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Interatomic interaction effects on second-order momentum correlations and

Hong-Ou-Mandel interference of double-well-trapped ultracold fermionic atoms

Benedikt B. Brandt,∗ Constantine Yannouleas,† and Uzi Landman‡

School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430

Identification and understanding of the evolution of interference patterns in two-particle mo-
mentum correlations as a function of the strength of interatomic interactions are important in
explorations of the nature of quantum states of trapped particles. Together with the analysis of
two-particle spatial correlations, they offer the prospect of uncovering fundamental symmetries and
structure of correlated many-body states, as well as opening vistas into potential control and utiliza-
tion of correlated quantum states as quantum information resources. With the use of the second-
order density matrix constructed via exact diagonalization of the microscopic Hamiltonian, and an
analytic Hubbard-type model, we explore here the systematic evolution of characteristic interfer-
ence patterns in the two-body momentum and spatial correlation maps of two entangled ultracold
fermionic atoms in a double well, for the entire attractive- and repulsive-interaction range. We
uncover quantum-statistics-governed bunching and antibunching, as well as interaction-dependent
interference patterns, in the ground and excited states, and interpret our results in light of the
Hong-Ou-Mandel interference physics, widely exploited in photon indistinguishability testing and
quantum information science.

I. INTRODUCTION

The rapid experimental progress in the field of ul-
tracold atoms is enabling measurements with unprece-
dented precision of fundamental many-body quantities
such as higher-order correlations [1–7], especially higher-
order momentum correlations for interacting [4, 5, 7] ul-
tracold atoms in linear traps. The study of these cor-
relations, with the full ability of tuning the interparticle
interactions (utilizing the Feshbach resonance technique)
and under pristine environmental conditions, promises
to deepen our understanding and potential technological
control of quantum information processes [8] and phys-
ical phenomena, such as entanglement [9] and genera-
tion of exotic many-body regimes (e.g., Tonks-Girardeau
states [10]). However, in spite of the recent burgeoning
experimental activities aiming at measuring higher-order
momentum correlations [4–7], corresponding theoretical
investigations are still lacking in many respects, apart
from a couple of studies [4, 11].
In this paper, we study the systematic evolution of the

properties and interference patterns of 2nd-order (two-
particle) momentum correlations of two interacting (both
distinguishable and indistinguishable) ultracold fermions
in a double-well optical trap. To provide a complete pic-
ture, we go beyond the case of the ground singlet and 1st-
excited triplet states and investigate in addition the cases
of the 2nd and 3rd excited states, both singlets. (This
quartet of states can be mapped to a two-site Hubbard
model; see below.)
Elucidating the 2nd-order momentum correlations as-

sociated with double-well trapping of two ultracold atoms
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(without [6] or with [7] interactions) is currently attract-
ing pioneering experimental interest, both planned [6]
and preparatorily achieved [7]. These experimental ef-
forts are motivated by the unprecedented tunability of:
(i) the confining external optical potential and the dy-
namical imprinting of a relative phase difference between
the two wells [6], and (ii) the two-body contact inter-
action via a combination of Feshbach and confinement-
induced resonances [12, 13].
The double-well two-particle unit [13, 14] is expected

to be a central component for building more complex
quantum-computer and quantum-information architec-
tures, and detailed knowledge of the associated 2nd-
order momentum correlations is emerging as an indis-
pensable tool towards implementation of these endeav-
ors [6, 7]. In this context, recent work [3, 6] investigates
the double-well atomic dimers treating them as purely
photonic analogs (i.e., omitting or minimizing the role
of interparticle interaction). The interparticle interac-
tion, however, is an essential factor in particle assemblies
and the desirability of a full understanding of its effects
can hardly be overestimated. The seminal optical Hong-
Ou-Mandel (HOM) second-order-interference experiment
[15, 16], widely exploited in photon indistinguishability
testing and quantum information science, spawned exten-
sions of such interference phenomena to electrons [17, 18]
and bosonic atoms [3, 19]. Here we further interpret our
correlations results for ultracold fermions in light of the
HOM physics.
The much sought-after deeper understanding of the

double-well fermionic dimer is achieved below through
employment of an exact configuration-interaction (CI)
method for solving the two-body problem, in conjunc-
tion with a modified Hubbard-type analytic modeling
that allows a synoptic interpretation of the properties
and interference patterns of the microscopic, numerically
CI-derived, two-particle momentum correlations.
The paper is organized as follows. In Section II, es-
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FIG. 1. Ground-state CI-calculated spatial and momentum correlation maps for two fermions in a double well, as a function of
the two-body interaction strength g. The interwell distance is 2d = 2 µm. The results in the upper and lower rows correspond
to two different choices of the confining harmonic frequencies along the inter-well direction (x) and in the transverse one
(y). The top row shows results for ωx = 2π × 8 kHz, and the bottom row shows results for ωx = 2π × 15 kHz; for both
cases ωx/ωy = 1/100. The results in (a,b) and (i,j) are for an interaction strength g = 5.5 × 10−6 [in units of ~ωl20, see
text after Eq. (2)], corresponding to a Hubbard parameter U/t = 0 (that is, non-interacting particles); those in (c,d) and
(k,l) are for g = 3.1 × 10−2 and g = 1.2 × 10−3, respectively, corresponding to U/t = 2; the ones in (e,f) and (m,n) are for
g = 1.3× 10−1 and g = 4.8× 10−3, respectively, corresponding to U/t = 8; and in (g,h) and (o,p) they are for g = 3.1× 10−1

and g = 1.2 × 10−2,respectively, corresponding to U/t = 20. Because of the quasilinear nature of the system, here and for
all 2D CI-derived correlations, the maps are drawn for y1 = y2 = 0 for the spatial correlations and for ky

1 = ky
2 = 0 for the

momemtum correlations. Note that we drop for convenience the superscript x and use ki = kx
i , where i = 1, 2 denotes the

index numbering the two particles. This yields the plotted correlation maps for the position (x1, x2) and momentum (k1, k2)
variables along the x-direction connecting the two wells.

sential definitions and theoretical details are given. Sec-
tion III displays a detailed analysis pertaining mainly
to interatomic interaction effects on the CI-calculated
and Hubbard-type-modeled patterns for the 2nd-order
(two-body) spatial and momentum correlation distribu-
tion maps obtained for the ground state of two fermionic
atoms trapped in a double well. Microscopic (CI)
and Hubbard-like analysis of 2nd-order correlation maps
for the excited states, is given in Section IV. Sec-
tion V links our microscopically calculated and ana-
lytically (Hubbard-type) derived momentum correlation
results with the Hong-Ou-Mandel interference physics,
uncovering quantum-statistics-governed (spatial symme-
try of the two-particle wavefunction) and interaction-
dependent bunching and antibunching behavior, as well
as other interference patterns, in the ground and excited
states. We summarize our results in section VI. Appen-
dices A, B and C give: (A) details of the derivation
of analytic Hubbard-type two-particle interference for-
mulas, (B) the methodology of extraction of Hubbard-
model parameters from the CI calculations, and (C) fur-
ther illustrations of Hubbard-model-derived two-particle
momentum correlation maps. Appendix D displays the
derivation and analytical expressions for the two-body
density matrices for the ground and excited states cor-
responding to the Hubbard-type model described in Ap-
pendix A, and relates these to the 2nd-order momentum
correlation maps discussed in the paper.

