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Intercellular Communication as a Series of

Narrow Escape Problems
Aoife Hughes , Christine Faulkner , Richard J. Morris , and Melissa Tomkins

Abstract—Molecular communication is key for multicellular
organisms. In plants, the exchange of nutrients and signals
between cells is facilitated by tunnels called plasmodesmata. Such
transport processes in complex geometries can be simulated using
particle-based approaches, these, however, are computationally
expensive. Here, we evaluate the narrow escape problem as a
framework for describing intercellular transport. We introduce
a volumetric adjustment factor for estimating escape times from
non-spherical geometries. We validate this approximation against
full 3D stochastic simulations and provide results for a range of
cell sizes and diffusivities. We discuss how this approach can
be extended using recent results on multiple trap problems to
account for different plasmodesmata distributions with varying
apertures.

Index Terms—Narrow escape problem, diffusion, sig-
nalling, intercellular communication, plasmodesmata, symplastic
transport.

I. INTRODUCTION

D
EFINING features of higher organisms include multi-

cellularity, cell differentiation and tissue specificity, all

of which rely on communication and coordination between

cells [1]. Cells can communicate to one another using mechan-

ical, electrical and chemical signals [2]. Whilst plants employ

multiple instantiations of all these signalling strategies to

launch appropriate responses to changes in their environment

and to coordinate growth, many key processes are governed

by the exchange of chemical species (ions, hormones, pep-

tides, short RNA, and macromolecules such as proteins and

mRNA [3]), thus placing molecular communication [4]–[7] at

the core of plant development.

Plant cells are connected by channels called plasmod-

esmata that link the cytoplasm from neighboring cells to

form the symplast [8], creating a prime route for signalling

molecules (Fig. 1 A). The flux of signalling molecules can
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Fig. 1. Cell-to-cell molecular communication can be viewed a series of nar-
row escape problems. (A) Plant cells are complex systems that are surrounded
by cell walls. Plasmodesmata allow for the movement of molecules between
cells. Individual cells can be idealised as a volume of reflecting (plasma
membrane) and non-reflecting (plasmodesmata) regions (B). Narrow escape
solutions are calculated for radii of a sphere and escape pore(s), denoted as
R and r respectively. Solutions are provided for both a single escape and
multiple, uniformly distributed escape pores (C).

be influenced by changes to plasmodesmatal density and

importantly by adjusting plasmodesmatal aperture in response

to many internal and external cues [9]. A wide range of

processes have been shown to depend on symplastic com-

munication [10]. An important problem in plant biology is,

therefore, to understand how molecular communication is

regulated by plasmodesmata.

The symplastic mediated transfer of molecules between

cells is largely determined by size and density of plasmod-

esmata and the diffusivity of the molecules. The aperture

of individual plasmodesmata may be altered by the deposi-

tion or removal of callose in the cell wall [11]. This process

changes the size and number of particles that may be trans-

ported, often described by the size exclusion limit [8]. Methods

for quantifying the parameters of plasmodesmata density, size

and aperture are costly and experimentally labour-intense. As

a result in recent years there has been an increased interest
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in the modelling of intercellular transport [12]–[14]. Despite

metabolically active plant cells typically undergoing cytoplas-

mic streaming and the fact that the cytoplasm is a highly

crowded environment that is far from the conditions of a dilute

solution, movement of several chemical species within cells

has been shown to be captured well by a diffusion model.

Models of cell-to-cell movement use diffusion within each

cell coupled with flux through the wall as a function of con-

centration differences on either side of the plasmodesmata.

The behavior of such models can be summarised using an

effective diffusivity for cell-to-cell transport that takes cell wall

permeabilities into account.

