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High harmonic generation in semiconductors is analyzed for high mid-infrared laser intensities for
which the electron-hole pair is driven beyond the first Brillouin zone and exhibits Bloch oscillations.
We find that even a two-band analysis exhibits second and higher plateaus. Whereas the first plateau
is shown to be consistent with high harmonic generation through electron-hole recollision, the higher
plateaus arise from dynamic Bloch oscillations; however, the driving process is interband in nature,
in contrast to the generally accepted intraband Bloch oscillation mechanism. Energy conservation
is fulfilled, as harmonics beyond the first plateau come from a cascaded nonlinearity.

PACS numbers: 42.65.Ky, 42.50.Hz, 78.47.-p, 72.20.Ht

I. INTRODUCTION

The process of high-harmonic generation (HHG) has
been studied extensively in atomic and molecular systems
[1, 2] over the past several decades. Recently, however,
interest has grown towards studying HHG in condensed
matter systems. Experiments generating high-order har-
monics in bulk semiconductor crystals for wavelengths in
the mid-infrared (mid-ir) [3, 4] and THz [5, 6] regimes
have been performed, establishing a foundation on which
attosecond electron dynamics in solids can be studied.

HHG in solids can result from two distinct contribu-
tions — an interband and an intraband current [7, 8].
Theoretical analysis [9, 10] and recent experiments [11]
revealed that the interband current created by electron
hole recollision is the dominant mechanism for mid-ir
driver pulses. Its similarity to HHG in atomic gases al-
lows to adapt attosecond technology from gases to solids,
with potential applications such as, bandgap tomogra-
phy, solid state PHz oscilloscope, and in-situ measure-
ment of electric signals in semiconductor devices [11]. By
contrast, for longer wavelengths towards the THz regime,
intraband HHG, as a result of the nonlinear band velocity
[6, 12–15], was found to be dominant [6, 10].

Mid-ir HHG experiments [3] have been confined to
moderate intensities by the onset of material damage.
However, the material damage threshold can be shifted to
higher intensities by using shorter pulse durations and/or
by going to different materials. This makes the study
of the higher intensity regime meaningful and interest-
ing from an application perspective. Higher laser in-
tensities can potentially translate into shorter harmonic
wavelengths and shorter pulse durations, both being of
interest for attosecond spectroscopy in solids.

At higher intensities, when electrons are driven be-
yond the first Brillouin zone boundary, two additional

∗cmcdo059@uottawa.ca
†gvamp015@uottawa.ca

processes take place. First, the bandgap between first
and second conduction band is usually smallest at the
Brillouin zone edge, so that transitions to higher bands
may become important [16]. Second, once a conduction
electron has crossed the edge of the Brillouin zone, it will
begin to move in the opposite direction. This results in
the intraband phenomenon known as Bloch oscillation
(BO) where the electron moves periodically in space by
repeatedly crossing the Brillouin zone boundaries [17].

In interband HHG through recollision in a two-band
system, energy conservation limits the harmonic plateau
region to the maximum bandgap energy [10]. Recently,
in numerical studies a second plateau with harmonics be-
yond the maximum bandgap [18] was found. Both, higher
bands and intraband BOs, were identified as candidates
for generating the second plateau.

The main finding of our investigation is a BO mecha-
nism driving HHG that is interband in nature, relying on
the polarization buildup between valence and conduction
band. It manifests as a second plateau, but is fundamen-
tally different to conventional intraband BO referred to
above. For our investigation we use 3D, two- and three-
band calculations of ZnO. We have chosen to use ZnO
because it is the only material for which mid-ir HHG ex-
periments have been performed [3, 11]. The interband
BO mechanism is a new mechanism that has yet to be
examined experimentally.

Interband BO–HHG appears for two-bands; the role of
higher bands is investigated by adding a second conduc-
tion band. In ZnO, the second is close to the first conduc-
tion band and therefore is potentially important; higher
bands are neglected. The presence of the third band af-
fects the harmonic spectrum only weakly, although popu-
lation in the first and second conduction band are found
to be comparable; the electron-hole recollision mecha-
nism remains the dominant source for HHG in the fun-
damental plateau.

