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Abstract—As the volume of hyperspectral data for planetary
exploration increases, efficient yet accurate algorithms are decisive
for their analysis. In this paper, the capability of spectral unmixing
for analyzing hyperspectral images from Mars is investigated.
For that purpose, we consider the Russell megadune observed
by the Compact Reconnaissance Imaging Spectrometer for Mars
(CRISM) and the High-Resolution Imaging Science Experiment
(HiRISE) instruments. In late winter, this area of Mars is ap-
propriate for testing linear unmixing techniques because of the
geographical coexistence of seasonal CO2 ice and defrosting dusty
features that is not resolved by CRISM. Linear unmixing is carried
out on a selected CRISM image by seven state-of-the-art ap-
proaches based on different principles. Three physically coherent
sources with an increasing fingerprint of dust are recognized by
the majority of the methods. Processing of HiRISE imagery allows
the construction of a ground truth in the form of a reference
abundance map related to the defrosting features. Validation of
abundances estimated by spectral unmixing is carried out in an
independent and quantitative manner by comparison with the
ground truth. The quality of the results is estimated through
the correlation coefficient and average error between the recon-
structed and reference abundance maps. Intercomparison of the
selected linear unmixing approaches is performed. Global and
local comparisons show that misregistration inaccuracies between
the HiRISE and CRISM images represent the major source of
error. We also conclude that abundance maps provided by three
methods out of seven are generally accurate, i.e., sufficient for a
planetary interpretation.
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I. INTRODUCTION

V ISIBLE and near-infrared imaging spectroscopy is a key
remote sensing technique to study planetary objects.

Since their first appearance in 1989, imaging spectrometers
have been aboard an increasing number of orbiters aimed at
exploring our solar system. This kind of sensors have been
decisive when addressing issues related to the surface or the
atmosphere of Mars, Venus, Jupiter, Saturn, and their moons
[1]–[5]. In particular, imaging spectroscopy gives outstand-
ing results regarding the chemical composition and physical
state of solid surfaces, thus providing clues about present and
past activity and environmental conditions. Constant techno-
logical improvements promote the acquisition of dramatically
expending collections of hyperspectral images. For instance,
the Compact Reconnaissance Imaging Spectrometer for Mars
(CRISM) aboard Mars Reconnaissance Orbiter (MRO) is the
first hyperspectral imager to operate systematically in multi-
angle mode at high spatial resolution from orbit [1].

Because of the increasing volume and complexity of plane-
tary hyperspectral data such as CRISM’s, efficient yet accurate
algorithms are decisive for their analysis. Unsupervised spectral
unmixing techniques are potentially relevant tools, particularly
in planetary sciences for which only few ground truth data
are available. These techniques aim at separating the existent
mixtures between the different contributions—coming mainly
from materials at the surface—that form the remotely sensed
signal. Materials (i.e., physical sources) at the surface are char-
acterized by their spectral signatures determined by their intrin-
sic chemical composition. Due to limitations of sensor spatial
resolution and multiple scattering of solar photons occurring
among distinct physical sources, different spectral signatures
may be combined both linearly (i.e., geographic mixtures) and
nonlinearly (e.g., intimate mixtures).

First attempts in applying spectral unmixing techniques to
planetary hyperspectral data are based on a linear model of
the signal, even though nonlinear processes might prevail. The
Independent Component Analysis (ICA) has been proposed to
extract the existent spectral components (i.e., endmembers) in
a hyperspectral image by assuming that physical sources are
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non-Gaussian and mutually independent. Application of ICA
on images acquired by the Observatoire pour la Minéralogie,
l’Eau, les Glaces et l’Activité (OMEGA) hyperspectral imager
allows the retrieval of meaningful endmembers in [6]. Likewise,
spectra measured by the Visible and Infrared Thermal Imaging
Spectrometer (VIRTIS) on the nightside of Venus are analyzed
with ICA in [7]. In that study, several extracted endmembers
are related to physical components or processes due to good
correlation of the corresponding distribution maps with known
structures of the Venusian atmosphere. Nonetheless, the role of
ICA to carry out spectral unmixing is questioned in [8] since
the independence of abundance distributions is not satisfied.
Another important limitation of ICA is the potential unphysical
results in the form of negative values affecting the extracted
spectra or abundances. On the other hand, for more than a
decade, the Non-negative Matrix Factorization (NMF) has been
an alternative method to solve the unmixing problem under a
linear model with non-negative constraint [9]. For instance, the
NMF approach has been used in planetary exploration to esti-
mate the surface composition of Mars using data acquired by
the Martian rovers [10]. Likewise, the NMF problem has been
solved in a Bayesian framework through the Bayesian Positive
Source Separation (BPSS) [11] ensuring a unique robust solu-
tion. In [12], a combination of spatial ICA and BPSS applied on
OMEGA data leads to endmembers whose associated spectra
and abundance maps correlate satisfactorily with reference
signatures and outcomes of physical models, respectively.

