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ABSTRACT

The intercomparison of streamflow simulation and the prediction of discharge using various

renowned machine learning techniques were performed. The daily streamflow discharge model

was developed for 35 observation stations located in a large-scale river basin named Cauvery.

Various hydrological indices were calculated for observed and predicted discharges for

comparing and evaluating the replicability of local hydrological conditions. The model variance

and bias observed from the proposed extreme gradient boosting decision tree model were less

than 15%, which is compared with other machine learning techniques considered in this study.

The model Nash–Sutcliffe efficiency and coefficient of determination values are above 0.7 for

both the training and testing phases which demonstrate the effectiveness of model

performance. The comparison of monthly observed and model-predicted discharges during the

validation period illustrates the model’s ability in representing the peaks and fall in high-,

medium-, and low-flow zones. The assessment and comparison of hydrological indices between

observed and predicted discharges illustrate the model’s ability in representing the baseflow,

high-spell, and low-spell statistics. Simulating streamflow and predicting discharge are essential

for water resource planning and management, especially in large-scale river basins. The

proposed machine learning technique demonstrates significant improvement in model

efficiency by dropping variance and bias which, in turn, improves the replicability of local-scale

hydrology.
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HIGHLIGHTS

• The credibility of machine learning models in representing the regional-scale hydrology is

performed.

• Evaluation to prioritize model selection for river basin management.

• Season-based approach in evaluating model performance in local hydrology.

• Hydrological indices were inter-compared for high-, medium-, and low-flow zones.

• Outcome delivers valuable suggestions to decision-makers in the planning of future water

resources.
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INTRODUCTION

The human population makes use of global runoff up to 54%

for various purposes such as consumption, extraction, and

instream flow needs (Andreadis et al. ). Moreover, the esti-

mation of global streamflow is highly uncertain because of

limitations in observation and reachability. The simulation

and forecasting of streamflow is a primary necessity in water

resource planning and management (Hashim et al. ; Ker-

sbergen ; Adnan et al. b; Choubin et al. ). The

forecasting of river flow with higher accuracy is essential for

early hazard mapping and management which benefits a

huge population and socio-economic activities (Wu & Chau

; Taormina & Chau ; Hussain &Khan ; Shamshir-

band et al. ). Further, the forecast will help in minimizing

potential risks of flood and droughts, water supply for urban

areas, irrigation planning for agricultural purposes, and also

hydro-power projects (Londhe & Charhate ; Fotovatikhah

et al. ; Adnan et al. a; Homsi et al. ). An important

issue in hydrological streamflow time-series prediction has

been a greater concern in the past few decades.

Numerous models were proposed for forecasting and

simulating the river discharge in various parts of the globe,

especially data-driven models which had an upper hand

over physical conceptual models due to their ease and com-

putational efficiency (Wu et al. ; Diop et al. ; Adnan

et al. a; Alizamir et al. ). However, it is difficult to

find a model that performs equally well for low-, medium-,

and high-flow zones. Thus, the forecasting of streamflow

becomes more complex and makes it difficult to create a

real-time early warning system (Rezaie-Balf & Kisi ;

Yaseen et al. b; Adnan et al. b; Li et al. ). In

this concern, there is a need for a new forecasting approach

that will be effective as well as efficient in predicting reliable

and accurate data. In recent times, several researchers

suggested that machine learning models predict streamflow

with various significant approaches (Rezaie-balf et al. ;

Kaya et al. ; Keum et al. ; Tikhamarine et al.

). These learning algorithms are data-driven models

with the ability to learn the local environment and respond

based on the scenarios with high accuracy.

In recent decades, various machine learning algorithms

were proposed by researchers for predicting streamflow with

decent performance. Previous studies suggested renowned

machine learning techniques such as generalized linear

model (GLM; Asong et al. ), partial least-squared

regression (PLS; Matulessy et al. ), neural network

(NNET; Coulibaly et al. ), K-nearest neighbor (KNN;

Devak et al. ; Sekhar et al. ), and principle com-

ponent regression (PCR; Sahriman et al. ), which are

better for representing the local hydrological process. How-

ever, most of the machine learning techniques perform well

in forecasting during the training period but fail to do the

same in the testing period (Ghorbani et al. ; Yuan

et al. ; Naganna et al. ; Yaseen et al. a). The

trick of handling bias and high variance in streamflow is

still not resolved which clearly shows the overfitting issues

associated with machine learning algorithms.

