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Abstract. In [1] we advocated the need for an interchange format for
hybrid systems that enables the integration of design tools coming from
many different research communities. In deriving such interchange for-
mat the main challenge is to define a language that, while presenting
a particular formal semantics, remains general enough to accommodate
the translation across the various modeling approaches used in the ex-
isting tools. In this paper we give a formal definition of the syntax and
semantics for the proposed interchange format. In doing so, we clearly
separate the structure of a hybrid system from the semantics attached to
it. The semantics can be considered an “abstract semantics” in the sense
that it can be refined to yield the model of computation, or “concrete
semantics”, which, in turn, is associated to the existing languages that
are used to specify hybrid systems. We show how the interchange format
can be used to capture the essential information across different model-
ing approaches and how such information can be used in the translation
process.

1 Introduction

While the main concept behind the term hybrid system is commonly accepted by
the control theory community and the computer science community, there is a
mismatch in the interpretation of hybrid system models. The original definition
of hybrid systems captures the discrete dynamics as a graph representing a state
machine [2]. A function associates a continuous dynamics to each discrete state.
These dynamics, which are expressed in terms of differential equations, may
vary across different states. Transitions from a source state to a target state are
enabled, or triggered, by the continuous evolution of the system’s variables and
each transition can also set the initial conditions for the system of differential
equations associated with the target state. Following a denotational approach,
control theorists use such model to complete a formal analysis of a hybrid system
and derive necessary and/or sufficient conditions for its stability, safety, and
reachability. Computer scientists, instead, use such model as a reference while
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following an operational approach. Their main concern is to develop software
programs that designers can use to simulate and verify hybrid systems. Generally,
this entails the definition of a language, whose syntax defines the words and
sentences that can be written in a program while its semantics defines their
meaning. In fact, the language semantics should formally define the steps that
an idealized computer must follow in order to produce a meaningful result while
processing the program. In particular, for tools that target simulation, to define
the semantics of their language corresponds to formally specify the algorithm
that will produce the simulation trace. An excellent example of the definition of
operational semantics of hybrid systems is given in [3].

Each language defines a programming style to describe hybrid systems based
on its specific purpose, e.g. simulation, verification, or synthesis. Moreover, dif-
ferent algorithms require different data structures and the language is usually
tailored to simplify the translation from the input language description to the
internal data structure used by the algorithms. Modelica, for instance, pro-
vides a language for describing systems in terms of implicit equations [4, 5]. The
language is object-oriented and objects can be instantiated inside other object
to model hierarchy. HyVisual gives a graphical syntax and a rich library of pre-
defined actors that can be composed to model dynamical systems [6]. A hybrid
system is described as a state machine in which states are refined into intercon-
nection of continuous time actors. CheckMate [7], like Hysdel [8], uses the
interconnection of a state machine and a set of dynamical systems where the
state machine selects one of the dynamics depending on the value of the system
variables. Finally, a language also defines the class of hybrid systems that can be
described. For instance, tools that target verification only allow linear dynamics
and convex guards and invariants.

A system is usually described as a composition of objects. Compositionality
and hierarchy are desirable features for the design of complex systems. While
composing objects at the denotational level corresponds to composing functions,
giving a semantically sound definition of composition in terms of a programming
language is not a trivial task. The semantics of Charon, a high-level language
for modular specification of multiple, interacting hybrid systems, is indeed com-
positional in the sense that the semantics of one of its components (possibly
the entire hybrid system) is entirely specified in terms of the semantics of its
subcomponents [9, 10]. An interesting aspect of composition for simulation pur-
poses is how to schedule the execution of a system across multiple interacting
components. Consider, for instance, a system where component A feeds two com-
ponents B and C and, furthermore, C also receives the output of B as input.
After executing A, the simulator must choose whether to execute B or C first.
The two possible choices would likely give different simulation results.

