Intercloud Directory and Exchange Protocol Detail using XMPP and RDF

David Bernstein Deepak Vij
Huawei Technologies, USA Cloud Strategy Partners, LLC
dbernstein@huawei.com deepak@cloudstrategypartners.com

As submitted to

CBSA: Cloud-based Services and Applications Workshop of:

IEEE SERVICES 2010

The 6th World Congress on Services
July 5-10, 2010, Miami, Florida, USA

Co-Located With:

IEEE CLOUD 2010

: ' The 3rd International Conference on Cloud Computing
| cloud computing | July 5-10, 2010, Miami, Florida, USA

Pre-acceptance draft, not for distribution

Intercloud Directory and Exchange Protocol Detail using XMPP and RDF

David Bernstein
Huawei Technologies, USA
dbernstein@huawei.com

Abstract

Working groups have proposed building a layered set of
protocols to solve the Cloud Computing interoperability
challenge called “Intercloud Protocols”. Instead of
each cloud provider establishing connectivity with
another cloud provider in a Point-to-Point manner
resulting in the n’ complexity problem, Intercloud
Directories and Exchanges will act as mediators for
enabling connectivity and collaboration among
disparate cloud providers. Point to Point protocols such
as HTTP are not suitable beyond I-to-1 models,
therefore the discussions around many-to-many
mechanisms have been proposed, including XMPP. This
paper details the use of an XMPP mechanism for such
mediation. On top of that, for the federation of the
resources themselves, we define a resources catalog
approach, using the Semantic Web Resource Definition
Framework (RDF) along with a common Ontology of
Cloud Computing Resources to work across a variety of
heterogeneous cloud providers.

1. Introduction

Cloud Computing has a well accepted terminology
[1], and Use Cases and Scenarios for Cloud IaaS and
PaaS interoperability [2][3] have been detailed in the
literature along with the challenges around actually
implementing standards-based Intercloud federation and
hybrid clouds. Work detailing high level architectures
for Intercloud interoperability were proposed next [4][5].
More recently, specific implementation approaches for
Intercloud protocols [6][7] have been proposed,
including specifically Extensible Messaging and
Presence Protocol (XMPP) [8][9] for transport, and
using Semantic Web [10] techniques such as Resource
Description Framework (RDF) [11] to specify resources.

Following that work, we will go about outlining
detailed approaches for these Intercloud protocols; first
a detailed analysis on the feasibility of XMPP as a
control plane operations for Intercloud, and second how
Cloud Computing resources can be described, cataloged,
and mediated using Semantic Web Ontologies,
implemented using RDF techniques.

Deepak Vij
Cloud Strategy Partners, LLC
deepak@cloudstrategypartners.com

2. Intercloud Topology

Cloud instances must be able to dialog with each
other. One cloud must be able to find one or more other
clouds, which for a particular interoperability scenario is
ready, willing, and able to accept an interoperability
transaction with and furthermore, exchanging whatever
subscription or usage related information which might
have been needed as a pre-cursor to the transaction.
Thus, an Intercloud Protocol for presence and
messaging needs to exist which can support the 1-to-1,
1-to-many, and many-to-many Cloud to Cloud use cases.

The vision and topology for the Intercloud we will
refer to [2][3] is as follows. At the highest level, the
analogy is with the Internet itself: in a world of TCP/IP
and the WWW, data is ubiquitous and interoperable in a
network of networks known as the “Internet”; in a world
of Cloud Computing, content, storage and computing is
ubiquitous and interoperable in a network of Clouds
known as the “Intercloud”; this is illustrated in Figure 1.

&
Dynamic S
Workload =

Federation of Clouds with
common Addressing,
Naming, ldentity, Trust,
Presence, Messaging,
Multicast, Time Domain,

Migration
and Application Messaging
A
% : 4 .
Applications b A
Integrate Services "

from Multiple Clouds &

Figure 1. The Intercloud Vision

The reference topology for realizing this vision is
modeled after the public Internet infrastructure. Again,
using the generally accepted terminology
[11[2][3][4]1[5][6][7], there are Public Clouds, which are
analogous to ISP’s and Service Providers offering
routed IP in the Internet world. There are Private Clouds
which is simply a Cloud which an organization builds to
serve itself.