In a more general analysis of 3D model systems, the ef-
ficiency of BO–HHG is studied with regard to the param-
eters of the third band. The efficiency increases substan-
tially with shrinking bandgap between the two conduc-
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tion bands. Still, interband BOs remain the dominant
driving mechanism. As a result, interband BO–HHG
presents a potential pathway towards extending HHG
to shorter wavelengths in selected solids, where closely
spaced higher conduction bands enhance its efficiency.
Finally, the mechanism driving HHG from interband

BOs is revealed by a saddle point analysis for a two band
model. After the electron is promoted to the conduction
band by tunnel ionization, the laser field drives the elec-
tron periodically through the first Brillouin zone which
leads to a fast oscillation in the bandgap energy; the in-
tegral over the bandgap energy, the classical action S,
determines the phase of interband polarization. As inte-
grals over fast oscillations yield zero, HHG through inter-
band BO can happen only around the saddle points in S
which occur at each nodal point of the laser field; there
BOs are suppressed and the bandgap energy remains ap-
proximately constant resulting in a sinusoidal oscillation
of the interband polarization and therewith emission of
a harmonic photon. Bangap and photon energy are de-
termined by the electron-hole crystal momentum at the
field nodal points. Each of these saddle points can create
a harmonic spectrum with highest photon energy equal
to the maximum bandgap energy, as is required by en-
ergy conservation in a two band model. As the consec-
utive saddle points can act as a cascaded nonlinearity,
the harmonic spectrum can extend over multiples of the
maximum bandgap energy.

II. DERIVATION OF THE DENSITY MATRIX

EQUATIONS

Our analysis is based on a 3D, three-band model of
ZnO (wurtzite structure). Here we will derive the density
matrix equations for a solid with an arbitrary number
of bands. We will then use these general equations to
define our three-band model. We begin with the time-
dependent Schrödinger equation (TDSE) in the length
gauge where the time-dependent Hamiltonian in atomic
units is written asH(t) = H0−x·F(t), whereH0 = T+U
is the unperturbed Hamiltonian with T = (1/2)∇2 is
the kinetic energy and U(x) is the periodic potential of
the lattice. The field free Hamiltonian H0 has Bloch
eigenstates Φm,k(x) = um,k(x) exp(ik · x) with energies

Em,k = Em(k) in band m with crystal momentum k;
um,k is the periodic part of the Bloch function.
In the presence of the laser field the wavefunction be-

comes time-dependent. In the length gauge it is repre-
sented as

Ψ(x, t) =
∑

m

∫

BZ

am(k, t)Φm,k(x) d
3k (1)

where am(k, t) are the probability amplitudes and inte-
gration is over the full Brillouin zone (BZ).
The derivation of the equations of motion for the prob-

ability amplitudes proceeds in the same manner as the
supplementary material of Ref. 9. Eq. (1) is substituted
into the TDSE and the Bloch eigenstates are integrated
out yielding,

ȧm = (−iEm(k)+F(t)∇k)am+iF(t)
∑

m′ 6=m

dmm′(k)am′ (2)

where

dmm′(k) = i

∫

d3xu∗
m,k(x)∇kum′,k(x) (3)

is the transistion dipole.
Following the Keldysh approach [19], we use the trans-

formation am = bm exp(−i
∫ t

−∞ Emdt′) together with

K = k − A(t) in Eqs. (2) where A(t) is the vector po-
tential defined by F = −dA/dt. As a result we arrive
at,

ḃm(K, t) = i
∑

m 6=m′

Ωmm′(K, t)bm′(K, t)eiSmm′ (K,t) (4)

where Ωmm′ = F(t)dmm′(K+A(t)) and

Smm′(K, t) =

∫ t

−∞

εmm′(K+A(t′))dt′ (5)

is the classical action with εmm′ = Em − Em′ being the
bandgap between bands m and m′.
To connect the Eqs. (4) to the density matrix equa-

tions we define nm = |bm|2 and πmm′ = b∗mbm′ for
m 6= m′. Putting these definitions into Eqs. (2) yields,

ṅm = i
∑

m′ 6=m

Ωmm′πmm′eiSmm′ + c.c. (6a)

π̇mm′ = −
πmm′

T2
+ iΩ∗

mm′ (nm − nm′) e−iSmm′ + i
∑

m′′ /∈{m,m′}

(

Ωm′m′′πmm′′eiSm′m′′ − Ω∗
mm′′π∗

m′m′′e−iSmm′′

)

. (6b)

In Eqs. (6) we have dropped the input (K, t) for
simplicity. The first term in Eqs. (6b) is a phe-

nomenological term that takes into account the dephas-
ing time T2. This could be derived by accounting
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for coupling to a phonon bath and impurities and for
electron-electron scattering. The functions πmm′(K, t)
are connected to the polarization by pmm′(K, t) =
dmm′(K, t)πmm′ (K, t) exp(iSmm′(K, t)) + c.c. Eqs. (6)
are subject to the constraint

∑

m nm = 1.
The above set of equations is general for any number

of bands in a solids. For the three band model we will use
a single valence band and two conduction bands. There
is a dipole transition moment between the valvence and
first conduction band and between the first and second
condcution bands. However, the dipole transistion mo-
ment between the valence and second conduction band
is set to zero. From Eqs. (6) we will have six equations
to solve in our three-band model. The workload to solve
this system will be approximately double that required
for the two-band model.