Another interesting issue involves solving a system of differential algebraic
equations. The solution is typically represented inside a computer as a finite
subset of value-time pairs (x, t). Since the computer resources are discrete and
finite, two problems must be addressed: (1) how to select a subset that makes
the result meaningful and (2) how to compute the value of x at time t for a
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generic system of differential equations without relying on the analytical solu-
tion [3]. Further, if instead of a single equation we have a system of differential
and algebraic equations, then there are many variables that must be computed
and the order in which equations are evaluated becomes relevant. Finally, sup-
port for expressing algebraic equations makes things more complex due to the
possibility of generating algebraic loops. In fact, some languages like Model-

ica do not define the meaning of an algebraic loop and leave the decision of how
to compute the solution of such equations to the simulation engine. Other tools
like Simulink/Stateflow and HyVisual return an error message whenever
they detect the presence of algebraic loops.

Contributions. Researchers in industry and academia have developed several
tools for the simulation, verification and synthesis of hybrid systems. In their
development efforts, they had to address all the important issues mentioned
above and, generally, they have made different implementation decisions. In [1]
we advocated the need for an interchange format for hybrid systems that makes
it possible to integrate design tools coming from many different research commu-
nities. While to define the syntax of the interchange format is an important step,
and there are already interesting approaches in this direction [11], the definition
of its semantics is the key to enable unambiguous translation of models across
tools. In order to capture all the different models, we define an abstract semantics
that can be refined in the concrete semantics of each language, we specify a set
of functions that can be applied to perform such refinement, and we show the
effectiveness in translating to and from the interchange format. Our approach
allows us to better understand the structure of the exisisting languages for hy-
brid systems, to capture the semantic differences among them, and to develop
algorithms for interchanging models.

2 Preliminaries

Metropolis Meta-Model Interchange Format. In [1] we reviewed a number of
languages and tools for hybrid systems. Based on the outcome of our comparative
summary, we highlighted the differences among tools and also a set of desirable
features that a language for hybrid systems should provide. We then offered a
proposal for an interchange format for hybrid systems whose formal semantics
is based on the Metropolis Meta-Model [12]. The main challenge in defining
an interchange format is to define a language with a formal semantics that
remains general enough as it provides and easy translation path to/from all
other languages of interest. Accordingly, the proposed interchange format defines
processes for the solution of equations and media for communicating results
among processes. The way in which the computation is performed is described
in a separate view of the specification that consists of a collection of schedulers.
Processes, media and schedulers can be hierarchically organized as shown in
Figure 1. The hierarchy of a hybrid system has three levels: the transition level,
the dynamical system level and the equation level. At the transition level, a
scheduler (TM) selects a set of continuous-time processes whose composition forms
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Fig. 1. Organization of the interchange format presented in [1]

a dynamical system. At the dynamical system level, a scheduler (ERM) selects a
set of equations and orders their execution. At the equation level, the execution of
each equation is governed by equation managers EM. Across the three hierarchical
levels, the network of schedulers restricts the possible executions of the process
network by (1) selecting a set of active processes at the transition level, (2)
scheduling the execution of continuous time processes at the dynamical system
level and (3) scheduling the solution of the equations at the equation level.

Notation Basics. For a tuple W = (w1, ..., wn), we denote the component wi

of W with W.wi. Given a variable with name v, its value is denoted by val(v)
where val is a valuation function. If V is the tuple (v1, ..., vn) then val(V ) =
(val(v1), ..., val(vn)). If, instead, V is the set {v1, ..., vn} then its valuation is
the multi-set val(V ) = {val(v1), ..., val(vn)}. For a set of variables V , the set of
all possible valuations of V is denoted by R(V ). Given a subset D ⊆ R(V ) of
the possible values of the set of variables V , and given another set V ′ ⊇ V , the
lifting of D to V ′ is given by the operator L(V ′)(D) = {p′ ∈ R(V ′) : p′|V ∈ RV },
where p′|V denotes the restriction of the valuation p′ to only the variables in V .