II. THEORY ESSENTIALS

To implement the microscopic CI method, we start by
considering the two-dimensional (2D) Hamiltonian of two
interacting ultracold fermions,

HMB = H(1) +H(2) + V (r1, r2), (1)

where H(i) represents the single particle part of the
many-body Hamiltonian and V (r1, r2) represents the in-
teraction term, with ri ≡ (xi, yi), i = 1, 2, being the
space coordinates of the first and second particle. The
single particle part H(i) of the Hamiltonian contains the
kinetic energy term and a single-particle external con-
fining potential; in this paper we consider a double-well
confinement.

The double-well external confining potential has been
extensively described in Refs. [14, 20]. The relevant po-
tential parameters are the inter-well separation 2d =
d2 − d1 (d1 < d2) along the x-direction, and the value
of the dimensionless parameter ǫb (determining the in-
terwell barrier height Vb) is taken to be 0.5 throughout
the paper. Each of the parabolic confining wells is char-
acterized by two harmonic frequencies, ωx (along the x-
axis of the well) and ωy (along the y direction), result-
ing in a (quasi-onedimensional) needle-like shape confine-
ment when ωx << ωy. In our calculations here, we con-
sider two different sets of values, i.e., ωx = 2π × 8 kHz,
ωy = 2π×800 kHz and ωx = 2π×15 kHz, ωy = 2π×1500
kHz, both having the same aspect ratio ωx/ωy; hereafter
we drop for convenience the subscript x and use ω = ωx.

The short-range interatomic interaction term is given
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by

V (r1, r2) =
g

σ2π
e−(r1−r2)

2/σ2

. (2)

In this paper we use σ = 0.01 µm, yielding a ratio σ/l0 ∼
0.03 for the case of ω = 2π× 8 kHz and σ/l0 ∼ 0.022 for
the case of ω = 2π × 15 kHz; l0 is the oscillator length
l20 = ~/(M6Liω), withM6Li = 10964.90me being the mass
of 6Li; a pair of states out of the three lowest 6Li hyperfine
states corresponds to two different spin states [12]. The
factors σ/l0 are motivated by the need to model short-
range, contact-type interactions. Any Gaussian width σ
that is sufficiently smaller than the harmonic oscillator
length l0 along the x-direction is suitable and yields es-
sentially identical final results. Here we consider both
mutually repelling (g > 0) and attractive (g < 0) parti-
cles and the tunable values of the interaction strength g
will be given in units of ~ωl20.
Because for N = 2 fermions the spin variables separate

from the space variables [21], the CI wave function has

the product form ΦS,Sz

CI (r1, r2)χ(S, Sz), where S and Sz

denote the total spin and its projection. As a result,
for N = 2 the spin-resolved and spin-unresolved two-
body correlations are the same [11] apart from an overall
factor. Then the two-body space correlation is defined
by [11]

PS,Sz

CI (r1, r
′
1, r2, r

′
2) = ΦS,Sz†

CI (r1, r
′
1)Φ

S,Sz

CI (r2, r
′
2), (3)

while the two-body momentum correlation is given by
the Fourier transform

GS,Sz

CI (k1,k2) =
1

4π2

∫ ∞

−∞

e−ik1·(r1−r
′

1
)

∫ ∞

−∞

e−ik2·(r2−r
′

2
)

× PS,Sz

CI (r1, r
′
1, r2, r

′
2)dr1dr

′
1dr2dr

′
2.

(4)

III. ANALYSIS OF THE GROUND STATE

In Fig. 1 we plot the CI two-body correlations for two
repelling fermions in their singlet (S = 0, Sz = 0) ground
state as a function of the interaction strength g (in units
of ~ωl20); the interwell separation is 2d = 2 µm. The
values of g are also expressed as the ratio U/t between the
on-site repulsion (U) and the intersite hopping parameter
(t) associated with the two-site Hubbard model (whose
parameters have been extracted from the microscopic CI
calculation; see Appendix B). Two different confining
harmonic potentials have been considered with energy
spacings ω = 2π × 8 kHz (top row) and ω = 2π × 15
kHz (bottom row). In all cases in this work, we show
two-particle spatial correlation maps for y1 = y2 = 0 and
two-particle momentum correlation maps for ky1 = ky2 =
0; we verified that similar results are obtained for other
y1 = y2 = const. and ky1 = ky2 = const. values. Note
that we drop for convenience the superscript x and use

ki = kxi , where i = 1, 2 denotes the index numbering the
two particles.

The spatial correlations for the above-noted two
confining-potential energy spacings 1(a,c,e,g) and Figs.
1(i,k,m,o), respectively], exhibit similar behavior as g
(or U/t) increases, transforming from a four-hump pat-
tern in a square formation to a two-hump one along the
x1+x2 = 0 diagonal (referred to here as “antidiagonal”).
Naturally in the non-interacting limit [g ∼ 0, U/t ∼ 0,
Fig. 1(a) and Fig. 1(i)], the two humps located along the
x1 − x2 = 0 diagonal (referred to here as “main diago-
nal”) are due to the double occupancy (involving both
the ↑ and ↓ spins) of the lowest symmetric single-particle
orbital of the double well, which in the Hubbard mod-
eling translates into double occupancy of each site. As
g increases, the double-occupancy humps along the main
diagonal progressively shrink, and they eventually vanish
in the strong-repulsion regime [see case for U/t = 20 in
Fig. 1(g) and Fig. 1(o)].

The evolution of the two-body momentum correlations
[Figs. 1(b,d,f,h) and Figs. 1(j,l,n,p)] is more complex. At
the non-interacting limit [Fig. 1(b) and Fig. 1(j)], a plaid
pattern of circular humps is evident. As a function of in-
creasing g, the plaid pattern distorts and transforms into
interference fringes exhibiting elongated maxima along
and parallel to the main diagonal (k1−k2 = 0); the asso-
ciated valleys (minima) of this pattern appear along the
antidiagonal (k1 + k2 = 0). This interference pattern is
well developed for U/t = 20 for which the residues of the
U = 0 circular humps only minimally distort the parallel
fringes. We checked that the U = 0 circular humps do
not survive for larger values of g (or U/t).

Furthermore, there is a prominent qualitative differ-
ence between the top- (ω = 2π×8 kHz confinement) and
bottom-row (ω = 2π × 15 kHz confinement) momentum
maps. Indeed for ω = 2π × 15 kHz (bottom row), there
are more individual features (humps or fringes) compared
to the case of ω = 2π × 8 kHz (top row). In particular,
we note for the independent particle case that there are
nine visible humps in Fig. 1(j) compared to four humps in
Fig. 1(b), with the additional maxima in Fig. 1(j) reveal-
ing for U = 0 enhanced correlations between particles
with equal momenta, regardless of their signs. Similarly
for U/t = 20 we find five visible fringes in Fig. 1(p) com-
pared to three in Fig. 1(h), with the added fringes in Fig.
1(p) revealing correlations between particles having the
same, but of opposite sign, momenta.