Though there are numerous machine learning techniques

which perform better in streamflow projection, research

scientists are facing issues in handling the drawbacks and

improvising the model performance. Unfortunately, no tech-

nique overcomes all the drawbacks as we are still exploring

methods to accurately model the local hydrological process.

The present study proposes the Extreme Gradient Boosting

Decision Tree (EXGBDT) approach for comparing its per-

formance with other traditional models and validating it

through the evaluation of various hydrological indices. The

present study aims to predict river discharge with the help

of daily weather parameters such as precipitation, average

temperature, maximum temperature, and minimum tempera-

ture. The intercomparison of data-driven hydrological models

was performed with renowned machine learning techniques

and a proposed method to attain a low bias and variance in

monthly streamflow prediction.

Numerous hydrological studies over the Indian subconti-

nent have previously been performed (Kale et al. ;

Bhuvaneswari et al. ; Bhave et al. ; Arulbalaji & Pad-

malal ). However, most of the studies focused on the sub-

basin-level and station-level discharge prediction. The current

study deals with a large-scale river basin named Cauvery river

basin located in southern peninsular India, which has fre-

quent flood and drought issues. The study basin is one of

the essential rivers in the southern part of India which
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provides water supply to a huge urban community for dom-

estic use and enormous agricultural land area for irrigation

purposes. Therefore, it is essential to model the streamflow

and forecast the discharge pattern throughout the tributaries

of the river basin. It is essential to build an individual model

that performs equally well at low-, medium- and high-dis-

charge stations to reduce the computational burden. Thus,

an intercomparison of various machine learning model per-

formances is carried out to select an optimum model and

validated through the evaluation of multiple hydrological

indices. The key objectives of the present study are (1) to

improve the quality of observed hydrological time-series

data by handling missing values and (2) to develop a hydrolo-

gical model to perform equally well at low-, medium-, and

high-flow zones at a large-scale river basin.

STUDY AREA

Geography

The current study was conducted over the Cauvery river

basin, which is located over the southern peninsular

region of the Indian subcontinent. The basin extends over

75�270E to 79�540E and 10�90N to 13�300N and lies over

three states and one union territory. The river originates in

Karnataka and meets the sea at Tamil Nadu passing through

Kerala and Pondicherry. The total drainage area of the basin

is 85,626 km2, and the overall length of the river is 802 km.

The boundary map representing the extent of the Cauvery

river basin is presented in Figure 1. The river is confined

by the Western Ghats and the Eastern Ghats on the west

and east, respectively. The key portion of the river basin is

concealed with cultivated land and forest, and it is also

known as the rice bowl of South India. The water depletion

in the basin has increased by up to 40% in the past few dec-

ades (Raju et al. ; Madolli et al. ). The risk of drought

is high during the dry seasons, and the risk of flood is high

during monsoon seasons in the basin area.

Climate

The Cauvery river basin is known for its tropical and sub-tro-

pical climate zones where the north-west region is colder

than the rest of the basin. The basin has four seasons,

namely winter (December to February), summer (March to

June), south-west monsoon (July to September), and north-

east monsoon (October to November) (Bhuvaneswari

et al. ; Madolli et al. ). The basin remains dry

during summer and winter, which contributes a longer

period of the year, and the monsoon season brings rainfall

to the entire basin (Solaraj et al. ; Bhave et al. ).

April is the hottest month, whereas January is the coldest

Figure 1 | Cauvery river basin boundary map.
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month of the whole basin, and the average monthly temp-

erature ranges from 18 to 33 �C (Nadu & Nadu ; Sunil

et al. ). The basin is further classified into the upper,

middle, and lower basins for a better comparison of climate

variability and river flow discharge patterns within the

basin. Further, it will help compare the different flow pat-

terns in high-, medium-, and low-flow regions.