Our approach builds on recent results from statistical

mechanics to describe molecular communication between

neighboring cells. An occurring task of statistical physics is

to evaluate how long a diffusing particle will take to find a

defined position on the boundary of an otherwise reflecting

surface. This is known as the narrow escape problem for which

analytical solutions have been derived for simple geometries

in two and three dimensions [15]–[17]. This approach has

previously been applied by others to problems in biology

and chemistry that involve microdomains, such as calcium

dynamics in dendritic spines, chemical reactions, and vesicle

trafficking [15], [17]. For an overview of related problems the

reader is referred to these excellent reviews [17], [18].

For a three-dimensional sphere of volume V with a non-

reflecting area of radius r, the mean narrow escape time, τ , is

given by

τ =
V

4rD
, (1)

where D is the diffusion constant of the particle within the

volume [15]. These results have recently been extended to

cases with more than one escape region [16]. For a three-

dimensional unit sphere with N uniformly distributed escape

regions of equal radius, rpd, the mean narrow escape time can

be approximated by

τ =
f (rpd)

3Dκ(rpd)
+

1

15D
, (2)

for N ≫ 1 and rpd ≪ 1, in which the functions f (rpd) and

κ(rpd) have been defined as

f (rpd) = r −
r2
pd

π
log rpd +

r2
pd

π
log 2 (3)

κ(rpd) =
Nr2

pd

π − 2rpd

√
N

. (4)

Note that for Eqs. (3)-(4), quantities that include length-

scales (such as radii, areas, volumes, diffusion constants) must

be scaled accordingly for problems with spheres of radii

different from one.

Such equations have the advantage of being simple and fast,

yet the extension to more complex geometries is still under

development. Here, we investigate how equations based on the

spherical geometry shown in Fig. 1 C can be used to describe

the molecular communication between plant cells. We first

compare full 3D stochastic simulations of diffusion [19] to the

Fig. 2. The analytical approximation of the mean narrow escape time cap-

tures the behavior computed from random walk simulations. V = 1 µm3,

r = 0.1 µm2, D = 400 µm2/s results in τ = 0.00625 s, standard error
is given for simulations. (A) The cumulative mean of the escape time con-
verges after about 500 simulations. (B) The evaluation of different ∆t values
shows a good agreement between the simulation and the analytical solution

for ∆t ≤ 1.0 × 10−9 s.

mean narrow escape time equation for a single escape region

on a sphere, Eq. (1), and then explore deviations from a sphere.

We introduce a volumetric adjustment factor to approximate

the mean narrow escape time for shapes more representative

of plant cells. Finally, we explore how changing the density

of plasmodesmata, under the constraint of total plasmodes-

mata area remaining constant, influences the estimation of the

mean narrow escape time. We briefly outline ongoing work

and future directions.

II. RESULTS

A. Analytical Approximations for the Mean Narrow Escape

Time Agree With Estimates From Large-Scale Random Walk

Simulations

We first set up random walk simulations in order to com-

pare to the equation for the mean narrow escape time. For

random walk simulations, the step size, ∆x , needs to be care-

fully matched to the time step and the diffusion constant, D,

following [20] we used 〈∆x 〉2 = 6D∆t . Small time steps

lead to more accurate results at the cost of longer simulation

times. We monitored the convergence as a function of ∆t and

based on our results, we chose ∆t = 10−9 s for all subsequent

simulations. As expected, for a particle diffusing in a sphere

with a single exit, averaging the escape time over an increas-

ing number of simulations converges towards the analytical

approximation (Figs. 2 A–B).

B. An Effective Diffusion Constant Can Be Used to

Summarise the Behavior Predicted by the Narrow

Escape Solutions

Plasmodesmata allow for the flux of molecules between

cells through cell walls. The distribution and geometry of plas-

modesmata can be described by the cell wall permeability,

which can result in a significant change to the movement of

the molecule. For the 1D case this change in movement can

be captured by an effective diffusion constant Deff ,

Deff =
Dql

D + ql
, (5)
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TABLE I
PARAMETERS USED IN NARROW ESCAPE SIMULATIONS

AND EFFECTIVE DIFFUSION CALCULATIONS

in which q the permeability of the cell wall and l the cell

length [12]–[14].

