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For any semigroup (S; ·) let (S; ◦) be a semigroup defined on the same set. Semigroup (S; ◦)
is called an interassociate of (S; ·) if the following identities hold x · (y ◦ z) = (x · y) ◦ z and
x ◦ (y · z) = (x ◦ y) · z. All interassociates of the free semigroup over the two-element alphabet
are described.

А. Б. Горбатков. Полугруппы, интерассоциативные к свободной полугруппе с двумя об-
разующими // Мат. Студiї. – 2014. – Т.41, №2. – C.139–145.

Для произвольной полугруппы (S; ·) пусть (S; ◦) — полугруппа, определенная на том
же множестве. Полугруппа (S; ◦) называется интерассоциативной к полугруппе (S; ·), если
выполнены следующие тождества: x · (y ◦ z) = (x · y) ◦ z и x ◦ (y · z) = (x ◦ y) · z. Опи-
саны все полугруппы, интерассоциативные к свободной полугруппе над двухэлементным
алфавитом.

1. Introduction. Let S = (S; ·) be a semigroup. A semigroup (S; ◦) is called an interas-
sociate of S if for all x, y, z ∈ S the following equalities are held:

x · (y ◦ z) = (x · y) ◦ z, (1)
x ◦ (y · z) = (x ◦ y) · z. (2)

We denote the set of all interassociates of S by Int(S).
The term interassociativity was introduced by D. Zupnik ([11]) in 1971. In 2004, interas-

sociates of monogenic semigroups were fully described by M. Gould, K. A. Linton and
A. W. Nelson ([3]). In the paper of B. N. Givens, K. A. Linton, A. Rosin and L. Dishman ([1]),
for the free commutative semigroup on n generators it was shown when two interassociates of
it are isomorphic and their general form was obtained. For the case of the infinitely generated
free commutative semigroup the same problem was solved in [2].

Given any semigroup S, fix some a ∈ S and define a sandwich operation ∗a on S by
x ∗a y = xay (x, y ∈ S). Clearly, (S; ∗a) is a semigroup, it is called a variant of S.

In 1967, K. D. Magill ([8]) considered variants of semigroups of relations. The general
case was first studied by J. B. Hickey ([4]) in 1983. Variants of regular semigroups were
considered in [5] and [6].

There is a natural connection between interassociates and variants of a semigroup. Obvi-
ously, every variant (S; ∗a) is an interassociate of S. One may easily check, that for any
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monoid M we have Int(M) = {(M ; ∗a) : a ∈ M}. For the free commutative semigroup F it
was shown that Int(F ) consists of all variants of F and F itself (see [1] and [2]). Another
reason to study interassociates of a semigroup is their connection with commutative dimo-
noids. Indeed, one can find that semigroups of any commutative dimonoid are interassociate
to each other [9, 10].

In the present paper we study interassociates of the free semigroup on two generators
using computer modeling and methods of the semigroup theory. This case is noncommutative,
so it is different from the cases of free monogenic and free commutative semigroups. We have
discovered that there are 18 types of such interassociates (not counting 12 dual cases) and
identified all of them.
2. Notation and preliminaries. For any nonempty set X, by X+ we denote the free
semigroup over the alphabet X, and X∗ denotes the free monoid over X with an empty
word θ.

Let x, y, w1, w2, . . . , wn ∈ X and w = w1 . . . wn, we shall use the following notation:
|w| = n — length of w;
w(0) = w1 and w(1) = wn — the first and the last letters of w, respectively;
wl ∈ X∗ and wr ∈ X∗ — words obtained from w by deleting the last and the first letters
respectively;
Xxy = xX∗ ∩X∗y — the set of all words v ∈ X+ such that v(0) = x and v(1) = y.

Later we shall need the following lemma (see [7, p. 338]).

Lemma 1. Let u, v, w ∈ X+, then vu = uw if and only if v = ab, w = ba and u = a(ba)k

for some a ∈ X+, b ∈ X∗ and k ∈ N0.

The next proposition is the starting point of our research, it gives us a key to construct
interassociates of the free semigroup.

Proposition 1. For any binary operation ◦ : X+×X+ → X+, groupoid (X+; ◦) is an interas-
sociate of X+ if and only if the following conditions are satisfied:
(i) ∀x, y, z ∈ X : (x ◦ y) ◦ z = x ◦ (y ◦ z);
(ii) ∀v, w ∈ X+ : v ◦ w = vl(v(1) ◦ w(0))wr.