There are Intercloud Exchanges (analogous to
Internet Exchanges and Peering Points) where clouds
can interoperate, and there is an Intercloud Root,
containing services such as Naming Authority, Trust
Authority, Directory Services, and other ‘“root”
capabilities. It is envisioned that the Intercloud root is of
course physically not a single entity, a global replicating
and hierarchical system similar to DNS [12] would be
utilized. All elements in the Intercloud topology contain
some gateway capability analogous to an Internet Router,
implementing Intercloud protocols in order to
participate in Intercloud interoperability. We call these
Intercloud Gateways. The entire topology is detailed in
Figure 2.

Intercloud
Exchanges

Private
. i =N Clouds

Intercloud Root

Figure 2. Reference Intercloud Topology

The Intercloud Gateways would provide mechanism
for supporting the entire profile of Intercloud protocols
and standards. The Intercloud Root and Intercloud
Exchanges would facilitate and mediate the initial
Intercloud negotiating process among Clouds. Once the
initial negotiating process is completed, each of these
Cloud instance would collaborate directly with each
other via a protocol and transport appropriate for the
interoperability action at hand; for example, a reliable
protocol might be needed for transaction integrity, or a
high speed streaming protocol might be needed
optimized for data movement over a particular link.

3. Intercloud Root, Exchanges, and Catalog

Various providers will emerge in the enablement of
the Intercloud. We first envision a community governed
set of Intercloud Root providers who will act as brokers
and host the Cloud Computing Resource Catalogs for
the Intercloud computing resources. They would be
governed in a similar way in which DNS, Top Level
Domains [13] or Certificate Authorities [14] are, by an
organization such as ISOC [15] or ICANN [16]. They
would also be responsible for mediating the trust based

federated security among disparate clouds by acting as
Security Trust Service providers using standards such as
SASL [17] and SAML [18].

The Intercloud Root instances will work with
Intercloud Exchanges to solve the n® problem by
facilitating as mediators for enabling connectivity
among disparate cloud environments. This is a much
preferred alternative to each cloud vendor establishing
connectivity and collaboration among themselves
(point-to-point), which would not scale physically or in
a business sense.

4. XMPP Architectural Considerations

First we investigate how Intercloud Exchange
providers will facilitate the negotiation dialog and
collaboration among disparate heterogeneous cloud
environments, working in concert with Intercloud Root
instances. XMPP is a set of open XML technologies for
presence and real-time communication developed by the
Jabber open-source community in 1999, formalized by
the IETF in 2002-2004, continuously extended through
the standards process of the XMPP Standards
Foundation. XMPP supports presence, structured
conversation, lightweight — middleware, content
syndication, and generalized routing of XML data.

Intercloud Root instances will host the root XMPP
servers containing all presence information for
Intercloud Root instances, Intercloud Exchange
Instances, and Internet visible Intercloud capable Cloud
instances. Intercloud Exchanges will host second-tier
XMPP servers. Individual Intercloud capable Clouds
will communicate with each other, as XMPP clients, via
XMPP server environment hosted by Intercloud Roots
and Intercloud Exchanges. We will be using a Cloud
extension to XMPP.

5. XMPP Services Framework

First, we must consider how to construct a Services
Framework layer on top of XMPP, analogous to the
HTTP-based Web service technologies, like the Simple
Object Access Protocol (SOAP) and REpresentational
State Transfer (REST) services. Today these are the
most common technologies for interfaces on a services
framework. However, the intrinsically synchronous
HTTP protocol is unsuitable for time-consuming
operations, like computationally demanding database
lookups or calculations, and server timeouts are
common obstacles. A very common workaround is to
implement a ticketing mechanism in the service, where
the client receives a ticket that can be used to
repetitively poll for results and is highly inefficient.

XMPP based services, on the other hand, are capable of
asynchronous communication. This implies that clients
do not have to poll repetitively for status, but the service
sends the results back to the client upon completion. As
an alternative to RESTful or SOAP service interfaces,
XMPP based services are ideal for lightweight service
scenarios. To address this issue, we leverage a series of
XMPP extensions (XEP series) defined by XMPP
standards foundation. One of these extensions is XEP-
0244 [19]. Extension XEP-0244 provides a “services”
framework on top of base XMPP, named 10 Data,
which was designed for sending messages from one
computer to another, providing a transport for remote
service invocation and attempting to overcome the
problems with SOAP and REST. A reference
implementation for the 10 Data XEP, XMPP Web
Services for Java (xws4j), is already in place and
available [20], which we are using.