Running Example. The diagram in Figure 2 represents a half-wave rectifier cir-
cuit, a simple electronic circuit that can be modeled as a hybrid system and will
be used throughout the paper to illustrate the proposed interchange format. In
particular, we model the diode by dividing the voltage across its endpoints in
two regions of operation: if va − vk < 0 the diode behaves as a constant current
source of value −I0; if va − vk ≥ 0 the diode behaves like a resistor of value
Rd. The half-wave rectifier can be “structurally” represented by the block dia-
gram in Figure 3. The three currents id, iR and iC must satisfy the Kirchoff’s
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Fig. 2. Half-wave rectifier used as running example in this paper

Fig. 3. Block diagram representing the half-wave rectifier

current law that states that the sum of all currents of components attached to
the same node is equal to zero. This constraint is implemented by the block SUB
in Figure 2.

3 Interchange Format Syntax

With the term syntax we refer to the language constructs that are provided by
the interchange format to express hybrid systems. Our definitions are based on
sets and functions that have a direct connection to the syntax defined in [1]. To
simplify our notation, and without loss of generality, all components in our model
are already instantiated and unique. The introduction of renaming functions
and instantiation is straightforward in this context. We describe the syntax of a
hybrid system as a tuple H = (V, E, D, I, σ, ω, ρ) where:

– V = {v1, ..., vn} is a set of variables;
– E = {e1, ..., em} is a set of equations in the variables V . An equation ei is

of the form l(V ) = r(V ) (or equivalently l(V ) = 0) where l(V ) and r(V ) are
expressions;
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– D ⊆ 2R(V ) is a set of domains, or regions, of the possible valuations of the
variables V ;

– I ⊆ N is a set of indexes. The index set is used to capture the distinct
dynamics of a hybrid system. Its precise role is explained in detail later
when we discuss the composition of hybrid systems;

– σ : 2R(V ) → 2I is a function that associates a set of indexes to each domain
and such that σ(D) = ∅ if D /∈ D;

– ω : I → 2E is a function that associates a set of equations to each index;
– ρ : 2R(V ) × 2R(V ) × R(V ) → 2R(V ) is a function to reset the values of the

variables (after a transition between two domains has happened) and such
that ρ(D1, D2, val(v)) = ∅ if D1 /∈ D ∨ D2 /∈ D.

A hybrid system is characterized by a set of variables that are related by equa-
tions. The dynamics of a hybrid system, i.e., the system of differential and al-
gebraic equations that determine its continuous-time evolution, depends on the
values of the variables, and can change over time. This behavior is captured
by the two functions σ and ω. For each domain, σ provides a set of indexes
J . The union ∪i∈Jω(i) is the set of equations that are active in that domain.
The components that define these functions can be easily identified in the inter-
change format structure of Figure 1. Function σ is implemented at the transition
level while function ω is implemented at the dynamical system level. The reset
function describes what happens to the values of the variables when the active
domain changes.

Example 1. The Load component instantiated in the Rect component of Figure 2
is a hybrid system such that V = {vR, vC , iR, iC , vk, id}, E = {vR = vC , vR =
vk, iC + iR = id, iR = vR/R, iC = Cv̇C}, D = {R

6}, I = {1}, σ(R6) = {1},
ω(1) = E. The reset function ρ acts as the identity on the values of the variables
V : ρ(R6, R6, val(V )) = val(V ). �

In the previous example, a continuous time system is described as a hybrid
system with one domain, where all equations are active, and a trivial reset map.
The following example shows a system with two domains and a more elaborated
reset map.

Example 2. A bouncing ball is a hybrid system whose dynamics is described by
two variables: the vertical position y and the vertical velocity v. Every time the
ball touches the ground, the sign of the velocity is reversed and the value is
scaled by a factor called the restitution factor, and denoted by ε, that accounts
for the energy loss due to the impact. A bouncing ball can be modeled as a hybrid
system with V = {y, v}, E = {v̇ = −g, ẏ = v}. The set of possible valuations of
the variables V is partitioned in two subsets: D1 = {{val(y), val(v)} : val(y) ≤
0 ∧ val(v) < 0} and D2 = D1 ={{val(y), val(v)} : val(y) > 0 ∨ val(v) ≥ 0},
hence D = {D1, D2}; I = {1}, σ(D1) = σ(D2) = {1}, ω(1) = E. The re-
set function is defined as follows: ρ(D2, D1, val(V )) = {val(y), −εval(v)} and
ρ(D1, D2, val(V )) = {val(y), val(v)}. �

