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Abstract

Analyses of forecasting that assume a constant, time-invariant data generating process (DGP),
and so implicitly rule out structural change or regime shifts in the economy, ignore an aspect of the
real world responsible for some of the more dramatic historical episodes of predictive failure. Some
models may offer greater protection against unforeseen structural breaks than others, and various
tricks may be employed to robustify forecasts to change. We show that in certain states of nature,
vector autoregressions in the differences of the variables(in the spirit of Box-Jenkins time-series
modelling), can outperform vector ‘equilibrium-correction’ mechanisms. However, appropriate in-
tercept corrections can enhance the performance of the latter, albeit that reductions in forecast bias
may only be achieved at the cost of inflated forecast error variances.

First draft Febuary 1995. Revised May 1996.

1 Introduction

In recent work (Clements and Hendry, 1994, 1995b), we have sought to establish a theory of economic
forecasting that captures three aspects of the real world inwhich the forecasting venture is to be under-
taken. First, that the data generation process (DGP) is non-stationary due to unit roots; secondly, that it
is susceptible to structural breaks; and thirdly, that the forecasting model typically differs from the (un-
known) DGP. These features provide a rationale for the commonplace practice of making adjustments or
‘intercept corrections’ to purely model-based forecasts (see Hendry and Clements, 1994a, 1994b).1 A
Monte Carlo study showed that forecasts generated from vector autoregressions in differences (DVARs)
may be more robust than models in levels to certain forms of structural change, but that intercept cor-
rections may help vector ‘equilibrium-correction’ mechanisms (VECMs) to match the performance of
DVARs.2

An interesting example of the benefit of ignoring long-run information for forecasting would appear
to be Mizon (1995), who shows that only aDVAR has a satisfactory forecasting performance in the
context of modelling UK wages and prices over the period 1966–1993. Models such asVECMs, which
include long-run information, tend to fail badly. The models are estimated on data up to Mrs. Thatcher

∗Financial support from the U.K. Economic and Social Research Council under grant L116251015 is gratefully acknowl-
edged. The computations were performed using PcFiml version 8 (Doornik and Hendry, 1994) and the Gauss programming
language, Aptech Systems, Inc., Washington. Helpful comments were received from the editors, Frank Diebold and Mark
Watson, and numerous seminar participants.

1Recognition of the potential for such adjustments has a longlineage: see, for example, Theil (1961) and Klein (1971).
2Following Davidson, Hendry, Srba and Yeo (1978), these terms have been known as ‘error-corrections’. However, they

may play the opposite role when the equilibrium changes by ‘correcting’ to an inappropriate equilibrium. Hence the change
in terminology, although the acronym is unchanged.
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coming to power (1979:2), and then used to forecast the behaviour of wages, prices, and unemploy-
ment during the 1980s. There is anecdotal evidence of structural change in the 1980s in response to
the dislocating effect of the 1979–81 recession, and the change in government economic policies may
have altered the long-run relationship between these threemacro aggregates. Thus, models which in-
clude long-run information tend to ‘error-correct’ on the basis of an out-dated structure, and manifest
significant forecast errors, while models that eschew such information perform reasonably well.

The purpose of this paper is two-fold. First, we deduce analytically the classes of structural breaks
for which, conditional on the break having occurred at the time of forecasting, time-series models in dif-
ferences should outperform econometric models. We then look at the usefulness of intercept corrections
for the class of breaks that affect the deterministic variables (constant and linear trend), and derive ex-
pressions for the forecast bias and error variances, allowing an assessment of intercept-correcting strate-
gies in terms of squared-error loss. Secondly, we apply someof these correction strategies to economet-
ric models based on Mizon (1995), where wider classes of breaks than those we analyse analytically may
be important, to investigate their usefulness in practice.The three-variable system of wages, prices, and
unemployment is simpler than would be countenanced by the large-scale macro-econometric modelling
groups, but has the virtue of allowing a ‘statistical analysis’ of intercept corrections. Previous studies,
such as those carried out by the ESRC Macroeconomic Modelling Bureau at Warwick, have assessed
the impact of intercept corrections on actual forecasts of the main modelling teams (see, in particular,
Wallis and Whitley, 1991, and Turner, 1990), and have been confined to only a small number of fore-
casts (typically less than three). Our setup allows an assessment of the impact of intercept corrections
on forecast uncertainty using empirical mean-square forecast errors, taking account of their dependence
on the forecast horizon and on the transformation of the datafor which forecast accuracy is assessed.
We distinguish between1-step andh-steps ahead forecasting performance, given the lack of invariance
of mean-square forecast errors (MSFEs) to evaluating forecasts of levels versus changes (say), and the
likely poor discriminatory performance of evaluation in differences (see Clements and Hendry, 1993,
1995a).

Sections 2 and 3 derive analytical results on the forecast performance of theVECM andDVARmodels
when there are structural breaks, and on the impact of intercept correcting theVECM. Section 4 explains
the relevance of some of our recent work on forecast evaluation and multi-step forecasting for the present
analysis. Section 5 introduces the empirical example of Mizon (1995), and section 6 contains the results
of the empirical study of the efficacy of intercept corrections. Section 7 provides some concluding
remarks.

2 Forecasting under structural breaks

2.1 The data generation process

For illustrative purposes, we assume a linear, closed system so that all non-deterministic variables are
forecast within the system. The vector of alln variables is denoted bywt and the system is represented
by a first-orderVAR which includes a constant and a linear deterministic trend:

wt = τ 0 + τ 1t + Υwt−1 + νt (1)

whereνt ∼ INn (0,Ω). The system is assumed to be integrated, and to satisfyr < n cointegration
relations such that (see, for example, Johansen, 1988):

Υ = In +αβ′,
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whereα andβ aren× r matrices of rankr. Then (1) can be reparameterized as aVECM:

∆wt = τ 0 + τ 1t +αβ′
wt−1 + νt. (2)

The impact of the deterministic components on the series depends on the relationship betweenα
andτ 0, τ 1. Following Johansen (1994), decompose the2n parameters inτ 0 + τ 1t as:

τ 0 + τ 1t = α⊥ζ0 −αλ0 −αλ1t +α⊥ζ1t (3)

whereλi = − (α′α)−1
α′τ i (2r free parameters) andζi = (α′

⊥
α⊥)−1

α′

⊥
τ i (2 (n− r) free parame-

ters) whenα′α⊥ = 0. Thenαλi andα⊥ζi are orthogonal by construction. When thewt process does
not contain a quadratic trend,α⊥ζ1 = 0, andλ0, ζ0 andλ1 can all be varied freely. Thewt process
may still contain linear trends, which will also be a featureof the cointegrating vectors, as seems to be
the case in the empirical example. Thenαλ0 + αλ1t lies in the cointegration space, and (2) can be
written as:

∆wt = α⊥ζ0 +α
(
β′

wt−1 − λ0 − λ1t
)

+ νt. (4)

When the system grows at the (vector) rate:

E [∆wt] = γ (5)

from (4), we obtain:
αE
[
β′

wt−1

]
= γ −α⊥ζ0+α (λ0 + λ1t) . (6)

Whenβ′α is non-singular, as assumed throughout:

E
[
β′

wt−1

]
=
(
β′α

)−1
β′ (γ −α⊥ζ0) + λ0 + λ1t = ψ + λ0 + λ1t. (7)

Hence, in (4):
∆wt = α⊥ζ0 +αψ +α

(
β′

wt−1 −ψ − λ0 − λ1t
)

+ νt.

It is useful for subsequent calculations to introduce the idempotent matrixK = (In − α
(
β′α

)−1
β′)

such thatKα = 0, β′
K = 0, K

2 = K andΥK = K, implying thatKτ 0 = Kγ = Kα⊥ζ0 and
Kτ 1 = 0. The cost of orthogonality in (4) is that the cointegrating vectors are no longer deviations
about their means, so the ‘intercept’α⊥ζ0 is not the growth rateγ which can be expressed as:3

γ = α⊥ζ0 +αψ = Kα⊥ζ0 +α
(
β′α

)−1
λ1 (8)

since from (7) and (5):

∆E
[
β′

wt

]
= β′

E [∆wt] = λ1 so thatβ′γ = λ1. (9)

Consequently, we can rewrite theVECM as:

∆wt = γ +α
(
β′

wt−1 − µ0 − µ1t
)

+ νt (10)

whereµ0 = ψ + λ0 andµ1 = λ1 with:

ψ =
(
β′α

)−1
β′ (γ −α⊥ζ0) =

(
β′α

)−1 (
λ1 − β

′α⊥ζ0

)

3In previous work (eg. Clements and Hendry, 1995b, p.1005) with τ 1 = 0, we have used a simpler, non-orthogonal
decomposition ofτ 0. We are grateful to Bent Nielsen for bringing to our attention the problems with such an approach in the
presence of the linear trend term.
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Finally, aVAR in differences (DVAR) may be used, which within sample is mis-specified relative to
theVECM unlessr = 0. The simplest is:

∆wt = γ + ηt, (11)

so whenα = 0, theVECM andDVAR coincide. In practice, lagged∆wt may be used to approximate the
omitted cointegrating vectors, but we do not consider such amodel here as its behaviour under structural
breaks is rather complicated: Appendix I notes its derivation.

2.2 VECM forecast errors

We now consider dynamic forecasts and their errors when parameters are subject to change in the fore-
cast period. We draw on the analyses in Clements and Hendry (1994) and Hendry and Clements (1994b),
focusing on the bias and variance components. We also consider the implications of the deterministic
terms lying in the cointegrating space. For simplicity, we abstract from many of the potential sources of
forecast error discussed in those two papers. Thus, the forecast commences from correct initial condi-
tions (equal to the true value of the process,wT ), we assume that the model matches the DGP in-sample,
and we abstract from parameter estimation uncertainty, so that the forecast functions are based on the
true (but sample period) values of the process. The algebra represents a Monte Carlo where the same
in-sample value is used, but for different forecast values;to vary both and get the average outcome,
we must take expectations overwT . It is crucial how this is done relative to the structural change: (a)
change occurs atT + 1; (b) change occurred atT .

Under these assumptions, thej-step ahead forecasts for the levels of the process are givenby
ŵT+j = E[wT+j | wT ]:

ŵT+j = τ 0 + τ 1 (T + j) + ΥŵT+j−1 =

j−1∑

i=0

Υ
iτ (i) + Υ

j
wT for j = 1, . . . , h (12)

where we letτ 0 + τ 1(T + j− i) = τ (i) for notational convenience. The associated forecast errors are:

ν̂T+j = wT+j − ŵT+j.

We consider the situation where the system experiences a step change between the estimation and
forecast periods, such that(τ 0 : τ 1: Υ) changes to(τ ∗

0 : τ ∗
1 : Υ∗) overj = 1, . . . , h, but the variance,

autocorrelation, and distribution of the disturbance termremain unaltered. Thus, the data generated by
the process for the nexth periods is given by:

wT+j = τ ∗
0 + τ ∗

1 (T + j) + Υ
∗
wT+j−1 + νT+j

=

j−1∑

i=0

(Υ∗)i τ ∗ (i) +

j−1∑

i=0

(Υ∗)i νT+j−i + (Υ∗)j
wT .

(13)

Then, thej-step ahead forecast error can be written as:

ν̂T+j =

j−1∑

i=0

(Υ∗)i τ ∗ (i) +

j−1∑

i=0

(Υ∗)i
νT+j−i + (Υ∗)j wT −

j−1∑

i=0

Υ
iτ (i)−Υ

j
wT

=

(
j−1∑

i=0

(Υ∗)i τ ∗ (i)−

j−1∑

i=0

Υ
iτ (i)

)
+

j−1∑

i=0

(Υ∗)i νT+j−i +
(
(Υ∗)j −Υ

j
)
wT .

(14)
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The three components of forecast error are due to the changedintercepts and slope parameters; error
accumulation; and an interaction term occasioned by the change in the slope parameter which includes
the initial condition.

The expectation of thej-step forecast error conditional onwT is:

E [ν̂T+j | wT ] =

(
j−1∑

i=0

(Υ∗)i τ ∗ (i)−

j−1∑

i=0

Υ
iτ (i)

)

+
(
(Υ∗)j −Υ

j
)

wT (15)

so that the conditional forecast error variance is:

V [ν̂T+j | wT ] =

j−1∑

i=0

(Υ∗)i Ω (Υ∗)i′.