DATASETS

Observed data

Meteorological data are essential for predicting the streamflow

of the river basin. Meteorological datasets include daily pre-

cipitation (rainfall) and temperature (minimum, maximum,

and average). There are three main organizations in India

which record meteorological parameters which are (1) India

Meteorological Department (IMD), (2) Central Water Com-

mission (CWC), and (3) Indian Space Research Organization

(ISRO) Automatic Weather Stations. CWC has established

35 stations located in the basin to recognize the atmospheric

and river dynamics relationship. The hydro-meteorological

and river flow data from these 35 daily observed stations posi-

tioned in the Cauvery river basin from 1951 to 2015 are

collected. The description of the observation stations situated

in the Cauvery river basin is presented in Table 1. The classifi-

cation of the Cauvery river basin, observation stations, and

river line is mapped in Figure 2. The details of station numbers

provided in Figure 2 are explained in Table 1.

The historical observed data for the study area is col-

lected concerning 35 observation stations from 1950 to

2015. Further, the entire time-series data are divided into

the calibration period (1950–2000) and the validation

period (2001–2015) for better consideration and evaluation

of the model performance. The selected weather parameters

and their short name, description, and units are presented in

Table A1 (Appendix). The classification of the Cauvery basin

into the upper, middle, and lower basins for a better com-

parison of river flow discharge patterns within the basin is

illustrated in Figure 3. The framework adopted in this

study is presented in the following section.

Table 1 | Cauvery river basin observation stations description

S. No. Station Station ID Latitude Longitude S. No. Station Station ID Latitude Longitude

Upper Cauvery river vasin Middle Cauvery river basin

1 Akkihebbal 1 12�360100 0 76�24030 0 1 Biligundulu 4 12�100480 0 77�430480 0

2 Bendrehalli 3 12�2080 0 77�00530 0 2 E-Managalam 6 11�10590 0 77�530310 0

3 Chunchunkatte 5 12�300250 0 76�18000 0 3 Hogenakkal 8 12�70150 0 77�47070 0

4 K.M.Vadi 9 12�200320 0 76�170150 0 4 Kanakpura 10 12�320410 0 77�250370 0

5 Kollegal 12 12�110170 0 77�50590 0 5 Kodumudi 11 11�5050 0 77�530180 0

6 Kudige 13 12�30060 0 75�570400 0 6 Kudlur 14 11�500260 0 77�270450 0

7 M.H.Halli 15 12�49090 0 76�8020 0 7 Musiri 17 10�560400 0 78�26010 0

8 Sakleshpur 24 12�57080 0 75�470120 0 8 Muthankera 18 11�500490 0 76�70150 0

9 T.Narasipur 28 12�130540 0 76�530290 0 9 Nalammaranpatti 19 10�520540 0 77�59030 0

10 Thimmanahalli 33 12�580560 0 76�20160 0 10 Nellithurai 21 11�170170 0 76�530290 0

Lower Cauvery river basin 11 Savandapur 25 11�310220 0 77�300240 0

1 Annavasal 2 10�580210 0 79�450270 0 12 Sevanur 26 11�330160 0 77�420520 0

2 Gopurajapuram 7 10�51040 0 79�48000 0 13 T.Bekuppe 27 12�300580 0 77�260150 0

3 Menangudi 16 10�560550 0 79�420190 0 14 T.K.Halli 29 12�25000 0 77�110330 0

4 Nallathur 20 10�590280 0 79�470180 0 15 Thengumarahada 31 11�340210 0 76�55080 0

5 Peralam 22 10�580100 0 79�390380 0 16 Thevur 32 11�310420 0 77�45060 0

6 Porakudi 23 10�540130 0 79�420270 0 17 Thoppur 34 11�560180 0 78�30180 0

7 Thengudi 30 10�540560 0 79�380210 0 18 Urachikottai 35 11�280430 0 77�42000 0
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METHODOLOGY