III. NUMERICAL CALCULATIONS

A. Description of ZnO model

For our calculations we use a 3D, three-band model of
ZnO (wurtzite structure). However, most of our analy-
sis is confined to the lowest two bands; three band re-
sults are discussed at the end of the paper. The re-
ciprocal lattice is oriented so that x̂ is along Γ−M , ŷ
along Γ−K and ẑ along Γ−A (optical axis); the lat-
tice constants are (ax, ay, az) = (5.32, 6.14, 9.83) a.u.
In the two-band model, the bandgap is determined by
εg = Ec(k) − Ev(k) = Eg + ∆Eg(k) where Ec is the
conduction band (electrons) and Ev is the valence band
(holes). The bands were determined by the nonlocal
empirical pseudopotential method (NL–EPM) [20]; the
complete 3D band in the first Brillouin zone is approx-
imated as the sum over the three 1D bands. Since the
wave-vector (k ‖ ẑ) is much smaller in magnitude than
the reciprocal lattice vectors, the dipole approximation
is used.
For our three-band model we use a single valence band

(V ) and two conduction bands obtained from Ref. 20.
Figure 1 shows the structure along Γ−M . The lowest
conduction band (C1) couples to both the valence and
higher conduction band (C2); however, there is no cou-
pling between V and C2. At the Γ−point the bandgap
between V and C1 is 3.3 eV. By contrast the bandgap
at the Γ−point between V and C2 is 8 eV. This makes it
unlikely that population will be transfered directly from
V to C2 for the field parameters that we use.
At the edge of the Brillouin zone the bandgap between

C1 and C2 is ≈ 1eV . For field strengths that are strong
enough to drive an electron near, or beyond, the BZ edge
it becomes possible to transfer population between the
two conduction bands. The conduction band above C2

is far enough away that it should not have a significant
effect.
Interaction with the intense laser field is calculated us-

ing the density matrix equations derived in the previous
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FIG. 1: Band structure along Γ−M for three-band model
with a single valence band (blue) and two conductions bands
(red). In the two-band model only the valence and lowest
conduction band are used.

section. For the k-dependence of the dipole we use the
same model as presented in the supplementray material
of Ref. 9. Here each dipole element is calculated by,

dj(k) =

√

Ep,j

2ε2g(k)
(7)

were j = x, y, z, εg is the bandgap, Ep,j are the Kane
parameters [21–24]. For our calculations we use Ep,x =
Ep,y = 0.302 a.u. and Ep,z = 0.375 a.u. for both the
C1−V and the C1−C2 pairs. The crystal is exposed
to a laser field F(t) = x̂F0f(t) where f(t) consists of
a sine-carrier with wavelength λ = 3.25µm and tempo-
ral Gaussian envelope with a FWHM equal to 10 cycles.
For momentum-space integration 600 points along Γ−M
are used for the full Brillouin zone; 200 points are used
along the other two directions. The interband contribu-
tion to the harmonic spectrum is calculated by taking
the Fourier transform of the interband current (see Ref.
9).

B. Two band results

Before solving the full three-band equations we will in-
vestigate the two-band system where we only consider
bands V and C1. Figure 2 shows the harmonic spec-
tra for field strengths F0 = 0.007 a.u. (blue) and F0 =
0.01 a.u. (red) in the crystal. These field strengths cor-

respond to vacuum field intensities of Iv = 3.6TW/cm2

(Fv = 0.51V/Å) and Iv = 7.4TW/cm
2
(Fv = 0.73V/Å)

respectively. By contrast, the highest vacuum inten-
sity used for experimental measurement in Ref. 3 was
5TW/cm

2
(0.6V/Å). The relation between F0 and Fv

is F0 = 2Fv/(n+1) where the index of refraction for our
system is n ≈ 1.9. A dephasing time of T2 = 5.4 fs —
equivalent to a laser half cycle — is used in our calcula-
tions. At both field strengths electrons will travel beyond
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FIG. 2: Harmonic spectra for F0 = 0.007 a.u. (blue) and
F0 = 0.01 a.u. (red) for λ = 3.25 µm, and for a dephasing
time of T2 = 5.4 fs (equal to half cycle).

the first Brillouin zone and a second plateau emerges
followed by another exponential drop; for higher field
strengths the second plateau is more pronounced. This
“staircase” structure is not observed when the field is
too weak for electrons to travel beyond the first Brillouin
zone. Finally, the staircase structure appears also in the
intraband current, however is considerably weaker, and
therefore not shown here.