To gain insights about the systematics in the evolution
of the momentum maps, we model the fermion single-
particle space orbitals as displaced Gaussian functions
centered at each well. Taking account of the spin, the en-
suing Gaussian-type spin-orbitals are used to form Slater
determinants according to the spin eigenfunctions of the
corresponding two-site Hubbard model (with parameters
U and t extracted from the CI calculations; see Appendix
B). This procedure endows the Hubbard model eigenvec-
tor solutions with the (otherwise absent) spatial degrees
of freedom; see Appendix A. Considering the strictly
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one-dimensional case along the x-axis and applying the
definition in Eq. (4) to these modified Hubbard-model
solutions, one obtains for the two-body momentum cor-
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FIG. 2. Plots of analytic weights of the ground (a) and 3rd
excited (b) states [both singlets, see Eqs. (5) and (8)] of the
various contributing terms in the two-body momentum cor-
relations as a function of the strength of the Hubbard in-
teraction parameter U/t. The contributions to the various
terms in Eqs. (5) and (8) are identified by different colors as
indicated on the right in (a) and (b). (c-d) The Hubbard
momentum maps at U/t = 8 for the ground (green star) and
3rd excited (red star) states. (e) The energy spectrum (solid
lines) of the two-site Hubbard model covering both the attra-
tive (U/t < 0) and repulsive (U/t > 0) ranges. The symbols
Bj , j = 1, · · · , 4 denote the four Bell states at U/t → ±∞.
The red dots are the corresponding microscopic CI energies.
The Hubbard model in (c-e) corresponds to the CI calcula-
tion with 2d = 2 µm and ω = 2π × 15 kHz. Hubbard-model
analytic two-particle spatial and momentum correlation maps
for the ground state and the three lowest excited states for
the repulsive (U/t = 8) and attractive (U/t = −8) cases are
shown in Figs. 6, 7, and 8 in Appendix C. Note the rever-
sal of the energy-ordering of the Bell states for the Hubbard
U/t → −∞ and U/t → +∞ limits.

relation of the singlet ground state

GS=0,Sz=0
Hub,gs (k1, k2) ∝

2s2e−2s2(k2

1
+k2

2
)

π(UQ(U) + 16)

×
(
(UQ(U) + 8) cos(2d(k1 − k2)) + 8 cos(2d(k1 + k2))

+ 4Q(U) cos(2dk1) + 4Q(U) cos(2dk2) + UQ(U) + 16

)
,

(5)

where U = U/t, Q(U) =
√
U2 + 16+ U , s is the width of

the Gaussian orbital, and 2d is the interwell distance. Eq.
(5) is valid for both negative (U ≤ 0, attractive) and pos-
itive (U > 0, repulsive) values; similarly, the expressions
in Eqs. (6)-(8) below are valid in the whole range −∞ <

U < +∞. Note that Q(−U) = P(U) ≡
√
U2 + 16 − U

and that UP(U) → 8 when U → ∞.
In Eq. (5), four specific cos terms contribute, display-

ing oscillations along the main diagonal (k1 − k2), the
antidiagonal (k1 + k2), and the two axes (k1 and k2).
These four terms are supplemented with a constant fifth,
circularly-symmetric contribution. Each of these terms is

damped by an exponential prefactor e−2s2(k2

1
+k2

2
) whose

range (1/2s2) depends on the width s of the displaced
Gaussian orbitals. This fact accounts for the different
number of visible individual features (circular humps or
fringes) in the CI momentum maps between the top and
bottom row of Fig. 1. Indeed a narrower confining po-
tential [i.e., the one with ω = 2π × 15 kHz] results in
a smaller spatial extent of the associated single-particle
states compared to a wider confining potential [i.e., the
one with ω = 2π×8 kHz]; the oscillator length (and thus
s) is inversely proportional to

√
ω, leading to a damping

range 1/2s2 ∝ ω/2.
The evolution of the analytic weights for the Hubbard

ground-state [coefficients in front of the four cos terms
plus the constant term in Eq. (5) without the overall

common factor 2s2e−2s2(k2

1
+k2

2
)/π] are plotted as a func-

tion of U/t in Fig. 2(a); the spectra for the ground and
three lowest excited states are displayed in Fig. 2(e).
The variation of these weights provides a direct inter-
pretation of the evolution of the CI momemtum maps in
Fig. 1. In fact for non-interacting fermions (g ∼ 0 or
U = 0), all five terms contribute in a substantial way
in the sum of Eq. (5), and this leads to the plaid pat-
tern in Figs. 1(b) and 1(j). For strong g (or high U/t),
only two contributions survive, i.e., the constant and the
cos(2d(k1 − k2)) terms with equal weights. The corre-
sponding Hubbard momentum map (for U/t = 8) plotted
in Fig. 2(c) [see lower, green star in Fig. 2(e)] is found to
agree with the pattern and orientation of the fringes ob-
served in the CI-calculated maps in Figs. 1(f) and 1(n).
The analytic parameter s in Fig. 2(c) was adjusted to
correspond to a potential well with a steeper confinement
(i.e., ω = 2π × 15 kHz); in this case there are five visi-
ble fringes in Fig. 2(c) precisely as in the CI case in Fig.
1(n). Note that in the strong-interaction case, the two-
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FIG. 3. CI momentum correlation maps for two fermions in
a double well associated with the first three excited states,
denoted by stars colored as follows: (b) yellow (U/t = 8, g =
4.8×10−3 in units of ~ωl20), (c) blue (U/t = 8, g = 4.8×10−3),
(d) orange (U/t = 0, g = 5.5 × 10−6), (e) orange (U/t = 8,
g = 4.8 × 10−3) and (f) orange (U/t = 20, g = 1.2 × 10−2),
respectively. The interwell distance is 2d = 2 µm, and the
steeper potential confinement (ω = 2π × 15 kHz) is used.
The energy spectrum of the corresponding two-site Hubbard
model is plotted in (a). The stars in (a) indicate the specific
values of U/t (corresponding to particular g’s) for which the
CI momentum maps for the 1st excited (b), 2nd excited (c),
and 3rd excited (d-f) states were calculated. The red dots or
triangles in (a) are the corresponding microscopic CI energies.

term 1+cos(2d(k1−k2)) = 2 cos2(d(k1−k2)) pattern can
be reproduced also using [11] a Heisenberg-Hamiltonian
modeling.

IV. ANALYSIS OF EXCITED STATES

CI momentum maps for the first three excited states
are displayed in Fig. 3. For the 1st (triplet) and 2nd
(singlet) excited states [see the the yellow and blue stars
in Fig. 3(a)], the momentum correlation maps are inde-
pendent of the interparticle interaction (because of the
wave function nodal structure for these excited states),
and thus we display for these states the results for a sin-
gle value of the interaction (U/t = 8); see Figs. 3(b)
and 3(c), respectively. Indeed the analytic expressions of
the corresponding two-site Hubbard model contain only
a single sinusoidal term, independent of the parameter
U/t, namely

GS=1,Sz=0
Hub,1st ex(k1, k2) ∝

4s2e−2s2(k2

1
+k2

2
) sin2(d(k1 − k2))

π
,

(6)

and

GS=0,Sz=0
Hub,2nd ex(k1, k2) ∝

4s2e−2s2(k2

1
+k2

2
) sin2(d(k1 + k2))

π
.