The proposed framework for building a data-driven hydrologi-

cal model for simulating and forecasting streamflow in the

Cauvery river basin is represented in Figure 4. The initial

steps involve the collection of data for the study area which

includes meteorological data and discharge data. The station-

wise observed weather parameters (pr, tas, tasmax, and

tasmin) are collected for the assigned baseline period of

1951–2005. For the same baseline period, the observed stream-

flow data for 35 stations along the Cauvery river basin are

extracted. The collected discharge data are imputed for miss-

ing values using the weather data. Further, the collected data

are divided into calibration (75%) and validation (25%)

Figure 2 | Cauvery river basin elevation and observation stations.
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datasets, i.e. 1951–1990 and 1991–2005, respectively. Later, the

data-driven models are built using the selected machine learn-

ing models and proposed models for comparison of

performance. The performance of the various models is evalu-

ated by various performance evaluation parameters such as

normalized root-mean-squared error (NRMSE %), percentage

bias (PBIAS %), Nash–Sutcliffe efficiency (NSE), and coeffi-

cient of determination (R2) for both calibration and validation

periods. Further, the better performing model is selected

based on the evaluation and hydrological indices which are cal-

culated to compare with the actual observed data.

Extreme gradient boosting decision tree

The extreme gradient boosting method combines weak

learners into a strong learner by performing multiple iter-

ations. The main objective of the algorithm is to teach a

model to predict the target by reducing the mean-squared

error (MSE) of the prediction (Georganos et al. ), which

can be represented in the common equation as follows:

ŷ ¼ F(x) (1)

where MSE¼ 1=n
P

i

(ŷi � yi)
2, ŷi is the predicted value of

F(x), yi is the observed value, and n is the number of samples

in y. Consider a gradient boosting algorithm with N stages at

each stage n (1 � n � N) of gradient boosting. Where an

imperfect model Fn for low n, this model can be simply

represented as ŷi ¼ �y (mean of y). So, to improve Fn,

the algorithm adds some new estimators, i.e. hn(x).

Fnþ1(x) ¼ Fn(x)þ hn(x) ¼ y (or) hn(x) ¼ y� Fn(x) (2)

Thus, the gradient boosting estimator will fit the

residual. Further, Fnþ1 tries to specify the errors Fn.

LMSE ¼
1

2
(y� F(x))2 (3)

hn(x) ¼ �
@LMSE

@F
¼ y� F(x) (4)

Thus, the gradient boosting could be generalized to a

gradient descent algorithm for different loss and its gradient.

In most of the supervised learning algorithms, the output

variable y with the input variable x is represented as joint

probability distribution P(x,y), where the training set

Figure 3 | Cauvery river basin classification.
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{(x1, y1), . . . , (xn, yn)} with the known x value and the corre-

sponding y value. The target is to find F̂(x) for a function F(x)

which reduces the loss with a loss function L(y, F(x))

F̂ ¼ argmin
F

Ex,y[L(y, F(x))] (5)

The gradient boosting method adopts known y and finds

F̂(x) by a weighted sum of hi(x) from classH, known as weak

learners:

F̂(x) ¼
X

M

i¼1

γihi(x)þ const (6)

For empirical risk minimization, the technique tries to

find F̂(x) reduces loss function for the training data. It is

attained by a base model with constant function F0(x), and

additively increasing greedily:

F0(x) ¼ argmin
γ

X

n

i¼1

L(yi, γ) (7)

Fm(x) ¼ Fm�1(x)þ argmin
hm∈H

X

n

i¼1

L(yi, Fm�1(xi)þ hm(xi))

" #

(8)

where hm ∈ H is a base learner function.

The complexity lies in the high computation require-

ment for optimizing loss function L for choosing the beat

function h. Thus, a simplified approach is carried out by

applying a steepest descent step to minimize the problem.

Considering a continuous case where H is a set of arbitrary

differentiable functions on R and the model can be updated

as follows:

Fm(x) ¼ Fm�1(x)� γm

X

n

i¼1

∇Fm�1
L(yi, Fm�1(xi)) (9)

γm ¼ argmin
γ

X

n

i¼1

L(yi, Fm�1(xi)� γ∇Fm�1
L(yi, Fm�1(xi)))

(10)

where the functions Fi derivatives are taken for

i ∈ {1, . . . , m} and the step length is γm.