We now consider a number of special cases where only the impact of the deterministic components
changes. With the assumption thatΥ

∗ = Υ, we obtain (noting the dependence ofτ ∗ (i) onT + j):

E [ν̂T+j | wT ] =

j−1∑

i=0

Υ
i ([τ ∗

0 + τ ∗
1 (T + j − i)]− [τ 0 + τ 1 (T + j − i)])

=

j−1∑

i=0

Υ
i [(γ∗ − γ) +α (µ0 − µ

∗
0) +α (µ1 −µ

∗
1) (T + j − i)] .

(16)

The bias is increasing inj due to the first term in square brackets. The impacts of the second and
third terms eventually level off because:

lim
i→∞

Υ
i = In −α

(
β′α

)−1
β′ = K

andKα = 0. When the linear trend is absent and the constant term can be restricted to the cointegrating
space (ie.τ 1 = 0 andζ0 = 0, which impliesλ1 = 0 and thereforeµ1 = γ = 0) then only the second
term appears, and the bias isO(1) in j. The formulation in (16) assumes thatΥ, and therefore the
cointegrating space, remains unaltered. Moreover, the coefficient on the linear trend alters but still lies
in the cointegrating space. Otherwise, after the structural break,wt would be propelled by quadratic
trends.

The conditional forecast error variance is:

V [ν̂T+j | wT ] =

j−1∑

i=0

Υ
i
ΩΥ

i′ (17)

which isO(j).

2.3 DVAR forecast errors

Now, consider forecasts from a simplifiedDVAR. Forecasts from theDVAR for ∆wt are defined by
setting∆wT+j equal to the population growth rateγ:

∆w̃T+j = γ (18)

so thatj-step ahead forecasts of the level of the process are obtained by integrating (18) from the initial
conditionwT :

w̃T+j = w̃T+j−1 + γ = wT + jγ for j = 1, . . . , h. (19)
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When Υ is unchanged over the forecast period, the expected value ofthe conditionalj-step ahead
forecast error is:

E [ν̃T+j | wT ] =

j−1∑

i=0

Υ
i [τ ∗

0 + τ ∗

1 (T + j − i)]− jγ+
(
Υ

j − In

)
wT . (20)

The occurrence ofwT in (20) is awkward for comparisons with theVECM in (16). Thus, we average
overwT to give the unconditional biasEwT

[ν̃T+j]. SinceΥ = In +αβ′, for j > 0:

Υ
j =

(
In +αβ′

)j
= Υ

j−1
(
In +αβ′

)
= Υ

j−1 + Υ
j−1αβ′ = · · · = In +

j−1∑

i=0

Υ
iαβ′, (21)

so from (7) using:
(
Υ

j − In

)
=

j−1∑

i=0

Υ
iαβ′ .

= Ajαβ
′ (22)

we obtain:
EwT

[(
Υ

j − In

)
wT

]
= AjαEwT

[
β′

wT

]
= AjαfT (23)

wherefT = EwT

[
β′

wT

]
= µa

0 + β′γ
a (T + 1), say, where the values ofµa

0 andγa depend on the
regime. Substituting from (23) into (20):

EwT
[ν̃T+j ] =

j−1∑

i=0

Υ
i [γ∗ −αµ∗

0 −αµ
∗

1 (T + j − i)]− jγ + AjαfT . (24)

From (21), asΥi = In + Aiαβ
′:

Aj =

j−1∑

k=0

Υ
k =

j−1∑

k=0

(
In + Akαβ

′
)

= jIn +

(
j−1∑

k=0

Ak

)
αβ′ = jIn + Bjαβ

′. (25)

Thus from (24), sinceβ′γ = µ1 andβ′γ∗ = µ∗
1:

E [ν̃T+j ] = Ajγ
∗ −Ajαµ

∗
0 −Ajαβ

′γ
∗ (T + j) +

j−1∑

i=1

iΥiαβ′γ
∗ − jγ + AjαfT

= j (γ∗ − γ) + AjαfT −µ
∗
0 − β

′γ
∗
T +

(
j−1∑

i=1

iΥi − jAj + Bj

)

αβ′γ∗

= j (γ∗ − γ) + Ajα (µa
0 − µ

∗
0 − β

′ [γ∗ − γa] (T + 1)) + Cjαβ
′γ

∗

(26)

whereCj = (Dj + Bj − (j − 1)Aj) whenDj =
∑j−1

i=1
iΥi. However,Cjαβ

′ = 0 as follows. Since
Υ

j = In + Ajαβ
′ from (22), then:

jAjαβ
′ = jΥj − jIn,

and so eliminatingjIn using (25):

(Bj − jAj)αβ
′ = Aj − jΥj .

Also:

Dj =

j∑

i=1

iΥi − jΥj =

j∑

i=1

Υ
i − jΥj +

(
j−1∑

i=1

iΥi

)
Υ = AjΥ− jΥj + DjΥ.



7

SinceΥ = In +αβ′:
Djαβ

′ = jΥj −Aj −Ajαβ
′.

Combining these results:

Cjαβ
′ = (Dj + Bj − (j − 1)Aj)αβ

′ = jΥj −Aj −Ajαβ
′ + Aj − jΥj + Ajαβ

′ = 0. (27)

Thus:
E [ν̃T+j] = j (γ∗ − γ) + Ajα

(
[µa

0 − µ
∗

0]− β
′ [γ∗ − γa] (T + 1)

)
. (28)

In the same notation, theVECM results from (16) are:

E [ν̂T+j] = j (γ∗ − γ) + Ajα
(
[µ0 − µ

∗

0]− β
′ [γ∗ − γ] (T + 1)

)
. (29)

Thus, (29) and (28) coincide whenµa
0 = µ0, andγa = γ as will occur if either there is no regime shift,

or the shift occurs after the start of the forecast period.

2.4 Forecast biases under deterministic shifts

We now consider a number of interesting special cases of (28)and (29) which highlight the different
behaviour of theDVAR andVECM under regime changes. Note that whenγ∗ = γ, thenβ′γ

∗ = β′γ,
whereasγ∗ 6= γ does not necessarily entail thatβ′γ

∗ 6= β′γ. If we view (τ 0, τ 1) as the primary
parameters, then it is informative to map changes in these parameters, via the orthogonal decomosition
into (ζ0,λ0,λ1), to the parameterization in terms of(γ,µ0,µ1) that underpins (28) and (29). From
section 2.1 we can summarise the interdependencies as:γ (ζ0,λ1), µ0 (ζ0,λ0,λ1), µ1 (λ1) .