(7)

We have checked that Eq. (6) applies to the other two
S = 1, Sz = ±1 triplet states as well.
In Fig. 3(b) (1st CI excited state), the valley of van-

ishing values lies along the main diagonal (antibunching
behavior), a fact that reflects the Pauli exchange princi-
ple which comes into play for a triplet state (S = 1, an-
tisymmetric space wave function). We further note that
in Fig. 3(c) (2nd CI excited state), the orientation of the
fringes is perpendicular to that in Fig. 3(b), a behavior
that reflects the sin2(d(k1+k2)) oscillatory pattern in Eq.
(7) (associated with the B3, S = 0 symmetric in space
Bell state) versus the sin2(d(k1 − k2)) one in Eq. (6).
Figs. 3(d-f) describe the evolution with increasing re-

pulsion of the CI momentum maps for the 3rd excited
state [orange stars on the upper curve in Fig. 3(a)]. This
evolution can be interpreted by considering the corre-
sponding analytic two-site Hubbard momentum correla-
tion

GS=0,Sz=0
Hub,3rd ex(k1, k2) ∝

2s2e−2s2(k2

1
+k2

2
)

π(16− UP(U))

×
(
(8− UP(U)) cos(2d(k1 − k2)) + 8 cos(2d(k1 + k2))

− 4P(U) cos(2dk1)− 4P(U) cos(2dk2) + 16− UP(U)
)
,

(8)

where as aforementioned P(U) =
√
U2 + 16− U .

The analytic weights of the five contributing terms in
Eq. (8) as a function of U/t are plotted in Fig. 2(b).(
As aforementioned UP(U) → 8 when U → ∞.

)
For the

non-interacting limit (U = 0), all five terms contribute
and yield a plaid pattern [see Fig. 3(d)], as was also the
case for the singlet ground state. For very strong inter-
actions only the two contributions 1+cos(2d(k1+k2)) =
2 cos2(d(k1 + k2)) survive; see Fig. 3(f) corresponding to
U/t = 20. For an intermediate U/t = 8, Eq. (8) is plotted
in Fig. 2(d) [see upper, red star in Fig. 2(e)], exhibiting
fringes with a dominant 1 + cos(2d(k1 + k2)) behavior,
which is however distorted by residual humps due to the
other three weaker terms. The Hubbard pattern in Fig.
2(d) agrees very well with the CI momentum map in Fig.
3(e); for additional two-particle spatial and momentum
correlation maps according to the Hubbard model, see
Figs. 6, 7, and 8 in Appendix C.

V. ENTANGLEMENT ASPECTS AND
CONNECTION TO THE HONG-OU-MANDEL

INTERFERENCE PHYSICS

The Hubbard-model eigenstates (see details in Ap-
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pendix D1), are a superposition of the four maximally

entangled Bell states B1 = (|LR〉 − |RL〉)/
√
2, B2 =

(|LR〉 + |RL〉)/
√
2, B3 = (|LL〉 − |RR〉)/

√
2, and B4 =

(|LL〉 + |RR〉)/
√
2, where |L〉, |R〉 are, repectively, the

single-particle states (including spin) in the left or right
well; the superposition coefficients depending on the pa-
rameter U . This is illustrated in Fig. 2(e), where the
corresponding Bell states at U → ±∞ are explicitly de-
noted. The first and second excited states are the pure
Bell states B2 and B3, respectively, for any U . The Hong-
Ou-Mandel [15] interference phenomena are related to
the coincidence probability P11 of having two particles
in the B3 (spin-up and spin-down fermions mimicking
indistinguishable bosons [3, 19], P11 = 0) or B2 state
(indistinguishable fermions [17, 18], P11 = 1 due to the
Pauli exclusion principle); see Fig. 4. The state B4, being
also an entangled NOON state [22], can provide a further
analogy to the bosonic HOM effect. Finally, the state B1

can also be related to the fermionic HOM effect; however
in the context of the ground-state of the Hubbard dimer,
this state is associated with the process of fermionization
[12, 23] due to large interatomic repulsion, rather than
with a quantum-statistics effect.
In our treatment, P11 can be related to the second-

order spatial and momentum correlations through the
diagonal elements of the two-particle density matrix ρijkl
which decomposes the second-order correlation maps to
left-right (L,R) components. From the momentum cor-
relation maps, and using the Hubbard modeling for sim-
plicity, one has

GHub(k1, k2) =
∑

i,j,k,l=L,R

ηHub,2nd
ijkl (k1, k2) =

∑

i,j,k,l=L,R

ρHub,2nd
ijkl ψi↑ (k1)ψj↓(k2)ψ

†
k↑(k1)ψ

†
l↓(k2).

(9)

The explicit expressions for ρijkl for the four Hubbard
states are given in Appendices D 3, D 4, D 5, and D6.
P11 = ρLRLR+ρRLRL; Fig. 4 displays the dependence of
P11 on U .
Additional HOM [and also Handbury Brown-Twiss

[1, 2, 24, 25] (HBT)] aspects can be evoked based on the
role played by the four Bell states in our approach. De-
veloping corresponding experimental protocols that will
test, among other possibilities, the interplay of beam
splitters and interaction effects is beyond the scope of
this paper. However, we mention here two possible paths.
The first is the measurement of spatial noise [26] in the
particle counts in the image of the expanding cloud of
the two ultracold atoms; this image reflects in space the
momentum correlation maps. Such measurements along
the main diagonal or antidiagonal of the image will cor-
respond to the observation of both HOM antibunching
and bunching types with fermions when using the first
or second excited states, respectively; see Figs. 3(b) and
3(c). This will follow the spirit of Refs. [17, 18] that ad-
dress the fermionic case for electrons by measuring cur-
rent noise in mesoscopic semiconductors [27]. Away from

0-10 10

1.0

0.5

U/t

P11

Hub. model gs

CI Result gs

Hub. model 1st ex.

Hub. model 2nd ex.

Hub. model 3rd ex.

FIG. 4. The probability P11, that is, the so-called coinci-
dence probability – commonly measured in HOM, and HOM-
like, experiments – for finding a particle in one of the wells
and another particle in the other well, calculated here as a
function of the Hubbard interparticle interaction strength pa-
rameter U = U/t. Results are shown for two particles in a
double-well trap, with an interwell distance 2d = 2 µm. Re-
sults are shown for attractive (U < 0) and repulsive (U > 0)
interactions, for both the ground state (gs) and three lowest
excited (ex.) states. The red dots on the blue (short dashes)
curve display the corresponding microscopic (CI) results for
the ground state.

the two diagonals, the noise measurements may be asso-
ciated with oscillatory HBT interference reflecting the
distance 2d between the two wells [1, 2, 24, 25]. Further-
more, if the left- or right-well provenance of the parti-
cles can be determined, noise measurements associated
with the components ηijkl of the momentum correlation
maps [see Eq. (9)], could be performed, yielding addi-
tional pathways for exploration of particle interference
effects. The second path relates to entanglement aspects
by using the density matrix ρijkl in the spirit of Refs.
[6, 9].