6. XMPP Encryption & Authentication

XMPP includes a method for securing the XML
stream from tampering and eavesdropping. This channel
encryption method makes use of the Transport Layer
Security (TLS) protocol [21], along with a
“STARTTLS” extension that is modeled after similar
extensions for the IMAP [22], and POP3 [23] protocols.
Clouds use TLS to secure the streams prior to
attempting the completion of SASL based authentication
negotiation. SASL has a method for authenticating a
stream by means of an XMPP-specific profile of the
protocol. SASL provides a generalized method for
adding authentication support to connection-based
protocols. Currently, the following authentications
methods are supported by XMPP-specific profile of
SASL protocol: “DIGEST-MD5”, “CRAM-MDS5”,
“PLAIN”, and “ANONYMOUS”. SAML provides
authentication in a federated environment. Currently,
there is no support for SAML in XMPP-specific profile
of SASL protocol. However, there is a draft proposal
published that specifies a SASL mechanism for SAML
2.0 that allows the integration of existing SAML
Identity Providers with applications using SASL. The
following sample shows the data flow for a Cloud
securing a stream to an Intercloud Root, using
STARTTLS. It also shows SAML2.0 based
authentication steps.

Step 1: Cloud starts stream to Intercloud Root:

<stream:stream
xmlns="'jabber:client'
xmlns:stream='http://etherx.jabber.org/streams’
to='intercloudexchg.com'
version='1.0">

Step 2: Intercloud Root responds by sending a stream
tag to client:

<stream:stream
xmlns="'Jjabber:client'
xmlns:stream='http://etherx.jabber.org/streanms’
id='cloudl_idl'
from='intercloudexchg.com'
version='1.0">

Step 3: Intercloud Root sends the STARTTLS extension
to Cloud:

<stream:features>
<starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'>
<required/>
</starttls>
</stream: features>

Step 4: Cloud sends Root the STARTTLS command:

<starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>

Step 5: Intercloud Root informs Cloud to proceed:

<proceed xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>

Step 5 (alt): Root informs Cloud that TLS negotiation
has failed and closes both stream and TCP connection:

<failure xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>
</stream:stream>

Step 6: Cloud and Intercloud Root attempt to complete
TLS negotiation over the existing TCP connection.

Step 7: If TLS negotiation is successful, Cloud initiates
a new stream to Intercloud Root:

<stream:stream
xmlns="'jabber:client'
xmlns:stream='http://etherx.jabber.org/streams’
to='intercloudexchg.com'
version="'1.0"'>

Step 7 (alt): If TLS negotiation is unsuccessful,
Intercloud Root closes TCP connection.

Step 8: Intercloud Root responds by sending a stream
header to Cloud along with any available stream
features:

<stream:stream
xmlns="'Jjabber:client'
xmlns:stream='http://etherx.jabber.org/streams’
from='intercloudexchg.com'
id="' cloudl id2'
version="'1.0"'>
<stream:features>
<mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-
sasl'>
<mechanism>DIGEST-MD5</mechanism>
<mechanism> CRAM-MD5</mechanism>
<mechanism>PLAIN</mechanism>
<mechanism>ANONYMOUS</mechanism>
<mechanism>EXTERNAL</mechanism>
<mechanism>SAML20</mechanism>
</mechanisms>
</stream: features>

Step 9: Cloud continues with SASL based authentication
negotiation.

Step 10: Cloud selects an authentication mechanism:

<auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl’
mechanism='SAML20' />

Step 11: Intercloud Root sends a BASE64 [24] encoded
challenge to Cloud as an HTTP Redirect to the SAML
assertion consumer service with the SAML
Authentication Request in the redirection URL.

Step 12: Cloud sends a BASE64 encoded empty
response to the challenge:

XMPP, how one would go about invocation of a
SPARQL query with an Intercloud Root.

The following request invokes a SPARQL query
over an XMPP connection to the Intercloud Root, to
apply preferences and constraints to the resources in the
computing semantics catalog for determining if the
service description on another Cloud meets the
constraints of the first Cloud’s interest. We use IO Data
XEP, XMPP Web Services for Java (xws4j):

<response xmlns='urn:ietf:params:xml:ns:xmpp-sasl’> =
</response>

Step 13: The Cloud now sends the URL to the local
Intercloud Gateway for processing. The Intercloud
Gateway engages, just like a browser would, in a normal
SAML authentication flow (external to SASL), like
redirection to the Identity Provider. Once authenticated,
the Intercloud Gateways is passed back to the Cloud
who sends the AuthN XMPP response to the Intercloud
Root, containing the subject-identifier and the “jid” as
an attribute.