Case I τ ∗
0 = τ 0, τ ∗

1 = τ 1. Here, there is no structural change,µa
0 = µ0 andγa = γ and so:

E [ν̂T+j] = E [ν̃T+j ] = 0. (30)

Thus, the forecast error biases in theDVAR andVECM coincide when there is no regime change,
even when theDVAR omits an ECM which includes a non-zero trend.

Case II τ ∗
0 6= τ 0, τ ∗

1 = τ 1, butζ∗0 = ζ0. Thenγ∗ = γ; µ∗
0 6= µ0.

E [ν̂T+j ] = Ajα (µ0 − µ
∗

0) (31)

E [ν̃T+j] = Ajα (µa
0 − µ

∗

0) . (32)

The biases are equal ifµa
0 = µ0; i.e. the shock is after the initial condition. However,E [ν̃T+j ] =

0 whenµa
0 = µ∗

0, and hence theDVAR wins uniformly if the shock has occurred prior to the
commencement of forecasting. In this example the componentof the constant term orthogonal to
α is unchanged so that the growth rate is unaffected.

Case III τ ∗
0 6= τ 0, τ ∗

1 = τ 1 (as in Case II), but nowλ∗

0 = λ0 which impliesζ∗0 6= ζ0 and therefore
µ∗

0 6= µ0 andγ∗ 6= γ. However,β′γ
∗ = β′γ holds so that:

E [ν̂T+j] = j (γ∗ − γ) + Ajα (µ0 − µ
∗

0) (33)

E [ν̃T+j] = j (γ∗ − γ) + Ajα (µa
0 − µ

∗

0) . (34)

sinceµ1 depends only onτ 1. Consequently, the errors coincide whenµa
0 = µ0, but differ when

µa
0 = µ∗

0, though it is unclear whether the terms augment or attenuateeach other.
Case IV τ ∗

0 = τ 0, τ ∗
1 6= τ 1. All of µ0, µ1 andγ change. Ifβ′γ

∗ 6= β′γ then we have (28) and (29), and
otherwise the biases of Case III.
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Alternatively, the difference in the forecast bias betweentheDVAR and theVECM is given by:

dj = E [ν̃T+j ]− E [ν̂T+j ] = Ajα
(
[µ0 − µ

a
0] + β

′ [γ − γa] (T + 1)
)
. (35)

This is zero whenµa
0 = µ0 andγa = γ, but otherwise enhances or attenuates the existing biases,

generally inducing a smaller forecast error bias in theDVAR when there are unmodelled regime shifts.
An alternative representation is in terms of the changes between successive forecast errors. For the

VECM, from (28) and that equation lagged:

E [ν̂T+j]− E [ν̂T+j−1] = (γ∗ − γ) + Υ
j−1α

(
[µ0 − µ

∗

0] + β
′ [γ − γ∗] (T + 1)

)
(36)

sinceAj − Aj−1 = Υ
j−1. The first term is constant, and hence can be removed by an intercept

correction once the regime shift has occurred; the second tends to zero asj increases since:

Υ
j−1α→ Kα = 0.

The results for theDVAR are similar:

E [ν̃T+j]− E [ν̃T+j−1] = (γ∗ − γ) + Υ
j−1α

(
[µa

0 − µ
∗

0] + β
′ [γa − γ∗] (T + 1)

)
. (37)

Whenµa
0 = µ∗

0 andβ′γ
a = β′γ

∗, then only a constant error ensues; whenµa
0 = µ0 andβ′γ

a = β′γ,
the outcome coincides with theVECM; and otherwise, it lies in between.

3 Intercept corrections

We can show that if there is a one-off change in the value of thedeterministic parametersτ 0 in the
DGP, which has occurred prior to the period on which the forecasts are conditioned, then the optimal
(in the sense of yielding unbiased forecasts) intercept correction for theVECM is simply to add in the
periodT residual each step ahead. Below we denote forecasts generated by this method bẏwT+h. We
also consider some other general strategies for intercept correcting, which are applied in the empirical
work. In practice of course, the circumstances under which theẇT+h strategy is optimal are unlikely to
hold exactly: theτ 1 parameters may shift as well;τ 0 may change a number of times over the forecast
period; the slope parameters may also alter, etc. Thus it maybe of interest empirically to compare
the performance of other adjustment schemes, and in this section we consider what can be deduced
analytically about their properties.

We may also wish to base the adjustment on some average of recent errors rather than simply the
observed model error at the forecast origin.

Below, we assume that the periodT residual embodies the change in the process, and the discussion
is in terms of theVECM even though there may also be scope for adjustments to theDVAR. Assuming
thatΥ does not change, the periodT residual is given by:

ν̂T = wT − ŵT = (τ ∗

0 − τ 0) + (τ ∗

1 − τ 1)T + νT . (38)

We now consider a number of options for forecastingh-steps ahead. The intercept correction (IC)
can be held constant over the forecast period, so that the period T error is added in at each step ahead.
This is perhaps the most commonly-used form of intercept correction, where the adjustment over the
future is held constant at an average of the most recent errors (in our example, just the periodT error).
This amounts to solving:

ẇT+h = τ 0 + τ 1 (T + h) + ΥẇT+h−1 + ν̂T (39)
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whereẇT = wT , so that:

ẇT+h = ŵT+h +

h−1∑

i=0

Υ
iν̂T = ŵT+h + Ahν̂T . (40)

Secondly, only adjust the1-step forecast:

−→
w T+1 = ẇT+1

...
...

−→
w T+h = τ 0 + τ 1 (T + h) + Υ

−→
w T+h−1

(41)

which implies that:
−→
w T+h = ŵT+h + Υ

h−1ν̂T . (42)

Thirdly, one may adjust theh-step forecast by the full amount of the periodT error:

←→
w T+h = ŵT+h + ν̂T . (43)

Finally, tailing-off the adjustment induces:

wT+h = τ + ΥwT+h−1 + H
h−1ν̂T (44)

so that:

wT+h = ŵT+h +

h−1∑

i=0

Υ
i
H

h−1−iν̂T

whereH may be diagonal, say, with typical element|hii| < 1.