VI. SUMMARY

In conclusion, with the use of two-particle density
matrix constructed via configuration-interaction exact
diagonalization of the microscopic Hamiltonian, we have
explored here the systematic evolution of characteristic,
damped, interference patterns in the two-particle mo-
mentum and spatial correlation maps of two ultracold
fermionic atoms trapped in a double-well potential, over
the entire range of variation of the contact (both re-
pulsive and attractive) interatomic interaction strength.
For the singlet ground state the two-body momentum
maps were found to transform from a square-plaid
pattern [Figs. 1(b) and 1(j)] for vanishing interparticle
interaction, to a system of striped interference fringes
oriented in the direction parallel to the main diagonal
of the square two-particle map [Figs. 1(h) and 1(p)].
The most intense fringe lies along the main diagonal
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indicating bunching. Our theoretical results (Fig. 1,
top row) agree well with the evolution (found with
increasing strength) of preparatory experimentally
measured [7] momentum correlation maps [28]. We have
also analyzed two-body momentum correlation maps
for low-lying excited states (Figs. 2 and 3). The triplet
excited state is associated with antibunching [see Fig.
3(b)]. A derived modified-Hubbard-type effective model,
incorporating spatial degrees of freedom (i.e., interwell
distance and particle localization length), in addition
to the customary on-site U and hopping (t) Hubbard-
Hamiltonian parameters (determined in each case from
the CI results), has been found to reproduce well the
microscopic CI results. Importantly, this development
allowed us to uncover analytic expressions capturing the
full evolution of the two-particle momentum correlation

maps over the entire range of interparticle interactions –
from the non-interacting regime (U/t = 0, with substan-
tial ground-state site-double-occupancy contributions),
to the Mott insulating regime with large U/t.
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Appendix A: Derivation of analytic Hubbard-type interference formulas for two particles

Here we illustrate in detail the derivation of the analytic interference formulas for N = 2 particles, allowing a rather
immediate generalization to more complex cases with N > 2 particles. For this analytic modeling, we assume that
the spatial part of the orbital of the jth particle is approximated by a displaced Gaussian function (localized at a
position dj),

ψj(x) =
1

(2π)1/4
√
s
exp

(
− (x− dj)

2

4s2

)
, (A1)

where s denotes the width of the Gaussian functions. The single-particle orbital ψj(k) in the momentum Hilbert

space is given by the Fourier transform of ψj(x), namely ψj(k) = (1/
√
2π)

∫∞

−∞
ψj(x) exp(ikx)dx. Performing this

Fourier transform, one finds

ψj(k) =
21/4

√
s

π1/4
exp(−k2s2) exp(idjk), (A2)

In our previous paper [11], we focused on well localized particles within each well (neglecting the possibility of double
occupancy in each well), a condition that is satisfied for strong repulsion. Here we are interested in an analytical
model for all interaction strengths, allowing for double occupancy. We therefore consider the more general case of the
two-site Hubbard model instead of the Heisenberg model (as was done in Ref. [11]). The two particles are localized at
two different wells, at positions d1 < 0 and d2 > 0, which together with the spin yields four possible spin eigenfunctions
|◦, ↑↓〉 , |↓, ↑〉 , |↑, ↓〉, and |↑↓, ◦〉. These spin eigenfunctions form a complete many-body base for the diagonalization of
the fermionic Hubbard Hamiltonian,

H = −
∑

σ

(
ĉ†1,σ ĉ2,σ + ĉ†2,σ ĉ1,σ

)
+ U

2∑

i=1

n̂i↑n̂i↓, (A3)

where σ sums over the up (↑) and down (↓) spins. The ratio U = U/t, where U and t are the one-site repulsion and
the nearest-neighbor hopping parameters. The energies are expressed in units of t.

There are many equivalent ways of writing the Hubbard model basis in the second-quantization formalism, and
throughout this paper we use the following convention

b1 = ĉ†2↑ĉ
†
2↓ |〉 = |RR〉 = |◦, ↑↓〉 , (A4)

b2 = ĉ†1↓ĉ
†
2↑ |〉 = |RL〉 = |↓, ↑〉 , (A5)

b3 = ĉ†1↑ĉ
†
2↓ |〉 = |LR〉 = |↑, ↓〉 , (A6)

b4 = ĉ†1↑ĉ
†
1↓ |〉 = |LL〉 = |↑↓, ◦〉 . (A7)
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In the third column above, the spin of the particle is not denoted explicitly. In this case the following mnemonic
rule is helpful: the spin-up particle is always written first inside the ket |· · ·〉

For a small number of particles the Hubbard Hamiltonian can be exactly diagonalized (for instance using SNEG [29]).
For Sz = 0, a general solution of the two-site Hubbard Hamiltonian using the aforementioned second-quantization
basis is of the form

Φ = a(U) |◦, ↑↓〉+ b(U) |↓, ↑〉+ c(U) |↑, ↓〉+ d(U) |↑↓, ◦〉 . (A8)

The coefficients a(U), . . . , d(U) of course satisfy the constraint that Φ is normalized. Naturally, such a Hubbard-
model solution yields the wave function in second quantization form. Our modification aims at including the spatial
component of the wave-function, by associating each basis ket bi, i = 1, . . . , 4, with a determinant of spin orbitals
ψj,σ(x) = ψj(x)σ, where σ here represents the spin. When the spin orbitals are localized on the left or right well,
they will also be denoted as |L〉 or |R〉, respectively. The corresponding determinants D to each basis ket are (the
tilde indicates the incorporation of the space orbitals)

|R̃R〉 = D|◦,↑↓〉(x1, x2)

=
1√
2!
(ψ2↑(x1)ψ2↓(x2)− ψ2↑(x2)ψ2↓(x1)) (A9)

|R̃L〉 = D|↓,↑〉(x1, x2)

=
1√
2!
(ψ1↓(x1)ψ2↑(x2)− ψ1↓(x2)ψ2↑(x1)) (A10)

|L̃R〉 = D|↑,↓〉(x1, x2)

=
1√
2!
(ψ1↑(x1)ψ2↓(x2)− ψ1↑(x2)ψ2↓(x1)) (A11)

|L̃L〉 = D|↑↓,◦〉(x1, x2)

=
1√
2!
(ψ1↑(x1)ψ1↓(x2)− ψ1↑(x2)ψ1↓(x1)) (A12)

We can therefore write the full wave function, including the space and spin parts, as

Φ(x1, x2) =a(U)D|◦,↑↓〉(x1, x2) + b(U)D|↓,↑〉(x1, x2)+

c(U)D|↑,↓〉(x1, x2) + d(U)D|↑↓,◦〉(x1, x2),
(A13)

where the coefficients are in general dependent on the interwell distance 2d = d2 − d1 (d1 < d2) and the width s.
We can now use the wave function Φ(x1, x2), together with the formulas described in the main paper [see Eqs. (3)

and (4) therein], to obtain the two-particle correlation expressions in real and momentum space [see Eqs. (5)-(8) in
the main paper]. The integrations associated with the Fourier transforms can be carried out with the help of the
MATHEMATICA algebraic computer language [30].

Appendix B: Extraction of Hubbard-model parameters from the CI calculation

In order to compare our analytical model with the CI results it is important to relate the interparticle interaction
strength g [see Eq. (2) in the main paper] with the Hubbard parameter U , and to extract the value of the hopping
parameter t from the single-particle energy spectrum associated with the external confining potential. Given the
single-particle spectrum, the value of t can be extracted as t = (e2 − e1)/2 where e1 and e2 are the ground and
first-excited single-particle energies, respectively. This can be directly inferred from the tight-binding limit (setting
U = 0).