Proof. Necessity. Let (X+; ◦) ∈ Int(X+), then (i) holds since (X+; ◦) is a semigroup. For all
v, w ∈ X+, by (1) and (2), we have v ◦w = vl(v(1) ◦w) = vl((v(1) ◦w(0))wr) = vl(v(1) ◦w(0))wr.
Sufficiency. Assume that (i) and (ii) are held. For all u, v, w ∈ X+,

(uv) ◦ w = (uv)l((uv)(1) ◦ w(0))wr = uvl(v(1) ◦ w(0))wr = u(v ◦ w)

and we may dually check that u ◦ (vw) = (u ◦ v)w. Thus identities of an interassociativity
are satisfied. Now let us prove an associativity. Consider the case v ∈ X

u ◦ (v ◦ w) = u ◦ (v ◦ w(0))wr = ul(u(1) ◦ (v ◦ w(0)))wr = ul((u(1) ◦ v) ◦ w(0))wr =

= ul(u(1) ◦ v) ◦ w = (u ◦ v) ◦ w.

Now let v ∈ X+\X, notice that the following equalities are obvious (vl)r = (vr)l, (vl)(0) =
v(0), (vr)(1) = v(1).

Then, by (i) and (ii), we have

u ◦ (v ◦ w) = u ◦ vl(v(1) ◦ w(0))wr = ul(u(1) ◦ (vl)(0))(vl)r(v(1) ◦ w(0))wr =

= ul(u(1) ◦ v(0))(vr)l((vr)(1) ◦ w(0))wr = ul(u(1) ◦ v(0))vr ◦ w = (u ◦ v) ◦ w.

Therefore, (i) and (ii) imply that (X+; ◦) is a semigroup and (X+; ◦) ∈ Int(X+).
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Now we fix the set B = {0, 1} and provide the following definitions.

Definition 1. Let x,w1, w2 . . . wn ∈ B and w = w1 . . . wn. Define x̄ by 0̄ = 1 and 1̄ = 0. The
word w̄ is defined by w̄ = w̄1 . . . w̄n.

Definition 2. Given I = (B+; ◦) ∈ Int(B+), define a dual interassociate Ī = (B+; ∗) of I
by putting x ∗ y = (x̄ ◦ ȳ) for all x, y ∈ B. It is a simple permutation of 0 and 1, hence it is
clear that the assumptions of Proposition 1 hold. Thus Ī ∈ Int(B+).

Proposition 1 (ii) implies that any interassociate I = (B+; ◦) of B+ is defined by the
following collection of words (we shall always use such a notation): ω = 0 ◦ 0, α = 0 ◦ 1, β =
1 ◦ 0, ε = 1 ◦ 1 that is why we may represent semigroups I and Ī by their reduced Cayley
tables (see Table 1).

Table 1.
I 0 1 I 0 1

0 ω α 0 ε β
1 β ε 1 α ω

3. The main result. To find all I ∈ IntB+ we shall consider the cases where ε ∈ Ba1a2 ,
β ∈ Ba3a4 , α ∈ Ba5a6 , ω ∈ Ba7a8 for all combinations of elements a1, a2, . . . , a8 ∈ B.

For each case we should check equations (a ◦ b) ◦ c = a ◦ (b ◦ c) for all a, b, c ∈ B.
There are 28 = 256 such cases and each one contains 8 equations to solve, so we used

computer modeling in Lazarus v.1.0.12 to reduce their number. We removed 120 cases which
correspond to the dual interassociates of remaining 136. Then we removed 121 cases which
contain at least one of the following contradictory equations u1v = u0w, v1u = w0u, 1v =
0w, v1 = w0, for some variables u, v, w ∈ B∗.

We have also deleted trivial equations v = v. And, finally, we have deleted equations
vu = wu if there were equivalent ones of the form vu′ = wu′ or u′v = u′w.

Example 1. For the case ε ∈ B00, β ∈ B11, α ∈ B01, ω ∈ B11, consider the following equation
(0 ◦ 1) ◦ 0 = 0 ◦ (1 ◦ 0) ⇒ αl(1 ◦ 0) = (0 ◦ 1)βr ⇒ αl1βr = αl1βr hence it is trivial. We
also have (0 ◦ 0) ◦ 1 = 0 ◦ (0 ◦ 1) ⇒ ωl(1 ◦ 1) = (0 ◦ 0)αr ⇒ ωl0εr = ωl1αr a contradiction.
Therefore, there are no interassociates of B+ such that ε ∈ B00, β ∈ B11, α ∈ B01, ω ∈ B11.

There are 15 remaining cases and we shall consider all of them.