3.1 Biases

It is straightforward to derive expressions for the biases associated with the above forecasts, since in
each case the forecasts are written as the conditional expectation (ŵT+h) plus another term, and the
conditional expectation forecast biases are given by (16) or (29). For the first strategy, from (38):

E [ν̂T ] = (τ ∗

0 − τ 0) + (τ ∗

1 − τ 1)T,

and noting that the conditional and unconditional (overwT ) expectations coincide here, then in the
(τ 0, τ 1) notation:

E [ν̇T+h | wT ] = E [ν̂T+h −Ahν̂T ] = [hAh −Dh] (τ ∗

1 − τ 1) . (45)

As claimed above, the constant-adjustment strategy yieldsunbiased forecasts whenτ ∗
1 = τ 1.

In terms of the notation of section 2.2:

Ahν̂T = Ah (γ∗ − γ)−Ahα (µ∗

0 − µ0)−Ahαβ
′ (γ∗ − γ) T,

and takingE [ν̂T+h] from (29) we obtain:

E [ν̇T+h | wT ] =
(
h−Ah −Ahαβ

′
)
(γ∗ − γ) = − (Ah + Bh)αβ′ (γ∗ − γ) ,

which is zero when the time trend is absent sinceβ′ (γ∗ − γ) = µ∗
1 −µ1 = 0.
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Expressions for the biases resulting from the other adjustment schemes are:

E [−→ν T+h | wT ] = E [ν̂T+h − (Ah −Ah−1) ν̂T ]

so:
E [−→ν T+h | wT ] = h (γ∗ − γ)−Ah−1

[
α (µ∗

0 − µ0) +αβ′ (γ∗ − γ) (T + 1)
]

− (Ah −Ah−1)
[
In +αβ′

]
(γ∗ − γ)

(46)

and:

E

[
←→ν T+h | wT

]
= h (γ∗ − γ)− (Ah − In)

[
α (µ∗

0 − µ0) +αβ′ (γ∗ − γ) (T + 1)
]

−
[
In +αβ′

]
(γ∗ − γ) .

(47)

Finally:

E [νT+h | wT ] = h (γ∗ − γ)−

(
h−1∑

i=0

Υ
i
(
In −H

h−1−i
)
)
[
α (µ∗

0 − µ0) +αβ′ (γ∗ − γ) (T + 1)
]

−

h−1∑

i=0

Υ
i
H

h−1−i
[
In +αβ′

]
(γ∗ − γ) .

(48)
When the time trend is absent, the biases with ICs become:

E [−→ν T+h | wT ] = h (γ∗ − γ)−Ah−1 [α (µ∗
0 − µ0)]− (Ah −Ah−1) (γ∗ − γ)

= (h−Ah + Ah−1) (γ∗ − γ)−Ah−1 [α (µ∗
0 − µ0)] .

(49)

E

[
←→ν T+h | wT

]
= h (γ∗ − γ)− (γ∗ − γ)− (Ah − In) [α (µ∗

0 − µ0)]

= (h− 1) (γ∗ − γ)−α
h−1∑

i=1

[
I + β′α

]i
(µ∗

0 − µ0)
(50)

E [νT+h | wT ] = h (γ∗ − γ)−

(
h−1∑

i=0

Υ
i
(
In −H

h−1−i
)
)

[α (µ∗
0 − µ0)]

−

h−1∑

i=0

Υ
i
H

h−1−i (γ∗ − γ)

(51)

Thus, whenγ∗ = γ butµ∗
0 6= µ0 , just adjusting theh-step forecast (that is,←→w T+h, in (50)) will yield

a larger bias than adjusting only the1-step forecast (see (49). Even if the process remains unchanged
there is no penalty in terms of bias from intercept correcting.

3.2 Variances

The penalty to intercept correcting when the process is unchanged is in terms of increased uncertainty.
The conditional forecast error variances for strategies (40) to (44) are given by (52) to (55) below,
and all exceed the conditional expectation forecast error varianceV [ν̂T+h | wT ] in (17) by a positive
semi-definite matrix:

V [ν̇T+h | wT ] = 2V [ν̂T+h | wT ] +
h−1∑

j=0

h−1∑

i=0

Υ
j
ΩΥ

i′ j 6= i (52)

V [−→ν T+h | wT ] = V [ν̂T+h | wT ] + Υ
h−1

ΩΥ
h−1′ (53)
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V

[
←→ν T+h | wT

]
= V [ν̂T+h | wT ] + Ω (54)

V [νT+h | wT ] = V [ν̂T+h | wT ] +

h−1∑

j=0

h−1∑

i=0

Υ
i
(
I−H

h−1−i
)
Ω

(
I−H

h−1−i′
)
Υ

i′. (55)

For example, the error variance more than doubles for the constant-adjustment strategy. The prob-
lem is apparent from (38), since the intercept correction comprises terms reflecting the change in the
intercept and trend parameterplus the full value of the periodT disturbance, which has an (uncondi-
tional) variance ofΩ. A more precise estimate of the change-in-parameter component could be obtained
by averaging a number of recent errors, provided the break occurred sufficiently far back.

Nevertheless, summing the (squared) bias and variance components, for a sufficiently large change
in τ 0, holding the adjustment constant over the forecast period will result in the smallestMSFE (since
the bias components of the other adjustment schemes can be made arbitrarily large).

4 Forecast evaluation and multi-step forecasts

Clements and Hendry (1993) show that forecast comparisons based onMSFE may depend upon which
isomorphic representation of the system is selected for theassessment. For example, one method or
model may appear to predict the levels of the series more accurately, another the changes in the vari-
ables. Potential ranking reversals suggest caution in interpreting the results ofMSFE comparisons.
In our empirical work we check that our findings are not simplyan artefact of one particular chosen
transformation of the data by reporting results for both levels and differences.