Step 14: Intercloud Gateway informs Cloud of
successful authentication:

<success xmlns='urn:ietf:params:xml:ns:xmpp-sasl’/>

Step 14 (alt): Intercloud Gateway informs Cloud of
failed authentication:

<failure xmlns=’'urn:ietf:params:xml:ns:xmpp-sasl’>
<temporary-auth-failure/>

</failure>

</stream:stream>

7. XMPP based Service Invocation

It was envisioned that the way a Cloud would find
the appropriate services is by leveraging a catalog of
available resources published in a directory residing in
the Intercloud Root. The Cloud’s resource needs would
be specified similarly, and a query would match the
availability to the need. The technologies to use for this
are based in the Semantic Web [25] which provides for
a way to add “meaning and relatedness” to objects on
the Web, by way of specifying Ontologies. For the
Intercloud, we use this technique to specify resources
such as storage, computing, and all the other possible
services which Cloud both expose and consume. RDF is
a way to specify such resources, and SPARQL [26] is a
query/matching system for RDF. Later we will expand
specifically on the RDF and SPARQL areas of the
Intercloud problem, but for now let us detail within

<ig type='set'
from="user@cloudl.org"
to='service.intercloudexchg.com'
id="cloudl_idl'>
<command xmlns=
'http://jabber.org/protocol/commands’
node='constraint_catalog_resources'
action='execute'>
<iodata xmlns=
'urn:xmpp:tmp:io-data' type='input'>
<in>
<constraints xmlns='http://www.csp/resOntology'>
<constraint>
<attribute>availabilityQuanity </attribute>
<value>99.999</value>
</constraint>
<constraint>
<attribute>replicationFactor</attribute>
<value>5</value>
</constraint>
<constraint>
<attribute>tierCountries</attribute>
<value>JAPAN</value>
</constraint>
<constraint>
<attribute>StorageReplicationMethod
</attribute>
<value>AMQP</value>
</constraint>
<constraint>
<attribute>InterCloudStorageAccess
</attribute>
<value>NFS</value>
</constraint>
</constraints>
</in>
</iodata>
</command>
</ig>

The above service invocation request results into the
following result set:

<ig type='result'
from='service.intercloudexchg.com'
to='user@cloudl.org'
id="cloudl_idl'>
<command xmlns=
'http://jabber.org/protocol/commands’
sessionid='RPC-SESSION-0000001"
node='constraint_catalog_resources'
status='completed'>
<iodata xmlns=
'urn:xmpp:tmp:io-data' type='output'>
<out>
<matchingClouds
xmlns=' http://www.csp/resOntology'>
<cloudName>cloud2</cloudName>
<cloudName>cloud5</cloudName>
</matchingClouds>
</out>
</iodata>
</command>
</ig>

The example shows how the service invocation
works inside of an XMPP conversation.

8. XMPP based Presence & Dialog

Next, assume that the requesting cloud has found a
target cloud with which to interwork. It must now turn
directly to the target cloud and dialog with it. This last
section describes such a cloud-to-cloud presence and
dialog scenario. The code sample is based on Google
AppEngine XMPP JAVA API set [27].

The following code sample tests for a service
availability then sends a message as part of the
collaboration dialog:

//

JID jid = new JID("user@cloud2.com");

String msgBody = "Cloud 2, I would like to use
your resources for storage replication using AMQP over
UDT protocol.";

Message msg = new MessageBuilder (

.withRecipientJids (jid)
.withBody (msgBody)
.build();

boolean messageSent = false;
XMPPService xmpp =
XMPPServiceFactory.getXMPPService () ;
if (xmpp.getPresence(jid) .isAvailable()) {
SendResponse status =
xmpp . sendMessage (msg) ;
messageSent =
(status.getStatusMap () .get (jid) ==
SendResponse.Status.SUCCESS) ;
}

if (!messageSent) {
// Send an email message instead...

}

Step 2: The following code sample shows how the
recipient Cloud responds back to the chat message as
part of the collaboration dialog.