In terrestrial remote sensing, many approaches have been
proposed as efficient tools for linear unmixing of hyperspectral
data. These methods include the Vertex Component Analysis
(VCA) [13] which retrieves the spectra of the existent endmem-
bers by extracting the extrema of the simplex formed by the
hyperspectral data. In [14], this geometric method is performed
on OMEGA data from Mars with satisfactory results. Similarly
to VCA, the widely used N-FINDR [15] algorithm is proposed
for endmember extraction of linearly mixed data, showing
notable performances on many types of hyperspectral data such
as CRISM’s in [16]. Contrary to VCA and N-FINDR that
require the existence of pure pixels in the data, many methods
have been developed without the pure pixel assumption. This
is the case of the techniques referred to as Minimum Volume
Constrained Non-negative Matrix Factorization (MVC-NMF),
Minimum Volume Enclosing Simplex (MVES), and Simplex
Identification via Split Augmented Lagrangian (SISAL), which
are proposed for endmember extraction of highly mixed data.
MVC-NMF decomposes mixed pixels based on the NMF and
a minimum volume constraint and has proved to be very
efficient on simulated and real data and less sensitive to the
estimated number of endmembers [17]. In the same way,
MVES proposes a convex analysis by minimizing the simplex
volume subject to the constraint that all dimension-reduced
pixels are enclosed in it [18]. Eventually, SISAL [19] has been
recently proposed to solve the linear unmixing problem based
on a non-convex optimization problem with convex constraints
[19]. Last but not least, many studies have recently addressed
the inclusion of spatial information into endmember extrac-
tion [20], [21]. For instance, the authors of [21] propose a
spatial preprocessing that enhances the search for endmem-

bers in the unmixing problem. This procedure has proved
to provide better extracted spectra and more relevant abun-
dance maps after combination with a traditional endmember
extraction method.

In this paper, we propose to evaluate the suitability of
spectral unmixing techniques in a planetary context by test-
ing the following comprehensive selection of state-of-the-art
algorithms: BPSS, VCA, N-FINDR, MVC-NMF, MVES, and
SISAL. In addition, spatial information is integrated into the
unmixing process by considering the spatial preprocessing
proposed in [21]. In this way, a large scope of methods based
on geometric, Bayesian, and spectro-spatial first principles is
considered. Unfortunately, the validation of spectral unmixing
techniques is a very challenging yet crucial issue, particularly
in planetary sciences due to the scarcity of ground truth. In that
matter, previous studies traditionally address the validation of
unmixing outcomes either through comparison of endmember
spectra extracted from real data with reference spectral signa-
tures [22], [23] or by using simulated data [20], [21], [24]. As
for abundance maps obtained from unmixing of real data, only
the authors of [20] perform their validation by comparing these
outcomes with a reference. In that study, reference abundance
maps are built from reference spectra manually extracted from
the original image. To our knowledge, the validation of spectral
unmixing techniques applied on real data through the evaluation
of extracted abundance maps in an independent and quantitative
manner has never been addressed. We therefore propose an
innovative case study that overcomes this hurdle by choosing
a CRISM image displaying the Russell dune of Mars. In late
winter, this particular area is very suitable for validation of
spectral unmixing techniques under a linear model due to two
principal reasons: (i) The very likely existence of geographic
subpixel mixtures coming from the two predominant materials
at the surface and (ii) the possibility of building a ground truth
for validation of extracted abundance maps using very high-
resolution imagery and geomorphological techniques. Based
on original experimentations, we perform quantitative assess-
ment of surface proportions obtained by spectral unmixing
techniques on real hyperspectral data. In addition, an intercom-
parison of the selected unmixing methods is carried out by
evaluating their spectral and spatial outcomes independently.
Eventually, the linear mixing model and the limitations of
the assumptions made by the algorithms are evaluated for the
problem at hand.

This paper is organized as follows. In Section II, we present
the case study of the Russell dune through the description of the
area of interest, the data sets that are used, and the construction
of the ground truth. Then, the selection of spectral unmixing
algorithms is briefly described in Section III by highlighting
the properties of each method that may be suitable for our case
study. Likewise, the techniques used for estimating the number
of endmembers are introduced. Experiments are carried out in
Section IV followed by the intercomparison and validation of
the unmixing methods in Section V. Section VI concludes by
discussing on the proposed methodology based on unmixing
techniques and preprocessing, drawing some conclusions on
the potential of unmixing techniques for planetary sciences, and
giving some indications for further research.
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II. CASE STUDY: THE RUSSELL CRATER MEGADUNE

A. Description of the Area

The selected area of study is the megadune in the Russell
crater of Mars (55◦ S 12◦ E). This 134-km wide crater hosts
a 1700 km2 dune field with an uncommon large dune on its
northeastern part. This megadune is about 500 m high, 20 km
wide, and 40 km long. In particular, the southwest facing
scarp of the dune displays many defrosting features in late
winter when the retreat of CO2 ice starts. These phenomena
in the form of dark spots—mostly on the top of the dune—and
dark elongated patterns—all over the scarp—precede the global
sublimation of the ice, eventually uncovering the sandy mineral
substratum [25]. The defrosting features as well as the gullies
are an ongoing key research topic for the understanding of Mars
geology and activity.