In order to determine U from the CI, we first take a close look at the Hubbard-model energy levels and their
properties. An exact diagonalization of the Hubbard Hamiltonian shows that the second excited state energy E3(U)



9

0

0
1

-1
1

-1 0

0
-1

1
-1 0

0
-1

1
-1

1 1

(a) (b) (c) U/t=20U/t=8U/t=0

x(µm)

y(
µm

)

FIG. 5. This figure shows spin-resolved conditional probability densities (SR-CPDs) for two particles in the second excited
state in a double well. We plot the SR-CPD for three different interaction strengths. (a) g = 5.5 10−6

~ωl20 (corresponding to
U/t = 0), (b) g = 4.8 10−3

~ωl20 (corresponding to U/t = 8), and (c) g = 1.2 10−2
~ωl20 (corresponding to U/t = 20). The black

up-arrow represents the fixed position of the spin-up particle in the plane of the grid. The red down-arrow indicates that we
are calculating the resulting occupation probability (density) for a spin down particle; see the plotted red-color surface. As is
apparent from the figure, the red-cplored probability surface is directly situated on top of the black (spin-up) fixed point for
all interaction strengths. This indicates strong double occupancy. The second well of the double well at d2 = d = 1 µm is
practically unoccupied. This double occupancy is what allows us to extract the Hubbard on-site interaction parameter U from
the energy level of the second excited CI state. The parameters for the double wells are: ω = ωx = 2π×15 kHz, ωy = 2π×1500
kHz, ǫb=0.5 (interwell barrier Vb/h = 33.5 kHz). The interwell distance is 2d = 2 µm.

U/t=0.0 U/t=2.0 U/t=8.0 U/t=20
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0
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1.80

0

FIG. 6. The analytic Hubbard-model ground-state (singlet) space (a-d) and momentum [(e-h), see Eq. (5) in main paper]
two-particle correlation maps for two ultracold fermions in a double well, as a function of the Hubbard interaction strength
U/t. The interwell distance is 2d = 2 µm and the width of the displaced Gaussian functions is s = 0.2 µm.

is directly proportional to U with E3(U) = U+2t+E1(0), where E1(0) is the non-interacting ground state energy. For
non-interacting (U = 0) particles, the energy of the second excited state is therefore simply given as E3(0) = 2t+E1(0).
Consequently one can extract the parameter U directly from the difference between the non-interacting and interacting
second excited-state energy U = E3(U)−E3(0). This is a trivial result within the Hubbard model, but it also applies
for our CI calculations.

In order to verify that U can be determined by using the corresponding energy difference from our CI spectrum,
i.e., U = ECI

3 (g) − ECI
3 (0), we look at the properties of the second-excited CI state. In the Hubbard model the

second excited state is given as (|LL〉 − |RR〉)/
√
2, containing only doubly occupied sites (as we would expect since

U represents the on-site interaction energy). It is easily verified via conditional probability distributions (CPDs)
[14, 20, 31, 32] that, in analogy with the Hubbard-model case, the second excited CI state consists solely of doubly
occupied wells; see Fig. 5. We therefore proceed to determine U using U = ECI

3 (g)−ECI
3 (0). Afterwards we compare

the CI and Hubbard energy levels using values for U obtained from the CI in this way and find very good agreement
between the CI spectrum and the Hubbard model spectrum [see Figs. 2(e) and 3(a) in main paper], validating our
approach for extracting U from the CI calculation.
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FIG. 7. Hubbard-model analytic two-particle correlation maps for the ground state and the three lowest excited states (as
marked in the figure) of two ultracold fermions in a double well, calculated for an intermediate positive value of the Hubbard
interaction strength U/t = 8. (a,c,e,g) Two-particle spatial correlations maps. (b,d,f,h) Two-particle momentum correlation
maps according to Eqs. (5)−(8) in the main paper. The interwell distance is 2d = 2 µm and the width of the displaced Gaussian
functions is s = 0.2 µm.

Appendix C: Additional figures portraying Hubbard-model two-particle momentum correlation maps

In order to further highlight the extent to which our modified-solutions Hubbard model reproduces the microscopic
CI two-particle space and momentum correlations, we display here three additional Figures 6, 7, and 8. Both space
and momentum correlation maps in Fig. 6 should be compared with the corresponding CI ones in the bottom row
(steeper confinement with ω = 2π × 15 kHz) of Fig. 1 in the main paper. The momentum correlation maps in Fig.
7 for the repulsive case with U/t = 8 should be compared with those CI ones in Figs. 3(b,c,e) in the main paper
(due to the contrast, the outer fringes in Figs. 3(b,c) are better seen after one enlarges these figure panels). The
corresponding results for the attractive case with U/t = −8 are shown for completeness in Fig. 8.

Appendix D: The 2nd-order (two-body) density matrices derived in the Hilbert space of the
modified-solutions Hubbard model and their relation to the correlation maps

1. Solution of the two-site two-particle Hubbard model

Here we outline the solution of the two-site Hubbard model with two spin 1/2 fermions. The Hubbard Hamiltonian
in second quantization is given in Eq. (A3). We remind that U in Eq. (A3) is the on-site interaction, t is the tunneling
parameter and n̂iσ is the number operator at site i for spin σ. For convenience we repeat here our definition of the



11

2
n

d
 e

x.

U/t=-8

3
rd

 e
x.

g
s

1
st

 e
x.

1.65

0

1.80

0

1.80

0

1.65

0

0.07

0

0.04

0

0.04

0

0.05

0

(a) (b)

(c) (d)

(e) (f )

(g) (h)

−5

 5

−5  5

(

(

(

(

−2  2

 2

(

(

(

(

−2

FIG. 8. Hubbard-model analytic two-particle correlation maps for the ground state and the three lowest excited states (as
marked in the figure) of two ultracold fermions in a double well, calculated for an intermediate negative value of the Hubbard
interaction strength U/t = −8. (a,c,e,g) Two-particle spatial correlations maps. (b,d,f,h) Two-particle momentum correlation
maps according to Eqs. (5)−(8) in the main paper. The interwell distance is 2d = 2 µm and the width of the displaced Gaussian
functions is s = 0.2 µm.