/* Handler class for all XMPP activity. */
public class XmppReceiverServlet extends HttpServlet
{
private static final XMPPService xmppService =
XMPPServiceFactory.getXMPPService () ;

public void doPost (HttpServletRequest request,
HttpServletResponse response)
throws IOException {
Message message =
xmppService.parseMessage (request) ;

Message reply = new MessageBuilder ()
.withRecipientJids (message.getFromJid())
.withMessageType (MessageType.NORMAL)

.withBody ("Cloud 1, please go ahead and use my
resources for storage replication using AMQP/UDT
protocol.™)

.build() ;

xmppService.sendMessage (reply) ;
}

9. Ontology based Cloud Computing
Resources Catalog

In order for the Intercloud capable Cloud instances to
federate or otherwise interoperate resources, a Cloud
Computing Resources Catalog system is necessary
infrastructure. This catalog is the holistic and abstracted
view of the computing resources across disparate cloud
environments. Individual clouds will, in turn, will utilize
this catalog in order to identify matching cloud
resources by applying certain Preferences and
Constraints to the resources in the computing resources
catalog. The technologies to use for this are based on the
Semantic Web which provides for a way to add
“meaning and relatedness” to objects on the Web. To
accomplish this, one defines a system for normalizing
meaning across terminology, or Properties. This
normalization is called an Ontology.

Comprehensive semantic descriptions of services are
essential to exploit them in their full potential. That is
discovering them dynamically, and enabling automated
service negotiation, composition and monitoring. The
semantic mechanisms currently available in service
registries such as UDDI [28] are based on taxonomies
called “tModel” [29]. tModel fails to provide the means
to achieve this, as they do not support semantic
discovery of services [30][31].

We are proposing a new and improved service
directory on the lines of UDDI but based on RDF/OWL
[32] ontology framework instead of current tModel
based taxonomy framework. This catalog captures the
computing resources across all clouds in terms of
“Capabilities”, “Structural Relationships” and Policies
(Preferences and Constraints). This Catalog is illustrated
in Figure 3.

Intercloud Root

—TTTN

Governance

Hosts & Manages
ntercloud Catalog

""""""""""""" Enforces Policies'.-
- And Standards

Authors Intercloud

Policies and Standards’ oud Intercloud
; Camputing Exchanges
atalog),,‘,r””"y\\

Publishes

[Foomess
- andaig
Provider;’ e]
{ Adhetes to 4

Cloud Policies & Standards

y—

) Artifactsﬂ.»-"""’

based Service call >, Consumer

" Cloud

" Service Level T
Agreement Binding

consumes

Figure 3. Cloud Computing Catalog

10. Cloud Computing Resources Ontology

In order to ensure that the requirements of an
intercloud enabled cloud provider are correctly matched
to the infrastructure capabilities in an automated fashion,
there is a need for declarative semantic model that can
capture both the requirements and constraints of
computing resources.

Over the last several years, there has been ongoing
effort around automation of datacenter/s by companies
such as FElastra [33]. Elastra has defined a modeling
language called EDML [34] for specifying the
datacenter computing resources semantics in terms of
XML based markup language.

We are proposing a similar ontology based semantic
model that captures the features and capabilities
available from a cloud provider’s infrastructure. These
capabilities are logically grouped together and exposed
as standardized units of provisioning and configuration
to be consumed by another cloud provider/s. These
capabilities are then associated with policies and
constraints for ensuring compliance and access to the
computing resources.

The proposed ontology based model not only
consists of physical attributes but quantitative and
qualitative attributes such as “Service Level Agreements
(SLAs)”, “Disaster Recovery” policies, “Pricing”
policies, “Security and Compliance” policies, and so on.
The following is a high level schematic of such ontology
based semantic model.