The Russell dune represents a potential benchmark for test-
ing spectral unmixing algorithms in a planetary context. During
the MRO mission, this area of Mars has been extensively
scrutinized in a coordinated manner by very high-resolution im-
agery and imaging spectroscopy. In late winter, the former fully
resolves the geographical coexistence of dark features—mostly
made of dust—and brighter ice while the latter does not. Hence,
the assumption of linear mixing in the hyperspectral signal
coming from the contributions of both components is very
reasonable. In addition, the use of very high-resolution imagery
can be used for constructing a ground truth against which
abundance maps provided by unmixing techniques applied to
hyperspectral images can be evaluated.

B. CRISM Data

In the targeted mode, the CRISM instrument maps the min-
eralogy of Martian key areas at high spectral (362–3920 nm,
6.5 nm/channel) and spatial (up to 18 m/pix) resolution [1].
CRISM offers a new insight into the planet Mars because of its
high resolution and its multi-angle capabilities provided by its
gimbaled optical sensor unit (OSU). In this way, each targeted
observation is composed of a central hyperspectral image at
full spatial resolution and a sequence of ten bracketing spatially
binned images that are acquired before and after MRO flies over
the target.

In July 2009, CRISM had scanned the Russell megadune
15 times of which 4 in late winter when the CO2 sublimation
starts and the defrosting features appear. We therefore select the
central image of the targeted observation frt000042aa covering
an area of 80 km2, in which the southern facing scarp of the
Russell dune is visible (see Fig. 1). Due to the OSU functioning,
this image was acquired with view zenith angles (VZA) varying
by more than 60◦ from the first to the last image row.

1) Preprocessing: Before the unmixing stage, the test image
frt000042aa is processed to get rid of the contributions that
are not related to the components at the surface. In particular,
these contributions may introduce nonlinearities in the data
affecting the linear mixture model of the signal. In this way, the
test image is corrected for instrumental artifacts, atmospheric
effects, and photometric issues. First, residual stripes and spikes
are corrected as in [26]. Likewise, the spectral smile effect af-

Fig. 1. CRISM frt000042aa true color image showing the Russell dune.
The still-frosted scarp displays dark spots on the ridge of the dune and dark
elongated patterns along the gullies. The region-of-interest (ROI) is highlighted
in yellow. The upper right figure displays the location of the test image over the
megadune observed by the THEMIS instrument.

fecting CRISM images is corrected by the method in [27]. This
step is particularly challenging due to the presence of CO2 ice,
which results in a higher strength of the smile artifacts. Second,
the contribution of the Martian atmosphere, which is mainly
composed by CO2 gas and mineral aerosols, is corrected as in
[28], [29]. The widely used volcano scan algorithm for CRISM
data in [30] is not applicable as it does not operate for icy
surfaces nor corrects it for aerosol contribution. Imprecisions in
the adopted scattering properties of the aerosols as a function of
VZA may induce atmospheric residues in the upper and lower
rows of the image by means of spurious spectral slopes. Third,
atmospherically corrected spectra are transformed into apparent
reflectance units R in a similar way as it is done in [1]. For this
photometric correction, we take into account the average illu-
mination conditions on the whole scarp by means of the solar
zenith angle (SZA). The average SZA of the scarp is retrieved
by using a digital terrain model (DTM) of the Russell dune
generated by the High-Resolution Imaging Science Experiment
(HiRISE) camera. This procedure results in better levels of R
for the majority of the spectra when compared to the traditional
procedure in which the surface is approximated by the Martian
areoid [1]. A complete pixel-wise photometrical correction is
not realizable due to noise in the DTM. Likewise, a procedure
based on clustering the image according to SZA had to be
abandoned as the spatial information coming from the surface is
critically corrupted after correcting for the average photometry
of each SZA-similar area. Hence, residues coming from the
heterogeneous photometry, as well as instrumental artifacts
and atmospheric effects, may remain after the data pipeline.

Eventually, an region-of-interest (ROI) is defined as we are
only interested in the southwest facing scarp displaying the
defrosting features (see yellow line in Fig. 1). In addition,
only the 250 CRISM channels ranging from 1.0 to 2.6 μm are
considered due to the high impact of thermal noise for greater
wavelengths and the less marked features of CO2 ice in the
visible range.
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Fig. 2. Detail of the Russell dune observed by the CRISM and the HiRISE
instruments. Upper right image: footprints of the images CRISM frt000042aa in
blue (604 × 420 pixels, non-map projected), HiRISE PSP_002482_1255_RED
in green (29 862 × 63 004 pixels, map projected), and HiRISE PSP_002482_
1255_COLOR in yellow (11 776 × 61 257 pixels, map projected). The ROI is
enclosed with a white line.