Figure 3 shows the results of a windowed Fourier trans-
form of the interband current for F0 = 0.01 a.u. using a
0.34 cycle Blackman window scanned across two optical
cycles near the peak of the pulse. This narrow temporal
window allows only a single recollision event and thus the
resulting spectrum is continuous rather than composed
of discrete harmonics. This process is carried out with a
spectral filter placed near the first cutoff (Fig. 3(a)) and
is repeated with a spectral filter placed near the second
cutoff (Fig. 3(b)).

Figure 3(a) shows the time-frequency analysis for the
fundamental plateau. The highest photon energy is emit-
ted slightly before a field zero; this structure will repeat
itself every half-cycle. The white lines show the results
of the classical trajectories calculated from the recollision
model similar to Ref. 10; here there are two branches.
The branch on the right corresponds to trajectories that
stay within the first Brillouin zone; these trajectories are
born after the peak of the field. The branch on the left
results from trajectories born before the peak of the field;
these can extend into the second Brillouin zone. In con-
trast to gases — where trajectories born before the peak
don’t recollide — it is these trajectories that dominate
the harmonic spectrum of the first plateau in our solid.
While the Bloch oscillation influences the classical tra-
jectory, it is clear that recollision is the main driver of
the harmonic spectrum for the first cutoff.

Figure 3(b) shows the results of our time-frequency
analysis for the second cutoff. In this case all harmonics
are emitted in phase near a field zero. The observed dif-

FIG. 3: Harmonic order versus time for the time-frequency
analysis for the (a) fundamental and (b) second cutoff for
field intensity F0 = 0.01 a.u. with λ = 3.25µm and T2 =
5.4 fs. The field peaks occur a quarter-cycle times and the
nodes occur at integer and half-integer cycle times. The white
lines are the results for the first returns from the semiclassical
trajectory analysis. The color scale is logarithmic.

ference is indicative of an interband process for emitting
harmonic radiation that occurs when electrons traverse
beyond the first Brillouin zone that is fundamentally dif-
ferent from the classical trajectory picture. While emis-
sion in the first plateau is still timed to the recolliding
electron-hole pairs, harmonics in the second plateau are
all emitted in phase at the field node.

IV. SADDLE POINT ANALYSIS OF

INTERBAND BLOCH OSCILLATIONS

In order to get a physical picture of the process cre-
ating the harmonics beyond the maximum bandgap, we
perform a saddle point analysis in the Bloch oscillation
limit where the electron traverses the Brillouin zone many
times. We begin with the expression for the interband
current from Ref. 9,

jer(ω) = ω

∫

BZ

d3k d(k)

∫ ∞

−∞

dteiωt

∫ t

−∞

dt′F (t′)d∗(κt′)

× e−iS(k,t′,t)−(t−t′)/T2 + c.c. (8)

For our physical picture in the Bloch oscillation limit we
are interested in the exponential term. Integration over
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FIG. 4: (a) Laser field normalized by peak amplitude. (b) In-
tegrand of Ig; that is ∆

−1 (εg − Eg). The saddle points occur
at the field nodes. (c) Full integral Ig. The steps result from
the contributions from the individual saddle points. Here we
use the fundamental frequency ω0 = 0.014 a.u., lattice con-
stant a = 5.32 a.u. and F0 = 0.04 a.u. The field strength is
made artificially strong for illustrative purposes.

k and t′ will yield,

jer(ω) =
∑

tb

Q(tb)