Cloud Level Properties

+ StorageRep Legend
CloudDomainCapabllity - o PulcStomgedcess (| i
o IleCloucStoragehccess m
G Tiét Lavel Progertiss ——+ SubiClass Of
QR 7 T A [+ Uses
o Repialion Faclc:
CloudDomain + Storaga Pricing
4 . + Frocessing Pricieg
+ Tier Countrics
/ Bdi— " |
- Gloud 4 i /7[
1 : /H | . HostCapability
A ; //{cmbiriwsumq
g} L&]
i >| Tiar | % i
| ThzE | | i
R e et || [CPUGapabiy
) i f— ¥ MemoryCapabllity | |StorageCapabliity
‘—w}ﬁ _ma—j_‘_!&ﬁe o ! [Serozmiite] =
Bundlo Bundlo Bundle gz CPUCorsCapability
—— | | i 3 i
These Bundles need to be TR Min:w : LocalStorage |

exploded like “Storage
Bundle”

Figure 4. Cloud Computing Resources Ontology

At a very basic level, the RDF model is called a
“triple” as it consists of three parts,
Subject/Property/Object. It essentially contains one or
more “descriptions” of resources. A “description” is a
set of statements about a resource. It is structurally
similar to entity/attribute/value. Essentially, a statement
in RDF pulls resources, properties, and property values
together. Statements are typically called triples because
they include a subject (the resource), a predicate/verb
(the property), and an object (the property value or
another resource itself). RDF allows you to define a
group of things with common characteristics called
“Classes”. “Classes” are allowed to inherit
characteristics and behaviors from a parent class. Each
user-defined class is implicitly a subclass of super class
called “owl:Thing”.

The hierarchy of user-defined classes in our
proposed ontology scheme are “ResourceCapability” —
“CloudDomainCapability” — “CloudCapability” -
“TierCapabil;ity” — “CapabilityBundle”.

In order to demonstrate a working example, the
following is a code snippet of N-Triples [35] based
ontology semantic model instead. N-Triples and Turtle
[36] are a human-friendlier alternative to RDF/XML. N-
Triples or Turtle code, in turn, can be easily converted
to RDF/XML format using a converter tool. The
following sample shows the flow for semantic model for
cloud computing resources. Due to the large size of the
proposed semantic model for cloud computing resources,
we are unable to capture the sample RDF code snippet
in this document. In order to demonstrate our working
example, we are showing N-Triples [35] code snippet
instead.

Step 1: In our ontology example, “CloudDomain” is an
instance of class “CloudDomainCapability”. It consists
of three resources “Cloud.1”, “Cloud.2” and “Cloud.3”:

<http://cloud/domain>
<http://www.csp/resOntology#hasCapability>
<http://cloud/domain/#cloud.1>.

<http://cloud/domain>
<http://www.csp/resOntology#hasCapability>
<http://cloud/domain/#cloud.2>.

<http://cloud/domain>
<http://www.csp/resOntology#hasCapability>
<http://cloud/domain/#cloud.3>.

<http://cloud/domain> <http://www.w3.0rg/1999/02/22-
rdf-syntax-ns#type>
<http://www.csp/resOntology#ClouddomainCapability>.

<http://cloud/domain> <http://www.w3.0rg/2000/01/rdf-
schema#label> "Cloud Computing
domain"""<http://www.w3.0rg/2001/XMLSchema#string>.

Step 2: “Cloud.1”, in turn, consists of tier instances
“tier.1”, “tier.2” and “tier.3”:

<http://cloud/domain/#cloud.1>
<http://www.csp/resOntology#hasCapability>
<http://cloud/domain/cloud.l#tierl>.

<http://cloud/domain/#cloud.1>
<http://www.csp/resOntology#hasCapability>
<http://cloud/domain/cloud.l#tier2>.

<http://cloud/domain/#cloud.1>
<http://www.csp/resOntology#hasCapability>
<http://cloud/domain/cloud.l#tier3>.

<http://cloud/domain/cloud.l/bundle/#storagel>
<http://www.csp/resOntology#hasCapability>
<http://cloud/domain/cloud.1l/bundle/storagel#LocalStor
age0>.

<http://cloud/domain/cloud.l/bundle/#storagel>
<http://www.csp/resOntology#hasCapability>
<http://cloud/domain/cloud.1l/bundle/storagel#Memory>.

etc

Step 3: Each of these cloud instances has associated
properties such as “StorageReplicationMethod”,
“InterCloudStorageAccess” etc. etc. These properties
are, in turn, used for determining if the computing
resources of a cloud provider meet the preferences and
constraints of the requesting cloud’s interest and

requirements:

<http://cloud/domain/#cloud.1>
<http://www.csp/resOntology#hasCapability>
<http://cloud/domain/cloud.l#Storage-Replication-
Method>.