C. Building a Ground Truth

Although Mars is the planet other than Earth for which
more data are available, the scarcity of ground truth to validate
the statistical and physical algorithms that are used to retrieve
information on the surface of the red planet is a crucial issue. On
the one hand, only a few specific areas of Mars are enough char-
acterized by a combined coverage of spacecrafts and rovers.
Furthermore, both types of experiments provide information at
very different spatial scales and thus confronting their results
is a very challenging task. On the other hand, validation using
simulated data generated from realistic surface and atmosphere
models is not fully satisfactory due to the unavoidable limita-
tions of the models. In this paper, a new strategy to validate
the processing of planetary data is introduced. In particular, we
propose the use of another type of imagery acquired over the
Russell dune to build a ground truth for validation of spectral
unmixing techniques.

1) HiRISE Data: The HiRISE camera is a unique tool to
study the surface of Mars due to its very high spatial resolution.
HiRISE consists of a half-meter reflecting telescope which
allows taking three-channel (near-infrared, red, and blue-green)
pictures with resolutions up to 25 cm/pix [31]. Two products are
made available by HiRISE, a red-channel image making use of
the full field of view and a three-channel image whose extent
on the ground is significantly reduced.

Being aboard MRO, HiRISE is coordinated with CRISM
to generate pair of images CRISM-HiRISE, displaying the
same area of Mars. Fig. 2 (upper right) shows the foot-
prints of the two products corresponding to the HiRISE im-
age PSP_002482_1255 to be compared to the CRISM image
frt000042aa. In this paper, the red-channel product is selected
because of its larger coincident footprint as regards the CRISM
image and twice better spatial resolution in comparison with
the three-band image. Likewise, Fig. 2 shows the same area of
the Russell dune observed by the CRISM and the HiRISE in-
struments. As it can be seen, HiRISE displays the dark features
with a much greater detail, making them very distinguishable
from the surrounding brighter ice. Hence, we propose to use the

red-channel image PSP_002482_1255_RED to generate a ref-
erence abundance map corresponding to the dark features. The
resulting ground truth will be then compared to the abundance
maps obtained from the image frt000042aa, thus evaluating
the performances of each unmixing technique in a similar and
independent way.

The generation of the ground truth is as follows. First, the
HiRISE image is classified by extracting the dark features. The
resulting classification map and the CRISM image—previously
projected onto the HiRISE geographic space—are registered by
means of a feature matching method. Then, labels correspond-
ing to the dark features are counted within the footprint of each
CRISM pixel projected on the classification map. By doing
this, the classification outcome is transformed into a reference
abundance map against which the unmixing abundance maps
will be compared in a pixel-wise manner.

2) Classification Map: The dark features are extracted
by classifying the image PSP_002482_1255_RED into two
classes, dark features and brighter ice, as suggested by geo-
morphologic analysis and the image histogram. With this aim,
the image is split into k clusters according to gray value using
a k-means strategy [32]. A value of k = 7 is satisfactory in
our case. We note {L1, . . . , L7} the labels of the clusters and
{C1, . . . , C7} their average values such that (C1 < . . . < C7).
In order to represent the dark features, we select the darkest
cluster L1 which is manually improved by locally threshold-
ing the original image. This operation takes into account the
presence of shadows within the gullies that can be confused
with elongated dark structures. Eventually, only the dark spots
and the dark elongated features are classified as dark features
while the rest of the image is classified as brighter ice. Fig. 3(a)
shows the resulting classification map.

3) Image Registration: The classification map must be pro-
cessed along with the CRISM image to allow an accurate
pixel-wise comparison between the two final products (i.e., the
ground truth coming from the HiRISE image and the abundance
maps coming from the unmixing techniques). With this aim, we
perform the registration of the HiRISE original image and the
CRISM channel at 1.1 μm, which corresponds to the continuum
of the spectra. One should note that the direct registration of the
unmixing products is not reasonable since this might introduce
some bias (e.g., if the unmixing results are wrong). The registra-
tion of CRISM and HiRISE images is very challenging because
of the notable differences as regards the spatial resolution of
both cameras (∼72 times larger for HiRISE).

First, the selected CRISM channel is projected onto the
HiRISE geographic space using the ancillary data of the image
frt000042aa, which provide the latitude and longitude coordi-
nates for each pixel. After this step, the two images are not cor-
rectly registered due to inaccuracies of pointing and limitations
of the instrument models used to generate the geographical
data of each sensor. That being so, we first perform a coarse
registration of both images by applying a spatial translation
whose ∆l and ∆c (where l and c stand for line and column,
respectively) maximize the correlation coefficient between both
images. Eventually, a Delaunay triangulation refines the regis-
tration by warping the CRISM image using a set of manually
selected ground control points.
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Fig. 3. (a) Classification map corresponding to the dark features extracted from the original HiRISE image. The label occurrences corresponding to the dark
features are represented by white points. (b) Reference abundance map used as ground truth.