Both these examples show hybrid systems where the index set is a singleton. The
reason is that the dynamics of the hybrid system is the same in each domain.
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Hybrid systems for which the dynamics changes depending on the domain, or
hybrid systems resulting from the composition of other hybrid systems, will have
non-singleton index sets.

Equation ordering and temporary variables. Before defining the composi-
tion of hybrid systems, we extend the hybrid system tuple by adding two more
elements: a set of temporary variables Vt, which store the intermediate results of
a computation, and a function π : E → {1, 2, . . . , |E|} that fixes an order on the
set of equations1. Hence, the tuple denoting a hybrid system that was defined
in the previous section is extended as follows: H = (V, Vt, E, D, I, σ, ω, ρ, π).

Temporary variables are used in algorithms like fixed-point computation or
event detection, i.e., whenever the system of equations must be solved multiple
times before reaching the desired result. Also, as discussed in the introduction,
an important task in solving the systems of equations is to properly order them.

Composition of hybrid systems. Given two hybrid systems H1 = (V1, Vt1,
E1, D1, I1, σ1, ω1, ρ1, π1) and H2 = (V2, Vt2, E2, D2, I2, σ2, ω2, ρ2, π2), we define
their composition as a new hybrid system H = H1 || H2 such that:

– the variable, equation and domain sets are the union of the corresponding
sets of the two hybrid systems H1 and H2:

V = V1 ∪ V2, Vt = Vt1 ∪ Vt2, E = E1 ∪ E2, D = L(V )(D1) ∪ L(V )(D2)

where domains are lifted as the new set of variables contains V1 and V2;
– the index set is the juxtaposition of the two index sets

I = {1, ..., |I1| + |I2|}

which takes into account the fact that the number of dynamics and compo-
nents is equal to the sum of the number of the dynamics and components
coming from the two hybrid systems H1 and H2;

– for a given domain, the set of enabled dynamics (which is a subset of the
index set) is the union of the sets of enabled dynamics of H1 and H2:

∀D ∈ 2R(V ), σ(D) = σ1(D|V1 ) ∪ (σ2 + |I1| + 1)(D|V2)

where (σ + k)(D) = {n + k : n ∈ σ(D)} is a shifting of the indexes;
– the set of equations associated with each given index (and, therefore, the

set of equations associated with the dynamics denoted by that index) is the
same as in H1 and H2 (after a suitable shifting of the indexes):

ω(i) = ω1(i), if 1 ≤ i ≤ |I1|,
ω(i) = ω2(i − |I1|), if |I1| + 1 ≤ i ≤ |I1| + |I2|

1 Note that π is not necessarily an injective function. For instance, for languages like
Modelica that do not define any specific equation ordering all the equations are
mapped to the same integer.
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– the equations order is directly derived form the orders in H1 and H2. The
new order must preserve the original order within the two sets E1 and E2
such that equations in E1 precede equations in E2:

π(e) =
{

π1(e) if e ∈ E1
π2(e) + |I2| + 1 if e ∈ E2

– the two reset functions ρ1 and ρ2 give a set of new possible values for the
variables as a function of the domains and the variables themselves. If the two
hybrid systems share the same variables and if the two reset functions assign
different values for the same domain transition, then both resets should be
considered. If the two reset functions agree on the resets then only one value
should be considered. This operation is implemented by the set union. Given
Di, Dj ∈ 2R(V )

ρ(Di, Dj , val(V )) = L(V )(ρ1(Di|V1 , Dj|V1 , val(V1)) ∪
L(V )(ρ2(Di|V2 , Dj|V2 , val(V2))

The composition of hybrid systems is associative but it is not commutative
because the equation ordering depends on the position of the hybrid systems
in the composition. The n-ary composition of n hybrid systems H1, . . . , Hn is
another hybrid system H = H1 || . . . || Hn = (((H1 || H2) || H3) || . . .Hn).