Case 1. ε ∈ B00, β ∈ B00, α ∈ B00, ω ∈ B00:

1) (0 ◦ 1) ◦ 0 = αl0ωr = ωl0βr, 3) (1 ◦ 1) ◦ 0 = εl0ωr = βl0βr,

2) (0 ◦ 1) ◦ 1 = αl0αr = ωl0εr, 4) (1 ◦ 1) ◦ 1 = εl0αr = βl0εr.

Equality 1) implies that αlω = ωβr. Suppose that αl = θ, then we have α = β = 0. And
from 2) it follows that ω = ε = 0. Therefore, (B; ◦) is the 2-element semigroup with zero
multiplication. Denote (B+; ◦) by IO.

Now suppose that αl 6= θ. By Lemma 1, equalities 1) and 4) imply that

ω = a(ba)k, ε = c(dc)n, αl = ab, αr = dc, βr = ba, βl = cd (3)
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for some a, c ∈ B+, b, d ∈ B∗ and k, n ∈ N0. Hence

α = ab0 = 0dc, β = 0ba = cd0. (4)

From 2) and equalities (3),(4) it follows that abab0 = ωεr = a(ba)kεr ⇒ |abab0| ≥ |a(ba)k|
and hence k ≤ 2.

1. For k = 0 we have ω = a ∈ B00. By equality 2) we have abab0 = aεr ⇒ εr = bab0 ⇒
ε = 0bab0. From (3),(4) and equality 3) it follows that εlω = ββr ⇒ εla = cd0ba⇒ ε =
(cd)nc = cd0b0.

Hence n 6= 0. Also, 3) implies that (cd)ncωr = cdcd0, thus n ≤ 2.
If n = 1, then c = 0b0. By (4) we have ab0 = 0d0b0 and ω = a = 0d0. Hence

ε = 0b0d0b0, β = 0b0d0, α = 0d0b0, ω = 0d0. (5)

Now, if n = 2, then the equality cdcdc = cd0b0 implies that cdc = 0b0. Since |b| <
|ba| = |dc| < |cdc| = |b| + 2 ⇒ |dc| = |b| + 1 we have dc = b0 and so c = 0. From
equality 3) we obtain ωr = θ. Finally, we have ε = 0d0d0, β = 0d0, α = 0d0, ω = 0.

We may combine this result with (5) as follows: ε = 0yx00y0, β = 0yx00, α = x00y0, ω =
x00, where x00 ∈ B00, y ∈ B∗.
Denote the corresponding interassociate by IO1.

2. The case where k = 2 is dual to k = 0:

ε = x00, β = x00y0, α = 0yx00, ω = 0yx00y0, (6)

where x00 ∈ B00, y ∈ B∗. Denote (B+; ◦) by IO3.

3. If k = 1, then ω = aba. Equality 2) implies that abab0 = abaεr ⇒ εr = b0 ⇒ ε = 0b0.

If n = 0, then, dually to the case where k = 0, n = 1, we obtain ε = 0b0, β = 0b0d0,
α = 0d0b0, ω = 0d0b0d0, and this result satisfies (6).
If n > 0, then by (3) we have c(dc)n = ε = 0b0 and hence |b| < |ba| = |dc| < |c(dc)n| =
|b|+ 2⇒ |dc| = |b|+ 1.

Further, c(dc)n = 0b0 implies that dc = b0 and n = 1. Thus c = 0, d = b and from 2)
and (4) it follows that cdcωr = cdcd0 ⇒ 0b0ωr = 0b0b0 ⇒ ω = 0b0.

We may conclude that ε = 0b0, β = 0b0, α = 0b0, ω = 0b0. Denote (B+; ◦) by IO2.

Case 2. ε ∈ B00, β ∈ B01, α ∈ B10, ω ∈ B11:

1) (0 ◦ 0) ◦ 0 = ωl0βr = αl0ωr, 5) (1 ◦ 0) ◦ 0 = βl0βr = εl0ωr,

2) (0 ◦ 0) ◦ 1 = ωl0εr = αl0αr, 6) (1 ◦ 0) ◦ 1 = βl0εr = εl0αr,

3) (0 ◦ 1) ◦ 0 = αl1ωr = ωl1βr, 7) (1 ◦ 1) ◦ 0 = εl1ωr = βl1βr,

4) (0 ◦ 1) ◦ 1 = αl1αr = ωl1εr, 8) (1 ◦ 1) ◦ 1 = εl1αr = βl1εr.