Fig. 4. (a) HiRISE image with the corresponding registration control points as red crosses. (b) The same as Fig. 4(a) for the CRISM image. (c) Registration
accuracy map displaying the local correlation coefficient computed on the intersection between the two images and the ROI on a 10 × 10-pixel basis.

The registration step is detailed in Fig. 4. Fig. 4(a) and
(b) show, respectively, the HiRISE and the CRISM images
with the corresponding ground control points. More than 200
reference points are defined over the southwest-facing scarp,
particularly for the dark spots along the ridge of the dune as
they are critical features in the upcoming comparison. The
accuracy of the registration is evaluated by calculating the local
correlation coefficient rreg between the HiRISE image and the
CRISM channel at 1.1 μm after registration. Fig. 4(c) shows
the ensemble of rreg values that are obtained using a 10 × 10
sliding window over the area, resulting from the intersection
of the two images and the ROI [see Fig. 2 (upper right)].
The resulting correlation map underlines the accuracy of the
registration with an average correlation rreg = 0.7. In addition,
Fig. 4(c) provides valuable information on the distribution of
the registration accuracy that will be used in the validation
stage. Given the manual selection of control points and the
size of the images (29 862 × 63 004 pixels for the HiRISE
image), misregistration inaccuracies affect this processing step,
particularly on the borders of the processed area.

4) Reference Abundance Map: After registration, the
HiRISE classification map is transformed into an abundance
map. Since the data manipulation is performed on the HiRISE
geographic space, each CRISM pixel is now associated to a
footprint containing several pixels at the HiRISE resolution.

That being so, the reference abundances are calculated by
counting the number of dark labels occurring in each CRISM
footprint. The result is then divided by the total number of
labels. By doing this, we obtain an image that provides the
abundance of dark features at the CRISM resolution.

One should note that the remotely sensed signal that deter-
mines the radiance value of each CRISM pixel comes not only
from its conjugated area at the Martian surface (i.e., the theoret-
ical footprint) but also the areas corresponding to the neighbor-
ing pixels. This additive contribution to the signal is originated
by two principal causes. First, the spatial response of a single
CRISM detector element—characterized by its Gaussian-
shaped point spread function (PSF)—partially overlaps the
PSFs of the neighboring detectors [1]. As a consequence, the
final radiance value is the weighted sum of the contribution
coming from the target pixel and its neighbors. In addition,
CRISM images suffer from the so-called adjacency effect that
is common to all 2-D imagers [33]. Due to the aerosol particles
in the atmosphere, some photons coming from the neighboring
area of a given pixel are scattered toward its corresponding
detector element, thus contributing to the final radiance value.
These two effects result in a blurring of the image that is not
taken into account by the label counting process introduced pre-
viously. Since evaluating the coupling of the adjacency and PSF
effects is not straightforward, the image blurring is mimicked



4346 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 49, NO. 11, NOVEMBER 2011

Fig. 5. Detail of the ground truth generation. (a), (b) HiRISE and CRISM
images after registration. (c) Classification map highlighting the dark features.
(d) Reference abundance map after pixel counting.

by filtering the reference abundance map by a Gaussian
low-pass filter. The size of the Gaussian kernel is determined
by optimizing the correlation coefficient between the registered
CRISM channel at 1.1 μm and the filtered HiRISE image.

Fig. 3(b) shows the final ground truth that will be used for
validating the unmixing products. Lastly, Fig. 5 illustrates the
different processing steps on a small area of the Russell dune.

III. SPECTRAL UNMIXING

We note X the matrix representing the flatten hyperspectral
image cube such that X = {x1,x2, . . . ,xNp

}, where xk =
{x1,k, x2,k, . . . , xNs,k}

T . xl,k represents the value of the kth
pixel at the lth channel, Np is the number of pixels, and Ns is
the number of spectral channels. We assume that the spectrum
of each pixel can be reduced to a linear mixture of Nc endmem-
ber spectra, leading to the following instantaneous model:

X = M · S+ e (1)

where e stands for the additive noise in the image,
M = {m1,m2, . . . ,mNc

} is the mixing matrix, being
mn the spectral signature—the characteristic spectrum—of
the nth endmember, and S = {s1, s2, . . . , sNc

}T is the source
matrix with sn = {sn,1, sn,2, . . . , sn,Np

}. sn,k correspond
to the abundance of the nth endmember at the kth pixel and
its positivity is generally imposed. Besides, the endmember
abundances must respect the sum-to-one constraint such that∑Nc

n=1
sn,k = 1, ∀k. In order to extract M and S from X

without any a priori information, Nc must be estimated in the
first place. An endmember extraction approach is then applied
to retrieve M, followed by the reconstruction of S based on the
extracted spectra and the linear model of (1).