Example 3. We model here the diode of Figure 2. Resistor Rd is a hybrid system
such that Rd.V = {va, vk, id}, Rd.E = {e1} = {id = (va − vk)/Rd}, D1 = {p ∈
R(Rd.V ) : val(va) − val(vk) ≥ 0} and Rd.D = {D1}, Rd.I = {1}, Rd.σ(D1) =
{1}, ω(1) = Rd.E, π(e1) = 1 and Rd.ρ acts as the identity on the values of the
variables.

The current source Id is a hybrid system such that Id.V
= {va, vk, id}, Id.E = {e2} = {id = −I0}, D2 = {p ∈ R(Id.V ) : val(va) −
val(vk) < 0} and Id.D = {D2}, Id.I = {1}, Id.σ(D1) = {1}, ω(1) = Id.E,
π(e2) = 1 and Id.ρ acts as the identity on the values of the variables.

A diode is the parallel composition Rd || Id = diode that results in the hybrid
system with the following properties: diode.V = {va, vk, id}, diode.E = {e1, e2},
diode.D = {D1, D2}, I = {1, 2} diode.σ(D1) = {1}, diode.σ(D2) = {2}, ω(1) =
e1, ω(2) = e2, π(e1) = 1, π(e2) = 2 and diode.ρ acts as the identity on the values
of the variables. �

In the previous example D1 and D2 are disjoint, therefore the ordering among
the various equations is irrelevant because they will never belong to the same
system of equations. The following example, instead, is a case where the order
is relevant.

Example 4. The entire rectifier is the parallel composition rect = Vs||diode||load.
The reader can verify that such composition has three domains: the entire set
of possible valuation coming from the voltage source and the load, and the two
domains D1 and D2 defined by the diode. Moreover, equations are ordered with
Vs.E coming before diode.E which, in turn, come before load.E. �
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4 Interchange Format Semantics

We define the semantics of a hybrid system H with a tuple (H, B, T, resolve,
init, update). The set B is a set of pairs (γ, t) where γ ∈ R(H.V ) is a multi-set
of possible values of the hybrid system variables and t ∈ R+ is a time stamp. The
computation of the time stamps is controlled by the abstract finite state machine
T (the time stamper), whose transition diagram is reported in Figure 4. Further-
more, T governs the valuation of the system variables for a given time stamp. In
other words, T is in charge of both selecting the next time stamp and deciding
whether the pair (val, t) can be added to the set B. Both tasks are performed by
T through the invocation of three algorithms (init, resolve and update). This
invocation follows a specific sequence that is encoded in the transition diagram.
For different time-stamp-control methods, predicates and actions on the arcs of
the abstract state machine change, while the three algorithms remain the same.

Fig. 4. Time stamper finite state machine

The set of actions that can be used to “customize” the time stamper are:
next, which selects the next time stamp, and resolve, init and update that
are each used to invoke the execution of the corresponding homonymous algo-
rithms. The set of predicates that can be used are true, false, thresholds on
the integration error, and domainchange, which checks if the values of the vari-
ables H.V have caused a domain change. Depending on how such predicates and
actions are positioned on the arcs of the state machine, and depending on the
implementation of next, several execution semantics can be implemented that
lead to different sets B.

The set B is initialized with a pair (V0, 0) representing the initial condition of
the hybrid system H . In the initial state init the time stamper T invokes the
initialization of H . This is carried out by executing the init algorithm. In the
resolve state, T invokes the execution of the resolve algorithm that produces
a valuation of all the variables of H . Finally, in the update state, T invokes the
execution of the update algorithm and adds a new pair (γ, t) to the set B.