Hydrological indices

Insight into the streamflow model can be obtained by evalu-

ating various hydrological statistics such as baseflow, high-,

and low-spell statistics (Ladson et al. ; Ward ;

Booker ). In this study, various hydrological indices

which enlighten in-depth details of discharge at a selected

basin were evaluated. Initially, the station-wise hydrological

indices are calculated using the observed streamflow and

later, these indices are compared with the simulated dis-

charge to access the ability of the model in representing

the local scenarios (Van Der Velde et al. ; Piras et al.

). Various hydrological indices considered and evalu-

ated in this study using Hydrostats R package are given in

Table A2 (Appendix).

Figure 4 | Model selection and validation for streamflow prediction.
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RESULTS AND DISCUSSION

The intercomparison of machine learning models in the

robustness of simulation and forecasting of streamflow is

performed. The datasets are processed as mentioned in the

framework and model results are presented concerning

models’ calibration and validation for a better understand-

ing of model performance. The performance of selected

models and their ability in representing the local conditions

are discussed in the following sections.

Intercomparison of machine learning models

The historical station observed daily discharge and weather

parameters considered in this study for the selected duration

of 1951–2015 (65 years) are converted into time-series data.

Further, the data are split into training data 1951–2000 (50

years) and testing data 2001–2015 (15 years). The interann-

ual variability of observed data for precipitation and

discharge for three different stations (Chunchunkatte,

T.K.Halli, and Peralam from the upper, middle, and lower

basins, respectively) from each sub-basin is presented in

Figure 5. The plot clearly shows the annual trend precipi-

tation and its respective discharge amount. There is a

significant drop in discharge trend, especially in the lower

Cauvery river basin over the past few decades. This is poss-

ibly due to rapid urbanization and amplified riverbed sand

mining.

The streamflow for 35 observation stations is modeled

using station observed precipitation, average, minimum,

and maximum temperature data. The simulations were

made using GLM, PLS, NNET, KNN, PCR, and the pro-

posed EXGBDT model for the calibration period and

predicted for the validation phase. The performance of

each model is evaluated using the selected performance

evaluation parameters and the observations are given in

Table 2. The table compared the performance of each

model at the calibration and validation phases. The evalu-

ation parameters clearly state that the performance of

models during the validation phase is slightly lower than

the calibration. It is also evident that the proposed

EXGBDT model performs exceptionally well compared to

other machine learning models. The variance of the

Figure 5 | Interannual variability of precipitation and streamflow.
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proposed model for the testing period is around 15%

throughout the basin and bias is reduced to less than 6%.

Further, the R2 and NSE values are above 0.7, illustrating

the model efficiency. The plot showing the intercomparison

of streamflow simulation outcomes from various machine

learning models is given in Figure 6. The monthly hydro-

graph of considered models was compared for sample

high-, medium-, and low-flow stations from upper, middle,

and lower basins. The hydrographs show a close associ-

ation of EXGBDT model simulation, especially in peaks

and fall throughout various discharge ranges.

The EXGBDT model is selected due to its advantages

over other machine learning models for predicting the

streamflow discharge at the Cauvery river basin. The

model is built to simulate the discharge using training data

and the same model is used to predict the discharge for

the testing period. The outcome is signified in Figure 7

which illustrates the significance of the model at both cali-

bration and validation phases. Further, the ability of the

model in representing the local conditions is evaluated

through various hydrological indices in the following

section.

Hydrological indices

The comparison of hydrological indices for observed and

modeled discharges over the Cauvery river sub-basins is

given in Table 3. The daily discharge data are used to

calculate these indices. The table gives the percentage of

the variance between observed and model data at each

index considering 35 stations. The percentage variance

shows that the model is performing well in representing

the baseflow statistics such as mean and median daily

flow, mean baseflow volume, and index. Similarly, the

model signifies high-spell and low-spell statistics with an

acceptable variance in all sub-basins. The assessment of

performance evaluation parameters and the evaluation of

hydrological indices suggest that the proposed model is

better at representing the local conditions. Consequently,

the model can be suggested for forecasting future discharge

projection for river basin-scale studies.