We were interested in comparing the time to diffuse a given

distance with the mean narrow escape time and to estimate

an effective diffusion constant that captures the flux between

cells. In the following, we ignore organelles and assume the

full plant cell volume is available for diffusion. For a plant

cell of radius 20 µm, a molecule with a diffusion constant of

220 µm2/s would take approximately t = R2/(6D) ≈ 0.3 s

to diffuse from the centre to the cell wall. For comparison, the

mean narrow escape time with only one exit (all parameters

are listed in Table I), Eq. (1), leads to τ1 ≈ 33 s. A multi-

escape geometry with N exits, Eq. (2), with the same total exit

area results in mean narrow escape time of τN ≈ 0.85 s. Using

the mean narrow escape time, τ , and assuming the process can

still be described by diffusion, we can compute an effective

diffusion constant from Dτ,eff = R2/(6τ). Using the value

of τN = 0.85 s results in an effective diffusion constant of

Dτ,eff = 78.43 µm2/s. Using the 1D approximation and the

values in Table I results in Deff = 104.76 µm2/s and a time

of ≈ 0.64 s to diffuse through the cell and then through the

cell wall. Equating Dτ,eff with Deff thus allows us to compute

the cell wall permeability, q, for a cell with N plasmodesmata,

each with a defined aperture.

Changes to plasmodesmata apertures in response to envi-

ronmental cues can significantly impact intercellular flux [21].

Using Eq. (2), we evaluated a realistic range of plasmodesmata

densities and apertures [13] and find that the mean narrow

escape time is within the range of 0.73 to 1.36 s for a cell of

length 40 µm under non-stressed conditions (Fig. 3). This time

range is likely to increase significantly as plasmodesmata open

or close further in response to environmental stress. Obtaining

direct measurements of plasmodesmata geometry is experi-

mentally challenging, however, measuring the flux between

cells under different conditions would allow us to infer such

changes in plasmodesmatal aperture by fitting the equations

to experimental observations.

C. An Adjusted Cell Volume Can Be Used to Accurately

Reproduce the Mean Narrow Escape Time for Complex

Geometries

The mean narrow escape time equations used above were

derived for a sphere. Solutions for more complex shapes are

generally non-trivial to find and in particular for typical plant

Fig. 3. Changes to plasmodesmata aperture impact on the mean narrow
escape time. Plasmodesmata dynamically change their aperture to modulate
cell-to-cell transport. The observed variation in radius of an individual plas-
modesmata pore ranges between 0.015 µm and 0.03 µm (yellow shaded

region). Estimates of the density of plasmodesmata vary between 0.2 µm−2

(red line) and 0.85 µm−2 (blue line), with a mean of 0.4 µm−2 (purple
line).

Fig. 4. Cell volume is a key determinant of the escape time. Simulation
results from two different cell shapes (cube - purple, sphere - blue) as a
function of volume V (A) and diffusion constant D (B) show a good fit with
the analytical solution for a sphere of the same volume (red).

cell shapes analytical solutions are unlikely to exist. As a first

step towards investigating deviations from a sphere, we per-

formed random walk simulations with cubic domains. For this

highly symmetric case, we find that cells of similar volume

give rise to similar escape times (Fig. 4 A). As expected, this

observation was consistent over different diffusion constants

(Figs. 4 A–B). So for cubic cells, the mean narrow escape

time solution for a sphere with the same volume as the cubic

cell is a good approximation.