In the resolve algorithm (Algorithm 4), the solve method takes an equa-
tion and computes the value of the unknown variables at time t. Computation
is done on the auxiliary set Vt. Depending on the equation ordering, it might
happen that the equation admits more than one solution. In this case, solve
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Algorithm 1. resolve algorithm
resolve(t)
D′ ⇐ {D ∈ D | val(Vt) ∈ D} // Compute the set of active domains.
I ⇐ ∅, Et ⇐ ∅
I ⇐ ∪D∈D′ σ(D) // Collect all active dynamics and components.
for all i ∈ I do

Et = Et ∪ ω(i) // Collect all active equations.
end for
sort(Et, π) // Order the equations.
for all ei ∈ Et do

solve(ei,t)
end for
D′′ ⇐ {D ∈ D | val(Vt) ∈ D} // Set of active domains after the computation.
markchange(D′, D′′) // Check if the set of active domains has changed.

has several options: it could assign a special value any to all variables to in-
dicate that a unique solution could not be computed; it could return a set
of solutions; it could pick one solution depending on specific criteria. In fact,
solve can be seen as another interface that can be customized depending on
the source-language semantics. Finally, the function markchange checks if dur-
ing the equation resolution phase a domain change has happened. This decision
also depends on the semantics of the source language. Algorithm init initial-
izes the auxiliary variables Vt to a value that depends on the reset function H.ρ
and on the algorithm implemented by the time stamper. Algorithm update ex-
ecutes val(V ) = val(Vt), which assigns the intermediate-computation values to
the system variables.

The abstract semantics can be refined into a concrete semantics by fully spec-
ifying the algorithms and functions that we have described in this section. Some
of them, e.g. equation ordering, are easy to specify while others like solve and
next have usually very complicated implementations. Consequently, for these
functions we foresee the development of standard libraries that can be selected in
the translation from one language to the interchange format. Tools for simulation
map directly onto the scheduling specification. Tools for verification and synthe-
sis can also be applied by taking advantage of the trace semantics B discussed
in Section 4 and of the underlying Metropolis Meta-Model [12], which defines
a formal semantics for the schedulers that is suitable for analysis. The use of
libraries can further simplify the analysis with the use of pre-characterized com-
ponents. The Meta-Model also supports declarative properties and constraints,
which can be used as links to tools and components described in other models
of computation.

Back-tracking and Algebraic Loops. As shown in Figure 4, a time stamper can in-
voke the resolve algorithm of a hybrid system multiple times. It is also possible
to re-initialize the system before updating the values of the variables. Such iter-
ations can be used for back-traking or to reach a fixed-point in case of algebraic
loops. Many iterations are also required for event detection. This is the main
reason for having auxiliary variables and separating the resolution step from
the update step as it is also defined by the stateful firing abstract semantics of
Ptolemy [13].
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5 Partitioning Structure and Semantics

In Section 3 and 4 we defined the syntax and abstract semantics of the inter-
change format and we showed how the abstract semantics can be refined into
many concrete semantics. In this section we show 1) how the semantics can still
be formally defined by partitioning the resolve algorithm among components
and 2) how structure and semantics can be clearly separated such that it is
possible to assign different semantics to hybrid systems having the same struc-
ture. In order to keep structure and semantics well separated and also to clearly
represent the hierarchical structure of a design, we partition a hybrid system
into components and schedulers and we organize them into a tree that has both
a structural as well as an algebraic interpretation. This section formalizes and
justifies the structure of the interchange format presented in [1] and shown in
Figure 1.

A hybrid system is a pair H = (c, s) where c is a component and s is a
scheduler. The component is a tuple c = (V, E, D) of variables and equations
while the scheduler is a tuple s = (I, σ, ω, ρ, π). Let C be the set of all component
instances and S be the set of all scheduler instances for a hybrid system H .
Then, I : C → S is a bijection that for each component c returns its associated
scheduler. Note that we use instances of components and schedulers instead of
objects. Also note that the same symbol H has been used here and in Section 3,
but this should not confuse the reader since the object and the elements in the
tuple are the same, while the tuple is just partitioned in a component and a
scheduler.