SUMMARY AND CONCLUSIONS

The intercomparison of streamflow simulation and predic-

tion models using various machine learning techniques

was conducted. A large-scale river basin located in southern

peninsular India named Cauvery with frequent floods and

drought problems was considered in this study. The daily

streamflow discharge model was developed for 35 stations

located in the basin using the daily observed precipitation,

average, maximum, and minimum temperature. The per-

formance of various machine learning models was

evaluated and compared for model selection. Later, various

hydrological indices were calculated for observed and

Table 2 | Intercomparison of performance evaluation

Sub-basin PEP

Calibration Validation

GLM PLS NNET KNN PCR EXGBDT GLM PLS NNET KNN PCR EXGBDT

Upper basin NRMSE 12.1 12.3 13.0 13.5 14.1 6.4 26.2 28.0 29.9 34.0 31.4 13.1

PBIAS 0.0 0.0 0.5 1.9 0.0 0.0 14.7 16.2 17.1 20.1 17.3 4.0

NSE 0.7 0.7 0.7 0.8 0.6 0.9 0.4 0.3 0.3 0.4 0.3 0.8

R2 0.7 0.7 0.7 0.8 0.6 0.9 0.5 0.4 0.4 0.4 0.4 0.8

Middle basin NRMSE 16.6 19.1 19.1 19.1 21.6 10.2 28.6 30.5 32.4 37.6 33.0 15.5

PBIAS 0.0 0.0 0.2 0.9 0.0 0.0 12.3 12.0 12.8 13.5 13.4 1.4

NSE 0.6 0.5 0.5 0.6 0.4 0.8 0.3 0.3 0.3 0.3 0.3 0.7

R2 0.6 0.5 0.5 0.6 0.4 0.8 0.4 0.3 0.3 0.3 0.3 0.7

Lower basin NRMSE 8.2 8.0 9.4 11.8 9.4 3.9 17.1 18.3 20.0 23.6 20.7 11.1

PBIAS 0.0 0.0 0.0 0.2 0.0 0.0 16.9 20.4 19.4 18.0 22.3 5.6

NSE 0.7 0.7 0.7 0.8 0.6 0.9 0.5 0.5 0.5 0.5 0.4 0.8

R2 0.7 0.7 0.7 0.8 0.6 0.9 0.6 0.6 0.6 0.6 0.5 0.8
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predicted discharges for comparing and evaluating the

replicability of local conditions.

The following conclusions were drawn from the study:

(1) The model variance and bias of the EXGBDT are less

than 15 and 5%, respectively, throughout the basin,

which is the least compared with other machine learn-

ing techniques considered in this study.

(2) The NSE and R2 values are above 0.7 for both the

training and testing phases which demonstrate the effec-

tiveness of the model’s performance.

Figure 6 | Intercomparison of streamflow simulation by machine learning models.
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Figure 7 | Streamflow prediction using the EXGBDT model.

1834 P. Loganathan & A. B. Mahindrakar | Intercomparing the robustness of machine learning in simulating streamflow Journal of Water and Climate Change | 12.5 | 2021

Downloaded from http://iwaponline.com/jwcc/article-pdf/12/5/1824/923050/jwc0121824.pdf
by guest
on 20 August 2022



(3) The comparison of monthly observed and model-

predicted discharges during the validation period

illustrates the model’s ability in representing the peaks

and fall in high-, medium-, and low-flow zones.

(4) The assessment and comparison of hydrological indices

between observed and predicted discharges illustrate the

model’s ability in representing the baseflow, high-flow,

and low-flow statistics.

Simulating streamflow and predicting discharge are

essential for water resource planning and management

especially in large-scale river basins. The proposed machine

learning technique demonstrates significant improvement in

model efficiency by dropping variance and bias, which in

turn improves the replicability of local-scale hydrology.

The present study considered streamflow discharge simu-

lation of individual station projection and performance.

However, simulation based on stream order is not per-

formed in this study which can be considered as the future

direction in improvement of the model performance.
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