Hubbard model basis functions:

b1 = ĉ†2↑ĉ
†
2↓ |〉 = |RR〉 = |◦, ↑↓〉 , (D1)

b2 = ĉ†1↓ĉ
†
2↑ |〉 = |RL〉 = |↓, ↑〉 , (D2)

b3 = ĉ†1↑ĉ
†
2↓ |〉 = |LR〉 = |↑, ↓〉 , (D3)

b4 = ĉ†1↑ĉ
†
1↓ |〉 = |LL〉 = |↑↓, ◦〉 , (D4)

where L and R represent site 1 and 2 respectively. There are many equivalent notations for these basis functions in
the literature and we have listed three of them in Eqs. (A4)-(A7). In the following we will use the L,R notation. The
basis set in Eqs. (A4)-(A7) spans the Hilbert space of the 2-site 2-particle Hubbard model and the resulting Hubbard
matrix is:

H =



U t −t 0
t 0 0 t
−t 0 0 −t
0 t −t U


 . (D5)
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Diagonalization of this Hamiltonian yields the eigenenergies:

E1 =
1

2

(
U −

√
16t2 + U2

)
, (D6)

E2 = 0, (D7)

E3 = U, (D8)

E4 =
1

2

(
U +

√
16t2 + U2

)
. (D9)

The eigenfunctions corresponding to these eigenvalues are:

Φ1 = A(U, t) |RR〉+B(U, t) |RL〉 −B(U, t) |LR〉+A(U, t) |LL〉
= A(U, t)(|RR〉+ |LL〉) +B(U, t)(|RL〉 − |LR〉)
= A(U, t)

√
2 |B4〉 −B(U, t)

√
2 |B1〉 , (D10)

Φ2 =
1√
2
(|RL〉+ |LR〉) = |B2〉 , (D11)

Φ3 =
1√
2
(|LL〉 − |RR〉) = |B3〉 , (D12)

Φ4 = C(U, t) |RR〉+D(U, t) |RL〉 −D(U, t) |LR〉+ C(U, t) |LL〉
= C(U, t)(|RR〉+ |LL〉) +D(U, t)(|RL〉 − |LR〉)
= C(U, t)

√
2 |B4〉 −D(U, t)

√
2 |B1〉 , (D13)

where

A(U, t) = 1

/√(√
16t2 + U2 + U

)2

8t2
+ 2 , (D14)

B(U, t) = −
√
16t2 + U2 + U

4t

/√(√
16t2 + U2 + U

)2

8t2
+ 2 , (D15)

C(U, t) = 1

/√(
U −

√
16t2 + U2

)2

8t2
+ 2 , (D16)

D(U, t) =
−U +

√
16t2 + U2

4t

/√(
U −

√
16t2 + U2

)2

8t2
+ 2 , (D17)

and |B1〉 , |B2〉 , |B3〉 , |B4〉 are the four Bell states:

|B1〉 =
1√
2
(|LR〉 − |RL〉) (D18)

|B2〉 =
1√
2
(|LR〉+ |RL〉) (D19)

|B3〉 =
1√
2
(|LL〉 − |RR〉) (D20)

|B4〉 =
1√
2
(|LL〉+ |RR〉). (D21)

Writing the Hubbard model solutions in this form has the advantage that it reveals the simple structure of the
Hubbard Hamiltonian in the four Bell-states basis, i.e.,

H = H =




0 0 0 −2t
0 0 0 0
0 0 U 0

−2t 0 0 U


 . (D22)
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We note that for two fermions, one can form two additional Bell states by adding and subtracting the S = 1, Sz = 1
(|↑, ↑〉) and S = 1, Sz = −1 (|↓, ↓〉) triplet states [33, 34]. These two Bell states, however, do not conserve the total
spin, and thus they are not CI eigenstates.

2. Calculation of the second-order two-body density matrix

For each state of the Hubbard model (Φ1,Φ2,Φ3,Φ4, denoted in general as Φ) one can obtain the second-order

density matrix as ρS,Sz

Hub = |Φ〉 〈Φ|, which can be written in the L, R basis as

ρS,Sz

Hub =
∑

i,j,k,l=L,R

ρHub,S,Sz

ijkl |i j〉 〈k l| . (D23)

In order to obtain the spatial second-order density matrix (and subsequently the second-order spatial correlation
function) from the Hubbard model density matrix we define an operator that associates single particle spatial wave-
functions [ψ, see, e.g., Eq. (A1)] with the L,R basis, as

Os =
∑

i,j,k,l=L,R

ψi↑(x1)ψj↓(x2)ψ
†
k↑(x

′
1)ψ

†
l↓(x

′
2)ĉ1↑ĉ2↓ĉ

†
1↑ĉ

†
2↓. (D24)

The spatial second-order density matrix can then be obtained as the expectation value of this operator

GS,Sz

Hub (x1, x2, x
′
1, x

′
2) = 〈Φ|Os|Φ〉 = Tr[ρS,Sz

Hub Os], (D25)

which yields

GS,Sz

Hub (x1, x2, x
′
1, x

′
2) =

∑

i,j,k,l=L,R

ρHub,S,Sz

ijkl ψi↑(x1)ψj↓(x2)ψ
†
k↑(x

′
1)ψ

†
l↓(x

′
2). (D26)

The second-order momentum density matrix is obtained through Fourier transform

GS,Sz

Hub (k1, k2, k
′
1, k

′
2) =

1

4π2

∫ ∞

−∞

e−k1x1dx1

∫ ∞

−∞

e−k2x2dx2

∫ ∞

−∞

ek
′

1
x′

1dx′1
∫ ∞

−∞

ek
′

2
x′

2dx′2
∑

i,j,k,l=L,R

ρHub,S,Sz

ijkl ψi(x1)ψj(x2)ψ
†
k(x

′
1)ψ

†
l (x

′
2),

=
∑

i,j,k,l=L,R

ρHub,S,Sz

ijkl ψi↑(k1)ψj↓(k2)ψ
†
k↑(k

′
1)ψ

†
l↓(k

′
2).

(D27)

To proceed we use single particle Gaussian wavefunctions for the left and right wells, where L,R indicate that the
real-space Gaussian wavefunction (ψ) is localized in the left (ψL) and right (ψR) well respectively. The real-space
displaced Gaussian function was given in Eq. (A1); (dj < 0 corresponds to L, dj > 0 corresponds to R) and s is the
Gaussian width. Its fourier transform was given in Eq. (A2).
Using these Gaussian single-particle wavefunctions, the second-order momentum density-matrix elements can be
calculated explicitly,

ηHub,S,Sz

ijkl (k1, k2, k
′
1, k

′
2) = ρHub,S,Sz

ijkl ψi↑(k1)ψj↓(k2)ψ
†
k↑(k

′
1)ψ

†
l↓(k

′
2). (D28)

This allows us to write the second-order momentum density matrix as

GS,Sz

Hub (k1, k2, k
′
1, k

′
2) =

∑

i,j,k,l=L,R

ηHub,S,Sz

ijkl (k1, k2, k
′
1, k

′
2). (D29)
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For a physical interpretation and for the creation of the second-order momentum correlation maps we are interested
only in the diagonal elements of the second-order momentum density matrix, which are given as

GS,Sz

Hub (k1, k2) =
∑

i,j,k,l=L,R

ηHub,S,Sz

ijkl (k1, k2), (D30)

with

GS,Sz

Hub (k1, k2) ≡ GS,Sz

Hub (k1, k2, k1, k2), (D31)

ηHub,S,Sz

ijkl (k1, k2) ≡ ηHub,S,Sz

ijkl (k1, k2, k1, k2). (D32)

When evaluating this expression one needs to account for the orthogonality of the spins. The function GS,Sz

Hub (k1, k2)
is termed second-order (two-body) momentum correlation function. One can obtain the spin-resolved version by
only selecting terms with a certain spin configuration. Alternatively, the spin-unresolved version can be obtained by
taking all the spin terms into account. In the special case of a two-particle second-order correlation function, both
the spin resolved and the spin unresolved versions are identical (for a given spin-projection) apart from an overall

factor. Expressing GS,Sz

Hub (k1, k2) using the ηHub,S,Sz

ijkl (k1, k2) elements has the advantage that the ηHub,S,Sz

ijkl (k1, k2)
clearly show the interference terms that correspond to the individual entries in the Hubbard model density matrix