The n-way composition for components and schedulers can be easily derived
from the composition of hybrid systems defined in Section 3. Let ||c and ||s
be such operations, respectively. Given two hybrid systems H1 = (c1, s1) and
H2 = (c2, s2), their composition is H = H1 || H2 = (c1 ||c c2, s1 ||s s2).

We now consider the hierarchical structure of hybrid systems. A hybrid system
structure H = (C, S) is a pair where C is a rooted tree of components and S is
a rooted tree of schedulers. C = (CN , CE) where CN is a set of components and
CE ⊂ CN × CN is a binary relation (the edges of the tree). If r = (ci, cj) ∈ CE

we say that cj is instantiated in ci.
The tree of schedulers has the following structure: S = (SN , SE) where SN

is a set of schedulers and SE ⊂ SN × SN is a set of connections among sched-
ulers. SN = T ∪ S′

N where T is a time-stamper. The subtree induced2 by S′
N is

isomorphic to C, and the isomorphism is I. Also, if s ∈ S′
N is the root of such

induced subtree, then (T, s) ∈ SE and it is the only outgoing edge of T . The
input degree of T is always equal to zero.

We illustrate this concept using the example in Figure 2.

Example 5. Figure 5, which shows the structure of the rectifier, has two
interpretations:

2 A subgraph induced by a set of vertices of a graph G is the set of vertices together
with any edge whose endpoints are both in the subset.
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– it captures the organization of a design. For instance, component Diode
contains two instances: component Rd and component I0;

– it represents the parse tree of the algebraic composition

Rect = vs ||Diode ||GND ||SUB ||Load = vs ||(Rd ||I0) ||GND ||SUB ||(R ||C)

�

Fig. 5. Structural representation of the half-wave rectifier

Being able to capture hierarchies in a formal way is extremely important for
an interchange format in order to retain the structure of the original specification
and to allow “back translation” without loss of information.

Let G : SN → 2SN be a function that associates to each scheduler the set of
its children, and let Π : SN → {1, ..., |SN |} be a global ordering of the nodes.
Such ordering depends on the order in which hybrid systems are composed. Each
scheduler implements three algorithms: init, resolve, and update.

The time stamper, which has been presented in Section 4, invokes the init,
resolve and update functions on the “root scheduler” of SN for a given time

Algorithm 2. resolve algorithm of s ∈ SN

resolve(t)
children ⇐ G(s)
if children = ∅ then

// s is a leaf, proceed to solve the equations and end recursion
D′ ⇐ {D ∈ I−1(s).D | val(I−1(s).Vt) ∈ D}
J ⇐ ∪D∈D′ s.σ(D)
Et ⇐ ∪i∈J s.ω(i)
Et ⇐ sort(Et, s.π)
for all ei ∈ Et do

solve(ei, t)
end for
markchange ( D′, val(I−1(s).Vt) )

else
// s is not a leaf, continue the recursion
children ⇐ sort(children, Π)
for all si ∈ children do

si.resolve(t)
end for

end if
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Fig. 6. Simulation result of the rectifier circuit

stamp t. In particular, the resolve algorithm (Algorithm 2) proceeds as follows:
first, the set of all children of the scheduler s is computed. If s is a leaf then
the active equations are selected and solved, while if s is not a leaf the recursion
along the trees calls the resolvemethod on all children of s in the order specified
by Π . Notice that Π together with ordering π defined in the leaves implement
the ordering H.π.

The init and update algorithms recursively call the init and update along
the tree using the ordering in Π . They simply initialize variables to a given value
and copy the auxiliary variable Vt into V , respectively.

We have implemented the rectifier circuit in the Metropolis framework and
the simulation results can be observed in Figure 6. We used a fixed step size
solver as a time stamper and simulated the rectifier for C = 10−4µF, R = 100Ω,
and for an input voltage vs(t) = 5 sin(2π103t).

6 Applications

The structure of the interchange format introduced in Section 5 and its abstract
semantics are very effective in 1) representing models coming from different
languages, 2) developing algorithms for the translation of models to and from
different tools and 3) understanding the concrete semantics of different languages
for hybrid systems.