<http://cloud/domain/#cloud.1>
<http://www.csp/resOntology#hasCapability>
<http://cloud/domain/cloud.l#Inter-Cloud-Storage-
Access>.

<http://cloud/domain/#cloud.1>
<http://www.csp/resOntology#hasCapability>
<http://cloud/domain/cloud.l#Public-Storage-Access>.

etc

Step 4: Computing resources are logically grouped
together as bundles and exposed as standardized units of
provisioning and configuration to be consumed by
another cloud provider/s. These bundles are
“StorageBundle”, “ProcessingBundle” and
“NetworkBundle”. Each “Tier”, in turn, consists of
instances of resource bundles such as “StorageBundle”
etc. Each “Tier” also has its own associated properties

depicting preferences and constraints:

11. SPARQL Query Language

SPARQL is a very powerful SQL-like language for
querying and making semantic information machine
process-able. The structure and example of a SPARQL
Query is illustrated in Figure 5.

Structure:
PREFIX: Prefix definition (optional)
SELECT: Result form
FROM: Data sources (optional)
WHERE: Graph pattern (=path expression)
oFTLTER
eOPTIONAL

Example:
PREFIX geo: <http://www.geography.org/schema.rdf#>
SELECT ?X ?Y
FROM <http://www.geography.org>
WHERE { ?X geo:hasCapital ?Y.
?Y geo:areacode ?7 }
ORDER BY ?X

Figure 5. Structure & Example of SPARQL Query

SPARQL provides a very powerful language for
executing very complex queries into the RDF data
which are often necessary. In our case, the following
example query applies certain Preferences and
Constraints to the resources in the computing semantics
catalog for determining if the service description on
another cloud meets the constraints of the first cloud’s
interest:

<http://cloud/domain/cloud.l#tierl>
<http://www.csp/resOntology#hasCapability>
<http://cloud/domain/cloud.1l/bundle/#storagel>.

<http://cloud/domain/cloud.l#tierl>
<http://www.csp/resOntology#hasCapability>
<http://cloud/domain/cloud.l/bundle/#processingl>.

<http://cloud/domain/cloud.l#tierl>
<http://www.csp/resOntology#hasCapability>
<http://cloud/domain/cloud.1l/bundle/#networkl>.

etc

Step 5: “StorageBundle”, in turn, consists of resources
such as “CPU”, “CPU Cores”, “Memory” and

“LocalStorage”:

<http://cloud/domain/cloud.1l/bundle/#storagel>
<http://www.csp/resOntology#hasCapability>
<http://cloud/domain/cloud.l/bundle/storagel#CPU>.

PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema#>
SELECT °?cldl ?cld2 ?cld3 ?cld4 ?cld5

WHERE { 2cldl
<http://www.csp/resOntology#availabilityQuanity> ?avai
labilityQuanity .

?cld2
<http://www.csp/resOntology#replicationFactor> ?replic
ationFactor .

?cld3
<http://www.csp/resOntology#tierCountries> ?tierCountr
ies

?cld4
<http://www.csp/resOntology#StorageReplicationMethod>
?StorageReplicationMethod .

?cld5 <http://www.csp/resOntology#
InterCloudStorageAccess > ?InterCloudStorageAccess
FILTER (?availabilityQuanity = 99.999
FILTER (?replicationFactor = 5)

FILTER (?tierCountries = "Japan")
FILTER (?StorageReplicationMethod = "AMQP")
FILTER (?InterCloudStorageAccess = "NFS")

}

12. Conclusions

We have gone into some detail to test the proposal
that XMPP is a suitable control plane protocol for
Intercloud. We successfully addressed topology,
security, authentication, service invocation, and
transported RDF and SPARQL within XMPP, We also
used an XMPP Java API to a Cloud Service. Next we
tested the proposal that Intercloud Exchanges with
Ontology based Computing Resources Catalog can be
the enablement of a “Federated Cloud” environment.
The conclusion is that we have found XMPP and RDF
along with the Intercloud Topology concepts, and an
Intercloud Catalog using Ontology, to be a flexible and
usable approach to the Intercloud problem.

13. References

[1] Youseff, L. and Butrico, M. and Da Silva, D.,
Toward a unified ontology of cloud computing, GCE’08
Grid Computing Environments Workshop, 2008.

