but also sensitivity analyses, which could potentially improve 

our understanding of the forcing factors of primary production. Since the forcing factors for primary 

production are likely to be different for each phytoplankton groups, these sensitivity analyses 

conducted with a model that allows for the discrimination among phytoplankton groups may in the 

future improve our understanding of the biogeochemical cycles in the oceans. 
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In this paper, we have also made a first step towards the understanding of climate forcing indices on 

primary production by analyzing the statistical correlation between group specific primary production 

and various climate indices. The lack of in situ data on group-specific primary production does limit our 

ability to assess the bias and uncertainty in the group-specific primary production from NOBM. The 

greatest interannual variability in primary production was observed in the Equatorial Pacific. The SAM 

index in the Southern Ocean was not correlated to any group-specific primary production and agrees 

with previous findings [45] that showed interannual variability in primary production in this region to be 

mostly driven by changes in ice cover. In the Atlantic and Pacific, the effects of NAO and PDO on 

phytoplankton dynamics remain divided. While the current research on MEI and phytoplankton 

dynamics seems to mostly agree, there is a lot more divergence when looking at index that are either 

representing largely an atmospheric mode (e.g., NAO) or longer time scale (e.g., decadal, PDO). 
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