Equalities 1) and 3) imply that αl = ωl and βr = ωr, because we have 0 = 1 otherwise.
Similarly, from 2) and 4) it follows that αr = εr. Therefore, ε = 0x0, β = 0x1, α = 1x0, ω =
1x1, where x ∈ B∗. From equalities 5)–8) the same assertions follow. Denote (B+; ◦) by I1.
Notice that the interassociate I1 is self-dual, i.e. Ī1 = I1.
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Case 3. ε ∈ B00, β ∈ B11, α ∈ B11, ω ∈ B00:

1) (0 ◦ 0) ◦ 1 = ωl1αr = αl1αr ⇒ ωl = αl, 2) (1 ◦ 0) ◦ 0 = βl1βr = βl1ωr ⇒ βr = ωr,

3) (1 ◦ 1) ◦ 1 = εl1αr = βl1εr.

We have ωl = αl = θ, because ω(0) 6= α(0). Hence ω = 0 and α = 1. And βr = ωr implies that
β = 1. Thus 3) implies that εl1 = 1εr and hence ε = 0. Notice, that (B; ◦) is isomorphic to
the symmetric group S2. So we denote (B+; ◦) by IS.

Case 4. ε ∈ B01, β ∈ B00, α ∈ B01, ω ∈ B00: (0 ◦ 1) ◦ 0 = αl0βr = ωl0βr ⇒ αl = ωl,
(1 ◦ 1) ◦ 0 = εl0βr = βl0βr ⇒ εl = βl. Hence we have ε = 0x1, β = 0x0, α = 0y1, ω = 0y0,
where x, y ∈ B∗. Denote (B+; ◦) by I2.

Case 5. ε ∈ B01, β ∈ B00, α ∈ B11, ω ∈ B00: (0 ◦ 0) ◦ 1 = ωl1αr = αl1αr ⇒ ωl = αl,
(1 ◦ 0) ◦ 1 = βl1αr = εl1αr ⇒ βl = εl. We have ωl = αl = θ because ω(0) 6= α(0). Thus
ω = 0 and α = 1. The equality εr = βl implies that ε = 0x1 and β = 0x0 for x ∈ B∗. Denote
(B+; ◦) by I3.

Case 6. ε ∈ B01, β ∈ B00, α ∈ B11, ω ∈ B10: (0 ◦ 0) ◦ 0 = ωl1ωr = αl1ωr ⇒ ωl = αl,
(1◦0)◦0 = βl1ωr = εl1ωr ⇒ βl = εl. Therefore, ε = 0x1, β = 0x0, α = 1y1, ω = 1y0, where
x, y ∈ B∗. Denote (B+; ◦) by I4. Such an interassociate is self-dual.

Case 7. ε ∈ B10, β ∈ B10, α ∈ B00, ω ∈ B00: (0 ◦ 1) ◦ 0 = αl0ωr = αl0βr ⇒ ωr = βr,
(0 ◦ 1) ◦ 1 = αl0αr = αl0εr ⇒ αr = εr. Again, we have a similar situation as in Case 6:
ε = 1x0, β = 1y0, α = 0x0, ω = 0y0, where x, y ∈ B∗. Denote (B+; ◦) by I5.

Case 8. ε ∈ B10, β ∈ B11, α ∈ B00, ω ∈ B00: (0 ◦ 1) ◦ 0 = αl0ωr = αl0βr ⇒ ωr = βr,
(0 ◦ 1) ◦ 1 = αl0αr = αl0εr ⇒ αr = εr. We have ωr = βr = θ since ω(1) 6= β(1). Hence ω = 0
and β = 1. And by αr = εr we obtain ε = 1x0 and α = 0x0 for x ∈ B∗. Denote (B+; ◦)
by I6.

Case 9. ε ∈ B10, β ∈ B11, α ∈ B00, ω ∈ B01: (0 ◦ 0) ◦ 0 = ωl1βr = ωl1ωr ⇒ βr = ωr,
(0◦0)◦1 = ωl1εr = ωl1αr ⇒ εr = αr. Previous equalities imply that ε = 1x0, β = 1y1, α =
0x0, ω = 0y1, where x, y ∈ B∗. Denote (B+; ◦) by I7, it is self-dual.

Case 10. ε ∈ B11, β ∈ B00, α ∈ B00, ω ∈ B00:

1) (0 ◦ 1) ◦ 0 = αl0ωr = ωl0βr,

2) (0 ◦ 1) ◦ 1 = αl0αr = αl0εr ⇒ αr = εr,

3) (1 ◦ 1) ◦ 0 = εl0βr = βl0βr ⇒ εl = βl.

Similarly to the Case 3, equalities 2) and 3) imply that ε = 1, β = 0 and α = 0. Hence
equality 1) is equivalent to ω = ω and so ω is an arbitrary word from B00. If ω = 0, then
(B; ◦) becomes a semigroup with the usual multiplication on the set of integers {0, 1}. Denote
(B+; ◦) by IM .