[2] Lijun Mei, W.K. Chan, T.H. Tse, 4 Tale of Clouds:
Paradigm Comparisons and Some Thoughts on
Research Issues, APSCC pp.464-469, 2008

[3] Cloud Computing Use Cases Google Group (Public),
at http://groups.google.com/group/cloud-computing-use-
cases, http://www.scribd.com/doc/18172802/Cloud-
Computing-Use-Cases-Whitepaper ,

[4] Buyya, R. and Pandey, S. and Vecchiola, C.,
Cloudbus toolkit for market-oriented cloud computing,

1st International CloudCom , 2009
[5] Yildiz M, Abawajy J, Ercan T., Bernoth A., 4
Layered Security Approach for Cloud Computing
Infrastructure, ISPAN, pp.763-767, 2009
[6] Bernstein, D., Ludvigson, E., Sankar, K., Diamond,
S., and Morrow, M., Blueprint for the Intercloud -
Protocols and Formats for Cloud Computing
Interoperability, ICIW '09. Fourth International
Conference on Internet and Web Applications and
Services, pp. 328-336, 2009
[7] Bernstein, D., Keynote 2: The Intercloud: Cloud
Interoperability at Internet Scale, NPC, pp.xiii, 2009
Sixth IFIP International Conference on Network and
Parallel Computing, 2009

[8] Extensible Messaging and Presence Protocol
(XMPP): Core, and related other RFCs at
http://xmpp.org/rfecs/rfc3920.html
[9]1 XMPP Standards Foundation at http://xmpp.org/
[10] W3C Semantic Web Activity, at
http://www.w3.0rg/2001/sw/

[11] Resource Description Framework (RDF), at
http://www.w3.org/RDF/

[12] Domain Names — Concepts and Facilities, and
related other RFCs, at
http://www.ietf.org/rfc/rfc1034.txt

[13] Domain Name System Structure and Delegation, at
http://www.ietf.org/rfc/rfc1591.txt

[14] Internet X.509 Public Key Infrastructure,
Certificate Policy and Certification Practices
Framework, at http://tools.ietf.org/html/rfc3647

[15] The Internet Society, at http://www.isoc.org/

[16] The Internet Corporation for Assigned Names and
Numbers, at http://www.icann.org/

[17] Simple Authentication and Security Layer (SASL),
at http://tools.ietf.org/html/rfc4422

[18] Security Assertion Markup Language (SAML), at
http://saml.xml.org/saml-specifications

[19] XEP-0244: 10 Data, at
http://xmpp.org/extensions/xep-0244.html,

[20] XMPP Web Services for Java (XWS4J), at
http://sourceforge.net/projects/xws4j/

[21] The Transport Layer Security (TLS) Protocol, at
http://tools.ietf.org/html/rfc5246

[22] Internet Message Access Protocol (IMAP), at
http://tools.ietf.org/search/rfc3501

[23] Post Office Protocol (POP3), at
http://tools.ietf.org/html/rfc1939

[24] The Basel6, Base32, and Base64 Data Encodings,
at http://www.ietf.org/rfc/rfc4648.txt

[25] W3C Semantic Web Activity, at
http://www.w3.0rg/2001/sw/

[26] SPARQL Query Language for RDF, at
http://www.w3.org/TR/rdf-sparql-query/

[27] Google App Engine, The XMPP Java API, at
http://code.google.com/appengine/docs/java/xmpp/
[28] OASIS UDDI Specification TC, at
http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=uddi-
spec

[29] UDDI Registry tModels, at
http://www.uddi.org/taxonomies/UDDI Registry tMod
els.htm

[30] Paolucci, M., Kawamura T., Payne T., and Sycara
K., Importing the Semantic Web in UDDI, Web Services,
E-Business and Semantic Web Workshop, 2002.

[31] Moreau, L. and Miles, S. and Papay, J. and Decker,
K. and Payne, T., Publishing semantic descriptions of
services, First GGF Semantic Grid Workshop, held at
the Ninth Global Grid Forum, Chicago IL, USA, 2003
[32] Web Ontology Language, at
http://www.w3.org/TR/owl-features/

[33] Elastra, at http://www.elastra.com

[34] EDML, at
http://www.elastra.com/technology/languages/edml
[35] N-Triples, at
http://www.w3.0rg/2001/sw/RDFCore/ntriples/

[36] Turtle — Terse RDF Triple Language, at
http://www.w3.org/TeamSubmission/turtle/#sec-diff-n3