ρS,Sz

Hub . These elements can be readoff directly from the matrices given in Appendices D 3, D 4, D 5, and D6.
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3. Ground state

Using U = U/t and Q(U) =
√
16 + U2 + U the Hubbard model two-body density matrix is given by

ρS=0,Sz=0
Hub =

1

Q(U)U + 16

LL LR RL RR






4 Q(U) Q(U) 4 LL
Q(U)U

2 + 4 Q(U)U
2 + 4 Q(U) LR

h.c.
Q(U)U

2 + 4 Q(U) RL
4 RR

, (D33)

=

LL LR RL RR





A(U)2 −A(U)B(U) −A(U)B(U) A(U)2 LL
B(U)2 B(U)2 −A(U)B(U) LR

h.c.
B(U)2 −A(U)B(U) RL

A(U)2 RR

. (D34)

Note that ρS=0,Sz=0
Hub for the ground state as well as for the excited states (see Appendices D 4, D 5, and D6 below)

are idempotent. Including the Fourier transformed wave functions we obtain

η
S=0,Sz=0
Hub (k1, k2) =

2s2e−2s2(k2

1
+k2

2)

π(Q(U)U + 16)

LL LR RL RR
















4 e−2idk2Q(U) e−2idk1Q(U) 4e−2id(k1+k2) LL
Q(U)U

2
+ 4 1

2
e−2id(k1−k2)(Q(U)U + 8) e−2idk1Q(U) LR

h.c.
Q(U)U

2
+ 4 e−2idk2Q(U) RL

4 RR

. (D35)

Using Eq. (D30) and the second-order momentum matrix in Eq. (D35), one can obtain the two-body ground state
momentum correlation function [see Eq. (5) in the main paper]. Similarly the two-body momentum correlation
functions for the excited states [see Eqs. (6)-(8) in the main paper] can be obtained through the use of the matrices
given in Appendices D 4, D 5, and D6 below.
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4. 1st excited state

ρS=1,Sz=0
Hub and ηS=1,Sz=0

Hub (k1, k2) for the first excited state of the Hubbard Hamiltonian [see Eq. (D11)] are given by:

ρS=1,Sz=0
Hub =

1

2

LL LR RL RR






0 0 0 0 LL

1 −1 0 LR

h.c.
1 0 RL

0 RR

, (D36)

ηS=1,Sz=0
Hub (k1, k2) =

4s2e−2s2(k2

1
+k2

2)

π

LL LR RL RR






0 0 0 0 LL

1
4 − 1

4e
−2id(k1−k2) 0 LR

h.c.

1
4 0 RL

0 RR

. (D37)
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5. 2nd excited state

ρS=0,Sz=0
Hub and ηS=0,Sz=0

Hub (k1, k2) for the second excited state of the Hubbard Hamiltonian [see Eq. (D12)] are given
by:

ρS=0,Sz=0
Hub =

1

2

LL LR RL RR






1 0 0 −1 LL

0 0 0 LR

h.c.
0 0 RL

1 RR

, (D38)

ηS=0,Sz=0
Hub (k1, k2) =

4s2e−2s2(k2

1
+k2

2)

π

LL LR RL RR






1
4 0 0 − 1

4e
−2id(k1+k2) LL

0 0 0 LR

h.c.
0 0 RL

1
4 RR

(D39)
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6. 3rd excited state

ρS=0,Sz=0
H and ηS=0,Sz=0

Hub (k1, k2) for the third excited state of the Hubbard Hamiltonian [see Eq. (D13)] are given by:

ρS=0,Sz=0
Hub =

1

16− P(U)U

LL LR RL RR






4 −P(U) −P(U) 4 LL

4− P(U)U
2 4− P(U)U

2 −P(U) LR

h.c.
4− P(U)U

2 −P(U) RL
4 RR

, (D40)

=

LL LR RL RR





C(U)2 −C(U)D(U) −C(U)D(U) C(U)2 LL
D(U)2 D(U)2 −C(U)D(U) LR

h.c.
D(U)2 −C(U)D(U) RL

C(U)2 RR

. (D41)

where U = U/t and P(U) =
√
16 + U2 − U .

η
S=0,Sz=0
Hub (k1, k2) =

2s2e−2s2(k2

1
+k2

2)

π(P(U)U − 16)

LL LR RL RR
















4 − e−2idk2P(U) −e−2idk1P(U) 4e−2id(k1+k2) LL

4−
P(U)U

2
− 1

2
e−2id(k1−k2)(P(U)U − 8) −e−2idk1P(U) LR

h.c.
4−

P(U)U
2

−e−2idk2P(U) RL

4 RR

. (D42)
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Tonks-Girardeau gas of ultracold atoms in an optical lat-
tice, Nature 429, 277 (2004).

[11] B.B. Brandt, C. Yannouleas, and U. Landman, Two-
point momentum correlations of few ultracold quasi-
one-dimensional trapped fermions: Diffraction patterns,
Phys. Rev. A 96, 053632 (2017).

[12] G. Zürn, F. Serwane, T. Lompe, A.N. Wenz, M.G. Ries,
J.E. Bohn, and S. Jochim, Fermionization of two distin-
guishable fermions, Phys. Rev. Lett. 108, 075303 (2012).

[13] S. Murmann, A. Bergschneider, V.M. Klinkhamer, G.
Zürn, T. Lompe, and S. Jochim, Two fermions in a dou-
ble well: Exploring a fundamental building block of the
Hubbard model, Phys. Rev. Lett. 114, 080402 (2015).

[14] B.B. Brandt, C. Yannouleas, and U. Landman, Double-
well ultracold-fermions computational microscopy:
Wave-function anatomy of attractive-pairing and
Wigner-molecule entanglement and natural orbitals,
Nano Lett. 15, 7105 (2015).

[15] C. K. Hong, Z. Y. Ou, and L. Mandel, Measurement
of subpicosecond time intervals between two photons by
interference, Phys. Rev. Lett. 59, 2044 (1987).

[16] Z. Y. Ou, Multi-photon interference and temporal dis-



19

tinguishability of photons, Int. J. Mod. Phys. 21, 5033
(2007).

[17] R.C. Liu, B. Odom, Y. Yamamoto, and S. Tarucha,
Quantum interference in electron collision, Nature 391,
263 (1998).

[18] E. Bocquillon, V. Freulon, J.-M. Berroir, P. Degiovanni,
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[27] Ya.M. Blanter and M. Büttiker, Shot noise in mesoscopic
conductors, Physics Reports 336, 1 (2000).

[28] The preparatory measurements were performed for three
different interaction strengths U = 0 (non-interacting),
U/t = 2.1 (weak strength), and U/t = 7.7 (intermediate
strength); see Fig. 7.8(a-c) in Ref. [7]. In the absence of
the present CI results and the Hubbard-type formula in
Eq. (5), no analysis of the full correlation maps and their
interference patterns was carried out in Ref. [7].
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