Alternatively, we could employ invariant criteria, such asthe generalized forecast error second mo-
ment (GFESM) or its determinant. This is formed by stacking the (vectorsof) forecast errors from
all previous step ahead forecasts. The1-step forecast errors determine the complete ranking for the
GFESM when there is no parameter uncertainty and the model is correctly specified. However, the
choice between mis-specified models may depend on the forecast horizon, so that, independent of the
measure of forecast accuracy, one model may dominate at certain horizons, and another at other hori-
zons. Thus1-step forecast performance may not be a reliable guide to theoutcome of comparisons for
h-steps ahead (see, for example, Baillie, 1993; Fama and French, 1988): for this reason we report the
results of comparisons for multi-step forecasts.

Clements and Hendry (1995a) show that, in the absence of structural change or regime shifts,MSFE
evaluations of the ability of models to predict differencesof the variables may have low power in iden-
tifying models which incorrectly impose too many unit roots, i.e. VARs in differences when there is
cointegration. We shall check whether all the models have a similar ability to predict the differences of
the data in the presence of structural breaks.

5 Modelling wages and prices in the UK

Mizon (1995) analyzes the relationships between the following three variables for the UK, over the
period 1965:1 to 1993:1;et, the natural logarithm of earnings per man-hour (loosely referred to as
‘wages’), the log of the retail price index,rt, and the log of the unemployment rateut. Precise definitions
and sources are given in Mizon (1995) or Clements and Mizon (1991). The latter used a dataset that
also included average hours worked and productivity per man-hour to illustrate the ‘encompassing the
VAR’ approach of Hendry and Mizon (1993), while Mizon (1995)uses an extended sample on the three
variables.
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Briefly, Mizon obtained a simultaneous model of the determination of wages, prices and employ-
ment, in which there is a single cointegrating vector that enters only the wage and price equations (see
his Table 10). If the full-sample estimates of the cointegrating vector are retained, with the model oth-
erwise being estimated up to 1979:2, and used to forecast (the 55 observations) 1979:3–1993:1, the
model’s1-step ahead forecast performance is satisfactory, as is that of a DVAR estimated, and used to
forecast, over the same period. However, if the cointegrating vector is also determined from the sub-
sample estimation period (as would necessarily be the case in anex anteforecasting exercise), the model
fails to provide reliable forecasts.

This finding is not peculiar to the model specification found on the full-sample. A ‘general-to-
simple’ model selection strategy applied to the sub-sampleled to a model which differed somewhat
from the full-sample specification (see Table 1 for the parameter estimates), but nevertheless possessed
the feature that the ‘error correction’ terms caused the1-step forecasts to go awry.4

Table 2 gives the first two moments of the1-step forecast errors and two forecast test statistics (see
Doornik and Hendry, 1994, for details) for a (third-order)DVAR, the model given in Mizon (1995)
with the cointegrating vector estimated over the full sample, (GMFS), the same specification with the
cointegrating vector estimated on data up to 1979:2 (GMSS), and a model specified and estimated on the
sub-sample alone,VECM. Finally,VECM∗ is VECM but with the equilibrium-correction terms omitted.

From the first part of the table, it is apparent that the1-step forecasts from theGMSS andVECM
models for the quarter on quarter growth in earnings are on average 0.8% points too high. This is
approximately twice the size of the bias from the other threemodels (which either neglect the long-run
information or base it on the full sample). By way of comparison, the average growth in earnings over
the forecast period (1980:1–1993:1) was 2% a quarter.GMSS andVECM also record larger biases in
forecasting∆r. The standard deviations of the forecast errors are appreciably higher for both∆e and
∆r for theGMSS andVECMmodels. The forecast tests in the third part of the table depict the resounding
rejection of theGMSS andVECM models alluded to above. A comparison of the results forVECM with
those forVECM∗ highlights the problems caused by the equilibrium-correction terms.

The tests haveF-distributions with degrees of freedom as specified in the table, the quantities in ‘[]’
following the test statistic values arep-values. The first test headedη1 is an index of numerical parameter
constancy, and ignores parameter uncertainty and serial correlation between the forecast errors, the
second (headedη2) allows for parameter uncertainty (see Doornik and Hendry,1994, p. 197, for full
details).

Figure 1 depicts time series plots of the ‘equilibrium errors’ for the full sample where the coefficients
of the cointegrating vector have been estimated both from the full sample and from the sub-sample. The
sub-sample error has a sharp downward trend in the 1980s, no longer appears to be anI(0) process, and
by the 1990s is over 10% lower than at the beginning of the period.

6 An empirical study of the impact of intercept corrections

Of the models incorporating long-run information discussed in section 5, we will explore the behaviour
of VECMwhen use is made of intercept corrections:GMFS andGMSS either result from, or are motivated
by, knowledge of the full sample, which is ruled out forex anteforecasting.

Three of the forms of intercept correction discussed in section 3 are implemented: a constant adjust-
ment throughout the period, a one-off adjustment in the firstperiod of the forecast, and an adjustment
which is tailed off as we forecast further ahead (the matrixH in (44) is a diagonal matrix with1

2
s on

4We use the sub-sample 1965:1–1979:4 rather than 1965:1–1979:2, which makes little difference to the results.
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the leading diagonal). In fact the constant adjustment to unemployment led to a ballooning ofMSFEs
(the unemployment equation is solely in differences), so by‘constant adjustment to all equations’ is to
be understood constant adjustment to earnings and prices but tailed-off adjustment to unemployment.

Forecasts can be adjusted using the value of an equation’s error at the forecast origin, or an average
of that and the previous(p− 1) errors. More elaborate schemes might utilise information from other
equations, for example, or conduct significance tests, but we shall consider adjustments based on the
latest own-error[1] and the latest four errors[4]. We also consider the impact of only adjusting the
equations with ‘error-correction’ mechanisms, that is,e andr.

The precise way in which the forecasts are obtained is as follows. The models are estimated only
once on data up to 1979:4. Then, 1979:4 is taken as the first forecast origin (initial condition) from
which we calculate forecasts for1 through to12 steps ahead. The exercise is repeated with 1980:1 as
the forecast origin, and so on, subject to the constraint that we have data on the period being forecast
(the sample ends in 1993:1). This gives fifty-three1-step forecasts, where the last forecast is made in
1992:4 of 1993:1, fifty-two2 step forecasts (a forecast made in 1979:4 of 1980:2 through to a forecast
made in 1992:3 of 1993:1), and so on to forty-two12 steps. The means and forecast errors for each
length of forecast are calculated by averaging over the available number of forecasts, corresponding to
averaging over the forecast origins.