Physical assumptions leading to the linearity of the remote
sensing signal are enumerated in [12] as: (i) predominance of
linear subpixel mixing at the ground; (ii) absence of nonlinear
mixing; (iii) Lambertian surface or homogeneity of surface
illumination conditions; and (iv) absence of atmospheric ab-
sorption and scattering. In this paper, the presence of linear

subpixel mixing in some specific areas of the Russell dune
has been demonstrated by the scrutiny of the HiRISE image
in Section II-C-1. Due to the lower spatial resolution of the
CRISM instrument, the hyperspectral signal corresponding to
some specific areas is composed by the signatures of two
physically distinct components at the surface, resulting in ge-
ographic subpixel mixtures. By contrast, the absence of non-
linear mixtures cannot be assured as that would require data
at the grain-size scale. A first attempt to address this point is
presented in Section V by relating the reconstruction error of
the spectra to the existence of nonlinearities. Future work will
further expand this issue by performing a complete physical
analysis of the test image as it is stated in Section VI. As regards
atmospheric contributions, assumptions of linearity are met
after the preprocessing in Section II-B-1. However, potential
residues may lead to perturbations on the spectral unmixing
process. Likewise, the heterogeneity of surface illumination
may also result in some artifacts. All the previous factors F =
{f1, f2, . . . , fNc

}, including residues coming from instrumental
artifacts, may transform the linear mixing assumption into the
degenerated model

X = ℑ(M · S) + e ≃ F ·M · S+ e (2)

where ℑ(X) = F ·X + F2 ·X
2 + . . . ≃ F ·X . Furthermore,

spurious transformations arising from F may affect the physical
sources M. In that case, the number of endmembers estimated
by the following methods may become higher for F ·M · S
than it is for M · S.

A. Estimation of the Number of Endmembers

Two methods are considered in order to estimate the number
of endmembers in the image frt000042aa, the widely used
Hyperspectral Signal Subspace Identification by Minimum Er-
ror (HySIME) approach and the recent Eigenvalue Likelihood
Maximization (ELM) technique, which has been originally
developed for hyperspectral data from Mars.

1) HySIME: This approach has been recently proposed as a
minimum mean square error-based approach to infer the signal
subspace in hyperspectral imagery [34]. HySIME is eigen-
decomposition-based, unsupervised, and fully automatic. It first
estimates the signal and noise correlation matrices and then
selects the subset of eigenvalues that best represents the signal
subspace in the least squared error sense. The performances of
HySIME have been validated satisfactorily by using simulated
and terrestrial remotely sensed hyperspectral data.

2) ELM: This technique is proposed as an automatic and
unsupervised algorithm for estimating the number of endmem-
bers of hyperspectral images [14]. This approach is based on the
distribution of the eigenvalues corresponding to the correlation
and covariance matrices of X. In particular, ELM assumes
that the couple of nth eigenvalues of both matrices correspond
to the variance of the noise for n > Nc. That being so, the
distribution of the difference between a couple of eigenvalues
zn is asymptotically modeled by a Gaussian probability density
function centered at zero for n > Nc and a non-zero value
otherwise. Based on this property, ELM builds a likelihood
function depending on zn that shows a global maximum for
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n = Nc. In [14], this approach is validated using simulated data
and hyperspectral images from Mars acquired by the OMEGA
instrument. However, ELM supposes the Gaussianity of the
noise while CRISM noise is hardly Gaussian.

B. Endmember Extraction

After estimating the number of endmembers Nc of the test
image, we perform a selection of state-of-the-art algorithms
based on different principles as follows: (i) geometric tech-
niques assuming the presence of pure pixels in the image;
(ii) geometric approaches without pure pixel assumption; and
(iii) statistic methods based on a Bayesian framework. In
addition, we consider the incorporation of spatial information
by performing spatial preprocessing on the image frt000042aa.
The endmember extraction techniques considered in this paper
are briefly explained as follow.

1) VCA: VCA has been proposed as an efficient and fast
geometric method for extracting endmembers under a linear
mixing supposition [13]. According to the sum-to-one condi-
tion, the data vectors xk are always inside a simplex formed by
M · S whose vertex are the spectra of the endmembers. VCA
iteratively projects the data onto the orthogonal direction to the
subspace spanned by the already extracted endmembers, desig-
nating the most extreme projection as the next endmember. The
process is repeated until Nc endmembers are found. That being
so, VCA assumes that (i) there are pure pixels in the data and
(ii) there is no noise. However, the latter means that xk may be
outside the simplex if noise is present. In [14], VCA is evaluated
satisfactorily on OMEGA data from Mars and therefore it may
be suitable for spectral unmixing of CRISM data.