Case 11. ε ∈ B11, β ∈ B00, α ∈ B01, ω ∈ B00: (0 ◦ 1) ◦ 0 = αl0βr = ωl0βr ⇒ αl = ωl,
(1 ◦ 1) ◦ 0 = εl0βr = βl0βr ⇒ εl = βl.

Hence we obtain ε = 1, β = 0, α = 0x1, ω = 0x0, where x ∈ B∗. Denote (B+; ◦) by I8.
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Case 12. ε ∈ B11, β ∈ B00, α ∈ B11, ω ∈ B00: (0 ◦ 0) ◦ 1 = ωl1αr = αl1αr ⇒ ωl = αl,
(1 ◦ 0) ◦ 1 = βl1αr = εl1αr ⇒ βl = εl. Since ω(0) 6= α(0) and β(0) 6= ε(0) we have
ε = 1, β = 0, α = 1, ω = 0, hence (B; ◦) is the right zero semigroup and we denote (B+; ◦)
by IR. Notice that the interassociate IR is self-dual.

Case 13. ε ∈ B11, β ∈ B10, α ∈ B00, ω ∈ B00: (0 ◦ 1) ◦ 0 = αl0ωr = αl0βr ⇒ ωr = βr,
(0 ◦ 1) ◦ 1 = αl0αr = αl0εr ⇒ αr = εr. As ε(0) 6= α(0) and ωr = βr we have ε = 1, β = 1x0,
α = 0, ω = 0x0. We denote (B+; ◦) by I9.

Case 14. ε ∈ B11, β ∈ B10, α ∈ B01, ω ∈ B00. For this case all eight equations are trivial.
Thus, ε, β, α and ω are arbitrary words from B11, B10, B01 and B00 respectively. Denote
(B+; ◦) by I10, this interassociate is self-dual.

Case 15. ε ∈ B11, β ∈ B11, α ∈ B00, ω ∈ B00: (0 ◦ 1) ◦ 0 = αl0ωr = αl0βr ⇒ ωr = βr,
(0 ◦ 1) ◦ 1 = αl0αr = αl0εr ⇒ αr = εr. Analogously to the Case 12 we have ε = 1, β = 1,
α = 0, ω = 0, thus (B; ◦) is the left zero semigroup and we denote (B+; ◦) by IL. The
interassociate IL is self-dual.

Finally, we have reached the goal of our research.

Theorem 1. If I ∈ Int(B+), then the reduced Cayley table of I or Ī is contained in Table 2.
Conversely, for any x, y ∈ B∗, z ∈ B00 and xij ∈ Bij (i, j ∈ B), each reduced Cayley table
from Table 2 defines an interassociate of B+.

Table 2. All interassociates of B+ (x, y ∈ B∗, z ∈ B00, xij ∈ Bij).

IO 0 1 IO1 0 1 IS 0 1 IM 0 1
0 0 0 0 z zx0 0 0 1 0 z 0
1 0 0 1 0xz 0xzx0 1 1 0 1 0 1

IO2 0 1 IO3 0 1 IR 0 1 IL 0 1
0 0x0 0x0 0 0xzx0 0xz 0 0 1 0 0 0
1 0x0 0x0 1 zx0 z 1 0 1 1 1 1
I1 0 1 I2 0 1 I3 0 1 I4 0 1
0 1x1 1x0 0 0x0 0x1 0 0 1 0 1x0 1x1
1 0x1 0x0 1 0y0 0y1 1 0x0 0x1 1 0y0 0y1
I5 0 1 I6 0 1 I7 0 1 I8 0 1
0 0x0 0y0 0 0 0x0 0 0x1 0y0 0 0x0 0x1
1 1x0 1y0 1 1 1x0 1 1x1 1y0 1 0 1

I9 0 1 I10 0 1
0 0x0 0 0 x00 x01
1 1x0 1 1 x10 x11

Examine Table 2, the connection between variants and interassociates of B+ is entirely
clear now. Indeed, the operations in Table 2 are very similar to the sandwich operation on
B+. Another task is to describe all interassociates of the free semigroup on n > 2 generators.
As we have seen, every semigroup over X gives a variant which is an interassociate of X+.
It is well known that the number of semigroups over an n-element set grows extremely fast,
whence it is impractical to build the set Int(X+) by considering of all operations as we did
for B+. But it is possible to study some special interassociates of X+ like the variants of X+,
interassociates (X+, ◦) ∈ Int(X+) such that (X, ◦) is a semigroup and so forth.
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