∫ ∞

−∞

dteiωte−iS(tb,t) + c.c., (9)

where tb is the birth time, Q is the pre-exponential fac-

tor, S(tb, t) =
∫ t

tb
εg[A(t

′′) − A(tb)]dt
′′ and A(t) is the

vector potential with dA/dt = −F (t). Here we are using
the saddle point condition k = A(t) − A(tb) derived in
Ref. 9. Further, for the purpose of our analysis we have
set T2 = ∞. Moreover, to simplify our expressions we
will use the tight binding approximation for the bandgap
εg = Eg + ∆ {1− cos[a(A(t′′)−A(tb))]} where a is the
lattice constant. Looking at a single birth time and ing-
noring the pre-expontential factor, we can then write the
polarization as,

p̃tb(ω) ∝

∫ ∞

−∞

eiωte−i(Eg+∆)(t−tb)ei∆Ig(tb,t)dt (10)

where Ig(tb, t) =
∫ t

tb
cos[a(A(t′′) − A(tb))]dt

′′. In Fig. 4

the laser field F , εg, and Ig are plotted as a function of
time. Note that εg is a rapidly oscillating function so
that the integral Ig in the exponent has to be calculated
with the saddle point method. This is fundamentally
different from the usual use of saddle point integration for
HHG, which is applied to the integral over the exponent,
∫

dt′ exp(iS(t′, t)).
Defining the phase term in Ig(tb, t) as φ(tb, t

′′) =
a(A(t′′)−A(tb)) at the saddle point ts we get the condi-
tion,

dφ

dt′′

∣

∣

∣

∣

t′′=ts

= −aF (ts) = 0. (11)

This implies that the saddle points occur at the nodal
points of the field (when the vector potential is at a max-
imum); this can be seen in Fig. 4(b). That is, the saddle
points are given by ts = nπ/ω0, where ω0 is the funda-
mental frequency of the driving field and n ∈ Z. Thus, at
the saddle point ts we have φ(tb, ts) = a(A(ts) − A(tb))

and φ′′(tb, ts) = −aḞ (ts).
In the neighbourhood of a saddle point ts we then have

the integral,

I(s)g ≈

∫ t−ts

tb−ts

cos

[

φ(tb, ts) +
1

2
φ′′(tb, ts)τ

2

]

dτ . (12)

Letting φs = φ(tb, ts) and β =
√

aḞ (ts)/2, Eq. (12) can

be written as,

I(s)g ≈ β−1

∫ β(t−ts)

β(tb−ts)

cos
(

φs − τ2
)

dτ . (13)

This can be further simplified using the trigonometric
identity cos(u− v) = cosu cos v + sinu sin v, becoming,

I(s)g ≈β−1 {cos(φs)C [β(tb−ts), β(t−ts)]

+ sin(φs)G [β(tb−ts), β(t−ts)]} . (14)

The functions C and G are given by,

C [β(tb−ts), β(t−ts)] =

∫ β(t−ts)

β(tb−ts)

cos(τ2)dτ (15a)

G [β(tb−ts), β(t−ts)] =

∫ β(t−ts)

β(tb−ts)

sin(τ2)dτ , (15b)

where C(0, x) and G(0, x) are Fresnel integrals. Perform-
ing a Taylor expansion of the above expressions yields,

C [β(tb−ts), β(t−ts)] = τ −
τ5

10
+ . . .

∣

∣

∣

β(t−ts)

β(tb−ts)
(16a)

G [β(tb−ts), β(t−ts)] =
τ3

3
−

τ7

30
+ . . .

∣

∣

∣

β(t−ts)

β(tb−ts)
(16b)

Only the function C has a linear term; this can be ob-
served in Fig. 4(c). Thus, retaining only the linear term
gives,

I(s)g ≈ cos(φs)(t− tb). (17)

As saddle point integration was performed on the in-
tegral in the exponent, the sum over individual saddle
points in the exponent is equivalent to a product of ex-
ponents, each belonging to an individual saddle point
contribution. As a result, the Fourier integral for the
polarization becomes

p̃tb(ω) ∝
∏

ts

∫ ∞

−∞

e−i(Eg+∆−ω)(t−tb)ei∆I(s)
g dt. (18)

Inserting Eq. (17) into the above expression and integrat-
ing over t results in a delta function yielding the relation,