2) N-FINDR: The widely used N-FINDR algorithm ex-
tracts extreme points of the simplex of maximum volume that
can be inscribed within X using a simple nonlinear inversion
[15]. This approach iteratively selects random endmembers
and evaluates whether the volume of the simplex sustained by
those endmembers changes or not. The convex nature of hyper-
spectral data allows this operation to be performed in a quick
and relatively straightforward manner. Contrarily to VCA,
N-FINDR is a truly simplex volume-based technique. However,
this method may become less efficient and not reproducible due
to its randomness. N-FINDR has been applied on CRISM data
with satisfactory results in [16].

3) MVC-NMF: This technique is proposed for endmember
extraction of highly mixed hyperspectral data without the pure
pixel assumption [17]. MVC-NMF decomposes mixed pixels
by analyzing the connection between the spectral unmixing
analysis and the non-negative matrix factorization. A minimum
volume constraint makes the MVC-NMF learning less depen-
dent on the initializations, robust to different levels of noise,
less sensitive to the estimated number of endmembers, and
applicable to images with or without pure pixel representations.
Experiments in [17] indicate that MVC-NMF has the potential
of identifying less prevalent endmembers and thus it may be
suitable for extracting the dark features in frt000042aa.

4) MVES: The recent MVES approach proposes a convex
analysis without involving pure pixels [18]. Through an affine
set fitting of observed pixels followed by the use of Craig’s

unmixing criterion, the MVES problem aims at minimizing a
simplex volume subject to the constraint that all the dimension-
reduced pixels are enclosed in the simplex. MVES utilizes
linear programs to approximate the unmixing problem in a
cyclic fashion. MVES might be suitable for this paper since it
has proved to work well for endmembers with low purity levels
and to outperform the VCA and MVC-NMF algorithms [18].

5) SISAL: Recently, the SISAL method has been proposed
to solve the linear unmixing of the minimum volume sim-
plex without pure pixel assumption [19]. Being a non-convex
optimization problem with convex constraints, the positivity
constraints are replaced by soft constraints, forcing the spec-
tral vectors to belong to the convex hull of the endmember
signatures. The resulting problem is solved by a sequence of
augmented Lagrangian optimizations. SISAL may be appropri-
ate for the unmixing of the test image due to its effectiveness.
In [19], SISAL is satisfactorily validated on simulated data
through comparison to other state-of-the-art methods such as
VCA and MVES.

6) BPSS: This algorithm proposes to estimate the matrices
M and S in a Bayesian framework under a linear model with
inherent positivity and additivity constraints and no pure pixel
assumption [35]. In BPSS, the noise S and M are assumed to
follow a Gaussian, Dirichlet, and Gamma probability density
functions, respectively. BPSS is based on hierarchical Bayesian
models to encode prior information regarding the parameters
of interest. The complexity of the estimation from the resulting
posterior distribution is overcome using Markov chain Monte
Carlo methods. In BPSS, the degree of uncertainty affecting
the extracted endmember spectra can be estimated since results
are computed as probability distribution functions. In [36],
numerical schemes are devised to reduce the computation time
which is a critical point of BPSS. This method has been applied
satisfactorily on OMEGA hyperspectral images in [12] yet
never on CRISM’s.

7) Spatial Preprocessing: The authors of [21] propose a
preprocessing to incorporate spatial information into the un-
mixing of hyperspectral images. For each pixel, a scalar factor
related to the spectral similarity of spectra lying within a certain
spatial neighborhood—determined by the window size ws—is
estimated. This value is then used to weigh the importance of
the spectral information associated to each spectrum in terms
of its spatial context. After applying a traditional endmember
extraction technique on the preprocessed image, the spatial
position of each endmember is retrieved. Then, the recon-
struction of the abundance maps is carried out by using the
analogous spectra from the original image and a linear mixture
model. This preprocessing enhances the search for endmembers
in spatially homogeneous areas while it may penalize the
detection of anomalous sources. This Preprocessing can be
combined only with methods such as VCA and N-FINDR, as
the existence of pure pixels is required to retrieve the position
of the endmembers in the preprocessed image.

IV. EXPERIMENTS

Experiments are conducted on the preprocessed image
frt000042aa. We recall that only the spectra encompassed by
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Fig. 6. Extracted spectra by the (a) VCA, (b) BPSS, (c) MVC-NMF, and (d) spatial-VCA methods.

the defined ROI are considered. By performing spectral unmix-
ing, we consider two main objectives, (i) the extraction of phys-
ically meaningful sources and their corresponding distribution
maps that help understanding the physical state of the Russell
dune and (ii) the obtention of a physical source related to the
dark features to be compared to the ground truth generated
in Section II-C. One should note that while the achievement
of the second purpose is not mandatory (yet desirable), the
first objective is crucial for the validation of spectral unmixing
techniques in a planetary context.