Figure 7 a) shows the structure of a language that supports neither hierarchy
nor composition. Examples of languages belonging to this class are Check-

Mate [7], d/dt [14], and Hysdel [8]. The tree of components has only one
node which is the entire hybrid system described as a single monolithic com-
ponent. In CheckMate, c is a switched dynamical system and a set of linear
inequalities that defines the domains implemented in Simulink. The scheduler
is implemented by a Stateflow chart and the time stamper is provided by the
Simulink solvers.
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(a) (b)

Fig. 7. Structure of the programs that do not support a) hierarchy and composition,
b) hierarchy

Fig. 8. Structure of a HyVisual modal model

Figure 7 b) shows the structure of programs that support composition but not
hierarchy. Examples of languages belonging to this class are HyTech [15] and
HSIF [16]. Each child of the root node is a hybrid system. For HSIF programs,
hybrid automata are ordered with respect to a dependency graph. The graph
nodes are are hybrid automata and there is an edge Hi → Hj if an output of
Hj is used in some equation, invariant, guard or assignment of Hj . The depen-
dency graph, which is required to be acyclic, can be used to order the automata.
Moreover, differential equations precede algebraic equations in the order.

Figure 8 shows the structure of a HyVisual modal model [17]. A modal model
is described by a state machine with guards and reset maps on the edges. Each
state of the state machine is refined into a continuous time system that is an
interconnection of continuous time actors. The topological sort of the actor graph
gives their order of execution. Also, since guards have a triggering semantics, a
transition must be taken as soon as a guard is satisfied (i.e., there is a domain
change as soon as the values of the variables fall outside a domain). Modal
models can be connected together as indicated by the dotted lines in Figure 8.
Charon [9] programs lead to a similar structure but guard conditions have
different enabling semantics: these impact the way in which the time stamper
processes the domainchange condition in order to decide whether a pair (val, t)
is valid or not.

The interchange of models between simulation tools like HyVisual or
Modelica and verification tools like CheckMate, requires to check several
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conditions. First, the pair (C, S) of component and scheduler trees must be com-
pacted into only three nodes: one component, one scheduler and a time stamper.
This implies the explicit computation of the parallel composition defined in Sec-
tion 3. Second, the domains must be defined as intersection of polyhedra. The
inverse translation leaves many choices, the most natural among which would
be to have a root node connected to as many dynamical systems as there are
domains in the original CheckMate model.

For each language, the interchange format representation also highlights
semantic and structural properties such as scheduling decisions, transition
semantics, composition, representation of discrete and continuous dynamics in-
teraction, hierarchy and solution methods. Some of these properties could be
unspecified or not supported in a particular language and such information is
directly reflected in the interchange format. Hierarchy is one example that we
have already discussed. Ordering of equations and scheduling of hybrid systems
is another good example. For instance, Modelica does not define how a system
of differential and algebraic equations is sorted and solved. A Modelica model
represented in the interchange format would have π(e) = 1, ∀e ∈ H.E. The
translation of such model to HSIF would first require the reduction of the tree
representation to a one-level tree and then the decision on how automata and
equations are ordered. On the other hand, the inverse translation would disre-
gard such order.

7 Conclusions

We discussed the importance of an abstract semantics as the foundation of an
interchange format for hybrid system design. In particular, we defined an ab-
stract semantics for the interchange format that we first proposed in [1]. The
abstract semantics can be refined into various concrete semantics, each capturing
the model used by a different language for the specification of hybrid systems.
We also showed how a structural representation that keeps semantics and struc-
ture clearly separated is effective in highlighting the differences among such
languages. We illustrated the use of the abstract semantics and its structural
representation by applying them to various existing languages. We implemented
the proposed interchange format within the Metropolis framework and we ver-
ified with a simple example the viability of our approach. In particular, thanks
to its modularity, this approach makes it possible not only to translate the model
of an hybrid system from one language to another, but also to combine models
written in different languages.
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