The results are summarised in figures 2, 3, 4 and 5. In each figure, thex-axis denotes the forecast
lead, and they-axis the trace mean-square forecast error (TMSFE). The first two figures areTMSFEs
for predicting the levels of the data, the second two for the differences. Consider figure 2. The figure
conveys information for theVECM, for one-off adjustments to theVECM based on the latest residual
(one-off[1]) and an average of the latest 4 (one-off[4]); and for constant adjustments to theVECM (const
[1], and const[4]). In each case, the line is scaled by theTMSFE for theDVAR, to aid interpretation.
Figure 2 is based on corrections toe andr only, and figure 3 on corrections to all equations (but recall
the ‘constant’ adjustment tou is a ‘tailed’ adjustment). The fully tailed-off adjustmentcases are not
depicted.

The figure shows that theTMSFE of theVECM model almost always exceeds that of theDVAR, and
is over 40% higher for12-steps ahead.5 Constant adjustments appear to work best on average (across
horizons) for longer horizons, and one-off adjustments result in a better performance at long horizons
when applied to all equations (as in figure 3) rather than onlytheeandr equations (figure 2). Averaging
residuals ([4] versus[1]) works best for constant adjustments, and for horizons up to10 quarters ahead,
the VECM model now outperforms theDVAR on theTMSFE measure (figure 3). For predicting the
changes in the data, the one-off adjustments are less usefulthan the constant adjustments, underlining the
danger of relying on a single transformation of the data (just levels, say) when forecast models/methods
are compared in terms ofMSFE (Clements and Hendry, 1993). The finding in Clements and Hendry
(1995a) that evaluation in terms of differences might be expected to have low power to discriminate
between models does not apply in the presence of structural breaks. The adjustments are not quite as
successful in improving the forecast performance of theVECM model.

It is apparent that automatic adjustments bolster the forecast performance of the model incorporating
long-run information. Indeed, at short horizons, theVECM model outperforms theDVAR by about 20%
(due to its better fit combined with the intercept correctionoffsetting the bias), and only when the
variance of the intercept correction becomes large does theDVARwin. This suggests the possible use of
selection criteria or longer averages when correcting.

We now look at whether the improvements due to the intercept corrections result from reductions

5Perhaps surprisingly given the test statistic results reported in table 2, there is little to choose between the two at1-step
ahead.
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in the bias or variance components of theMSFEs. Table 3 records the bias and forecast error standard
deviations for theVECMmodel, theDVAR, and the constant adjustments (toe andr only), and the one-off
adjustments (to all equations), for a selection of forecastlead times, for the levels of the variables.

The constant adjustments (const[1]) reduce the biases in forecastinge andr at all horizons, but at
the cost of larger forecast error variances. Averaging fourresiduals to form the constant-adjustment in-
tercept correction (const[4]) is generally less successful in reducing biases, but has a smaller inflationary
effect on the variances, consistent with the analysis in section 3. The impact of the one-off adjustments
on biases is largely short term, and there is a minimal impacton the variance component.

7 Conclusions

In the empirical illustration, based on modelling and forecasting wages, prices and unemployment, we
find that vector autoregressions in the differences of the variables (which eschew long-run information)
forecast well compared to a vector equilibrium-correctionsystem(VECM) when the long-run relation-
ships are subject to structural change. However, theVECM clearly provides a better description of the
data within-sample, and the equilibrium-correction termsare significant at conventional significance
levels.

In line with the analysis in section 3, in the empirical illustration we found that intercept corrections
can improve the forecasts of econometric models when the long-run relationships appear to alter over
the forecast period. In particular, the corrections resulted in significant reductions in forecast bias. The
precise form of the adjustments affects the forecast bias and variance, which also depend on the forecast
horizon, emphasising the need to consider multi-step forecasts.
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8 Appendix I: A dynamic DVAR

Here we derive the population parameters of aDVAR for ∆wt regressed on∆wt−1 and an intercept.
First, from (10):

α′

⊥∆wt = α′

⊥γ +α′

⊥νt (56)

is a white-noise innovation process, accounting forn− r of the equations in theDVAR. Next:

β′
wt − (µ0 + µ1 (t + 1)) =

(
Ir + β′α

) [
β′

wt−1 − (µ0 + µ1t)
]
+ β′νt.

Also:
∆β′

wt = µ1 + β′α
(
β′

wt−1 − µ0 − µ1t
)

+ β′νt

Let:
β′

wt − µ0 − µ1 (t + 1) = xt

be the remainingr variables in theDVAR. Then:

xt = Axt−1 + ut

where:
A = Ir + β′α
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has all its eigenvalues inside the unit circle. So:

E
[
∆xt∆x

′

t−1

]
= 2E

[
xtx

′

t−1

]
− E

[
xtx

′

t−2

]
− E

[
xt−1x

′

t−1

]

= 2AE
[
xt−1x

′

t−1

]
−A

2
E
[
xt−2x

′

t−2

]
− E

[
xt−1x

′

t−1

]

=
(
Ir − 2A + A

2
)
M = (Ir −A)2 M = −

(
β′α

)2
M

and:

E
[
∆xt−1∆x

′

t−1

]
= 2E

[
xt−1x

′

t−1

]
− E

[
xt−1x

′

t−2

]
− E

[
xt−2x

′

t−1

]

= (Ir −A)M + M
(
Ir −A

′
)

= −β′αM−Mα′β.

Finally:
E
[
xtx

′

t

]
= M = AMA

′ + β′
Ωβ.

Noting that∆xt = β′∆wt − µ1 and letting:

∆β′
wt = −β′αµ1 + A∆β′

wt−1 + et (57)

then:
A =

(
β′α

)2
M
(
β′αM + Mα′β

)−1
.