We next compared the narrow escape solutions with random

walk simulations in spheroid domains with different degrees

of elongation in the z-plane. All spheroids had a constant vol-

ume of 1 µm3, and the changes in their shape were quantified

by the ratio of the surface areas of the smallest sphere to

enclose the spheroid and the largest to fit within it (Aouter

and Ainner, respectively). Unsurprisingly, we found that more

extreme shapes deviate increasingly from the equation for the

spherical case (Fig. 5 A). Thus, using the actual cell volume
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Fig. 5. Simulations show that mean narrow escape time estimates devi-
ate as cells become less spherical (A). A volumetric correction factor for
non-spherical shapes is derived by calculating the ratio of the volume that
reproduces the mean narrow escape time (Vcorrect) to the real volume of
the cell (Vreal) as a function of the ratio of areas for the smallest containing
sphere (Aouter) and the largest sphere which fits within the shape (Ainner)
(B). Using this adjusted volume (Vadjusted = gV Vreal, where gV is the
volumetric correction factor from (B)) the analytical solutions agree well with
simulated escape time estimates (C).

in the above narrow escape equations would lead to inaccurate

escape time estimates the more the cell deviates from a sphere.

As any escape time can be viewed as arising from a sphere,

we asked what the volume of that sphere would have to have

been to reproduce the data we generated for different cell

shapes. We denote the actual cell volume by Vreal and the

volume that gives the correct mean narrow escape time as

Vcorrect. We describe the shape of each cell by the largest

sphere we could fit within the cell and smallest sphere we

could fit around the cell, which we characterise by the area

ratio, Aouter/Ainner. Plotting the ratio of Vcorrect/Vreal over

Aouter/Ainner, (Fig. 5 B), allows us to estimate a volumetric

adjustment factor that when multiplied by the actual cell vol-

ume provides an accurate estimate of the mean narrow escape

time for a spherical geometry. Escape time simulations for

shapes not used in the derivation of the correction factor (Fig. 5

B) demonstrates we can achieve a good agreement between

simulations and the mean narrow escape time equations using

the adjusted volume (Fig. 5 C).

III. CONCLUSION

Molecular communication governs plant responses to the

environment, growth and development. An understanding of

the processes and parameters that determine these signaling

events will therefore contribute to addressing important chal-

lenges in plant biology. There is currently little consensus

regarding the most appropriate methods to represent inter-

cellular communication networks in plants [12], [22]. In this

contribution we explored the use of previously derived ana-

lytical solutions of the narrow escape problem as a potential

method for modelling molecular communication in plants. As

has previously been demonstrated [15], [16], [23], we found

an excellent agreement between 3D stochastic simulations and

mean narrow escape equations for diffusing particles within

a sphere. We then show how cell wall permeability and an

effective diffusion constant can be computed from mean nar-

row escape solutions, allowing for the comparability with other

approaches. Furthermore, we explore the impact of plasmades-

mal densities and apertures on the molecular movement. To

evaluate the potential of this approach for more realistic cell

geometries, we explored different shapes. Unsurprisingly, this

approximation becomes increasingly less accurate the more the

shapes deviate from a sphere. Using a simple shape metric we

empirically derived a volumetric adjustment factor that allows

us to obtain accurate estimates of the mean narrow escape time

for non-spherical cells. How well the equations can represent

realistic plant cell shapes remains to be shown. However, from

the analysis over multiple cell shapes we might expect that

while each cell may be poorly described by a sphere, molecu-

lar movement over several cells within a tissue may on average

still be well represented by such an approach if the volumes

of the sphere are adjusted accordingly. As the volume is a

key determinant of the mean narrow escape time, improving

our estimates of the volume available for diffusion within a

cell could be important (the cytoplasm is typically less than

10% of the total volume). Other key parameters include plas-

modesmata density and aperture, both of which are regulated

throughout development. Future work will investigate different

plasmodesmata arrangements and aperture sizes on molecu-

lar transport for more realistic cell geometries and multiple

cells. Inferring changes to either of these key plasmodesmata

parameters (under the assumption that the other is known) for

different perturbations to experimental conditions will shed

light on the extent of plasmodesmatal regulation and its impact

of cell-to-cell communication.
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