ω = Eg +∆ {1− cos(φs)} . (19)
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Maximum ionization occurs at field peaks for which
A(tb) = 0. Then, ω becomes maximum when the last
term in Eq. (19), cos[aA(ts)] = −1. That is fulfilled when
the laser is strong enough so that the electron reaches the
edge of the Brillouin zone during its excursion, i.e. for
F0/ω0 ≥ π/a, or for F0 ≥ Fb with Fb = πω0/a the Bloch
field strength. For our system with a = 5.32 a.u. and
ω0 = 0.014 a.u. we have Fb ≈ 0.008 a.u. As a result,
for F = Fb a single saddle point can produce a harmonic
with cutoff equal to the fundamental plateau.
This implies that in Eq. 18 we have a cascaded non-

linearity, the Fourier transform of a product of functions
each having the possibility to produce a spectral range
equal to the fundamental plateau. Put in another way,
the electron can only collect the bandgap energy. How-
ever, it can collect this energy at each nodal point of the
laser field in a way that emission at nodal points act as
a cascaded nonlinearity. The cascaded nature of the pro-
cess allows the generation of harmonics up to multiples of
the fundamental cutoff. However, as the efficiency goes
with the power of the number of saddle points contribut-
ing to the cascaded nonlinearity, there is a rapid drop in
efficiency, as can be seen in Fig. 2.

V. EFFECT OF THE SECOND CONDUCTION

BAND

Finally, we will investigate the effect of including a
second conduction band into our model as described in
Sec. III A.
Figure 5(a) shows a comparison of the two-band (red)

and three-band (green) models for ZnO for F0 = 0.01
a.u. Here it can be seen that the the addition of the
second conduction band has little effect on the overall
harmonic spectrum. Further, we have investigated the
influence of the shape of the second conduction band on
HHG via BOs by altering its width, the bandgap between
the two conduction bands at the Brillouin zone, and by
flipping the band at the Γ-point, thus turning it from
valley to peak; only the bandgap seems to have a sig-
nificant effect on the spectrum. Increasing the bandgap
between the conduction bands at the Brillouin zone edge
results in little change of the three-band spectrum. How-
ever, reducing it from 1 eV (ZnO) to 0.75 eV results in
a significant enhancement of the second plateau, see the
purple line in Fig. 5(a). This suggests that there is the
possibility to extend HHG to higher frequencies by using
materials with a reduced bandgap at the Brillouin zone
edge. The nature of this enhancement is subject to future
research.
In Fig. 5(b), the time-frequency analysis centered at

the first cutoff of the (green) three-band spectrum in 5(a)
is shown; recollision is still the dominant mechanism for
harmonics below the maximum bandgap. The time fre-
quency analysis of the (purple) spectrum in 5(a) for the
reduced bandgap shows that recollision still plays a dom-
inant role below the maximum bandgap. However, the

FIG. 5: (a) Comparison of the harmonic spectra at F0 = 0.01
a.u. for the two-band (red) and three-band (green) ZnO mod-
els. In addition a harmonic spectrum with a reduced bandgap
between the conduction bands at the Brillouin zone edge is
shown (purple). (b) Time-frequency analysis of the first cutoff
for the three-band model. (c) Time-frequency analysis of the
first cutoff for the three-band model with reduced bandgap be-
tween conduction bands at the Brillouin zone edge. The white
lines are the results for the first two electron-hole recollisions
from the semiclassical trajectory analysis for the two-band
model. The color scale is logarithmic.

BO contribution to the first plateau at field zero times
0.5 and 1 has also become visible; see Fig. 5(c). This
demonstrates that the BO mechanism remains intact in
multi-band systems and is responsible for the enhanced
second plateau.

VI. CONCLUSION

We have investigated theoretically HHG in semicon-
ductors for mid-ir laser fields strong enough to drive the
electron-hole pair beyond the first Brillioun zone. So far
the generation of radiation via Bloch oscillations has been
viewed as an intraband mechanism, where radiation is
created by the nonlinear motion of electrons and holes in
their respective bands. Here we have identified HHG via
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interband Bloch oscillations, which is different in nature
as it relies on the build-up of polarization between elec-
trons and holes. Building on our previous work, we have
shown that, even in the Bloch oscillation limit, recollison
remains the dominant mechanism for HHG up to the first
cutoff.
The harmonics generated by interband Bloch oscilla-

tions appear to be too weak to be observed experimen-
tally by current ZnO experiments. However, in combina-
tion with higher bands, interband Bloch oscillations ap-
pear to be a promising mechanism to push HHG in solids
towards shorter wavelengths. In this spectral region, ma-

terials typically become more transparent than in the
ultraviolet, effectively enhancing interband Bloch oscil-
lations. For example, in Silicon the absorption length
increases from a minimum of 7 nm at ∼ 5.6 eV to 66
nm at ∼ 31 eV [26] — an increase of 4 orders of magni-
tude in transmission at such distance from the surface.
It is conceivable to engineer materials that are capable
of exploiting interband Bloch oscillations to increase the
harmonic efficiency of harmonics beyond the first cutoff.
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