Thus, we stack then− r equations from (56) with ther from (57) to yield:

∆wt =

(
α′

⊥

β′

)−1 [(
α′

⊥
γ

−β′αµ1

)
+

(
0

Aβ′

)
∆wt−1 +

(
α′

⊥
νt

et

)]
.
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GMFS: Mizon (1995), Table 10. Estimated by FIML. 1966:1--1993:1
∆e = +0.3145 ∆r +0.3291 ∆e_2 +0.3022 ∆r_3

(0.138) (0.0742) (0.0820)

-0.03728 ∆u_2 -0.1269 ecm_1 +0.0259 D793
(0.01723) (0.05549) (0.01212)

+0.03758 D745 -1.095
(0.004799) (0.4838)

∆r = +0.3737 ∆r_1 -0.03827 ∆u_2 +0.1815 ecm_1
(0.05695) (0.0104) (0.02358)

+0.04739 D793 +0.00675 D745 +0.01119 Budget
(0.00720) (0.00304) (0.00105)

+1.585

(0.205)

∆u = +0.7554 ∆e_1 +0.7851 ∆u_1 +0.1218 ∆u_2
(0.1652) (0.0570) (0.0620)

-0.142 ∆u_3 +0.129 Expansion -0.01232
(0.0554) (0.0094) (0.00535)

σe = 0.0108 σr = 0.0071 σu = 0.0310

where ecm = e - 0.88r - 0.017u -0.008t.

VECM model, estimated by FIML. 1966:1--1979:4
∆e = +0.3538 ∆e_2 -0.1005 ecm794_1 -0.8204 Constant

(0.0862) (0.0498) (0.4161)

+0.03685 D745 +0.03616 D793
(0.00504) (0.01194)

∆r = +0.1906 ∆e_1 +0.2877 ∆r_1 -0.06187 ∆u_2

(0.0600) (0.0752) (0.01602)

+0.1994 ecm794_1 +1.675 +0.04376 D793
(0.0427) (0.357) (0.00860)

+0.00872 Budget
(0.00155)

∆u = +0.4669 ∆e_1 +0.7541 ∆u_1 +0.1264 Expansion

(0.1492) (0.0719) (0.0122)

σe = 0.0118 σr = 0.0086 σu = 0.0407
where ecm794 = e - 0.76r + 0.076u -0.013t.

D793, D745, Budget, and Expansion are dummy variables, see Mizon (1995).

Table 1 Full-sample model and the sub-sample VECM model.
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Mean of forecast errors: ‘bias’. 1980:1 - 1993:1.

Model ∆e ∆r ∆u

DVAR -0.0037 -0.0017 0.0010
GMFS -0.0040 -0.0005 0.0007
GMSS -0.0080 0.0039 0.0004
VECM -0.0076 0.0026 -0.0050
VECM∗ -0.0041 -0.0023 -0.0049
Average value 0.0212 0.0157 0.0186
of actuals

Standard deviations of forecast errors. 1980:1 - 1993:1.

Model ∆e ∆r ∆u

DVAR 0.0120 0.0079 0.0281
GMFS 0.0105 0.0069 0.0219
GMSS 0.0147 0.0152 0.0219
VECM 0.0136 0.0139 0.0232
VECM∗ 0.0121 0.0077 0.0235
Average value 0.0137 0.0127 0.0581
of actuals

Forecast Tests.

Model F[.,.] η1 η2

DVAR 159,44 0.82 [.81] 0.69 [.95]
GMFS 159,49 0.69 [.96] 0.64 [.98]
GMSS 159,49 2.62 [.0001] 1.96 [.004]
VECM 159,51 2.21 [.0007] 1.72 [.01]
VECM∗ 159,52 0.73 [.92] 0.70 [.95]

Table 2 1-step forecast performance of models .
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1-step forecast errors

Mean s.dev

Model e r u e r u

DVAR -0.004 -0.002 0.001 0.012 0.008 0.028
VECM -0.009 0.004 -0.005 0.014 0.012 0.023
const [1] -0.001 - -0.005 0.012 0.010 0.023
1-off [1] -0.001 - - 0.012 0.010 0.026
const [4] -0.002 0.001 -0.005 0.011 0.008 0.023
1-off [4] -0.002 0.001 0.001 0.011 0.008 0.025

4-step forecast errors

Mean s.dev

Model e r u e r u

DVAR -0.019 -0.013 -0.020 0.026 0.018 0.152
VECM -0.036 - -0.065 0.038 0.034 0.141
const [1] -0.009 0.001 -0.048 0.044 0.043 0.133
1-off [1] -0.030 0.003 -0.043 0.033 0.033 0.129
const [4] -0.013 0.003 -0.051 0.029 0.027 0.136
1-off [4] -0.031 0.003 -0.041 0.032 0.032 0.141

8-step forecast errors

Mean s.dev

Model e r u e r u

DVAR -0.046 -0.034 -0.099 0.025 0.027 0.314
VECM -0.068 -0.024 -0.212 0.044 0.046 0.285
const [1] -0.025 0.002 -0.166 0.084 0.093 0.268
1-off [1] -0.065 -0.018 -0.182 0.042 0.047 0.268
const [4] -0.030 0.002 -0.172 0.049 0.064 0.268
1-off [4] -0.065 -0.019 -0.176 0.041 0.047 0.280

12-step forecast errors

Mean s.dev

Model e r u e r u

DVAR -0.070 -0.054 -0.236 0.028 0.033 0.409
VECM -0.089 -0.055 -0.414 0.037 0.050 0.381
const [1] -0.032 0.005 -0.341 0.122 0.152 0.346
1-off [1] -0.087 -0.049 -0.375 0.038 0.053 0.370
const [4] -0.041 0.001 -0.354 0.080 0.106 0.341
1-off [4] -0.088 -0.050 -0.375 0.036 0.053 0.381

Table 3 Effect of intercept corrections on means and standard deviations of forecast errors. A
‘−’ denotes a number less than10−3 in absolute value .



20

1965 1970 1975 1980 1985 1990

-8.7

-8.65

-8.6

-8.55

-8.5

-8.45

-8.4

-8.35

-8.3

-8.25

Equilibrium error: sub-sample

Equilibrium error: full-sample

Figure 1 ‘Equilibrium errors’: full and sub-sample estimates.
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Figure 2 TMSFEs: levels of the variables. Adjustments toeandr equations only.
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Figure 3 TMSFEs: levels of the variables. Adjustments to all equations.
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Figure 4 TMSFEs: differences of the variables. Adjustments toeandr equations only.
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Figure 5 TMSFEs: differences of the variables. Adjustments to all equations.