First, the number of endmembers in the image frt000042aa
is determined by the two methods presented in Section III-A.
On one hand, the HySIME technique determines Nc = 14.
Given that the Russell dune is assumed to be composed by two
components—CO2 ice and dust—this result largely exceeds
the expected number of sources in the image. Furthermore,
the analysis of 14 extracted endmembers turns into a rather
unfeasible task. The reason of this result may come from a
higher sensitivity of HySIME to subtle contributions in the
image that could be valuable in other situations out of the
scope of this paper such as the detection of residual artifacts.
Therefore, HySIME is not further considered in this paper.
On the other hand, the ELM technique detects the presence
of six endmembers. This result seems to correspond more
satisfactorily to the physical scenario prevailing in the Russell
dune and corroborates the good performances of ELM when
applied to OMEGA hyperspectral data from Mars [14]. As
regards the requirement of Gaussian noise by ELM, the VCA
endmember extraction was conducted with Nc = {4 . . . 8}
in order to evaluate the robustness of the Nc estimation by

ELM. However, experiments with Nc �= 6 did not provide any
significant improvement regarding the unveiling of the physical
sources. For this reason and since a similar conclusion would be
likely drawn from operating the other methods in the same way,
all the presented experiments are carried out by using Nc = 6.

As regards endmember extraction, all the techniques intro-
duced in Section III-B are applied on the test image. However,
the results of a few methods are not shown in this paper, as they
do not meet the main objectives detailed above. For example,
MVES and SISAL are not further considered as they both
extract an endmember whose associated spectrum cannot be
explained from a physical point of view. This is in agreement
with the fact that both methods are based on simplex volume
optimization and therefore may extract endmembers absent in
the image. Although MVC-NMF and BPSS do not consider
the pure pixel assumption either, they provide satisfactory end-
members and therefore are considered in this paper. Likewise,
the results of the N-FINDR algorithm are not shown in this
section since a satisfactory source related to the dark features
could not be extracted, contrarily to VCA. As a consequence,
the spatial preprocessing introduced in Section III-B7 is ex-
clusively combined with the VCA approach, thus defining the
method referred to as spatial-VCA. The window size ws is
set equal to five as it is recommended in [21] and given that
larger values may affect the endmembers related to the spatially
confined dark features. Hence, in this paper, we present the
experimental results of performing spectral unmixing of the
image frt000042aa by the following endmember extraction
methods based on different principles: (i) the VCA method with
assumption of pure pixels; (ii) the BPSS technique based on
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Fig. 7. Abundance maps corresponding to the six endmembers extracted using VCA.

a Bayesian framework; (iii) the MVC-NMF approach with no
assumption of pure pixels; and (iv) the spatial-VCA algorithm
that incorporates the existent spatial information in the image.
As for the reconstruction of the abundance maps using the
linear mixing model, the non-negativity and the sum-to-one
constraints are considered for all methods.

A. General Interpretation

The spectra corresponding to the six endmembers extracted
by each method are plotted in Fig. 6. Then, Figs. 7–10 show the
associated abundance maps. Based on the information coming
from both products, a similar physical interpretation of the
scene is performed independently for each method, leading
to the definition of three physical sources. Due to residual
artifacts and other nonlinearities, the spectral unmixing of the
image frt000042aa is affected by source splitting effects (see
Section III), thus making necessary the recombination of the six
endmembers into three physical sources. After assigning each
extracted endmember to one of the three physical sources, the
abundance map of a given physical source is obtained by adding
the individual abundances of the associated endmembers. The
results of this recombination are shown in Fig. 11. The robust-
ness of the proposed interpretation is underlined by the notable
similarities among the physical sources that are reconstructed
for each method.

In order to identify the origin of each endmember, two
parameters are defined from each extracted spectrum. Let R1.1

be the apparent reflectance value at 1.1 μm and let B2.3 be the
absorption depth at 2.3 μm such that B2.3 = 1−R2.3/R2.2.
These two spectral parameters are decisive for the interpretation
of the endmembers together with the information coming from
the abundance maps. In particular, large values of R1.1 and B2.3

are related to a higher content of CO2 ice because of its higher

reflectance in comparison to dust and the fact that absorption
at 2.3 μm is specific to ice, respectively. Due to inaccuracies
in the atmospheric correction (see Section II-B-1), extracted
spectra may have an anomalous positive or negative slope that
must be accounted for the calculation of B2.3. With this aim,
we multiply B2.3 by the spectrum average slope b1.1−2.2 that
is calculated as R2.2/R1.1. Tables I–IV detail the previous
parameters for each endmember extracted with VCA, BPSS,
MVC-NMF, and spatial-VCA, respectively.

The three physical sources that are defined based on the
unmixing results are briefly described by detailing their spectral
and spatial characteristics. The physical interpretation of each
source is kept to a minimum since it is not the aim of this
paper.

• Dark source: physical source related to the presence of
dark features. The corresponding R1.1 and B2.3 are the
lowest among the three sources due to a high content in
dust and a few residual CO2 ice. This source predominates
along the ridge of the dune and within the gullies in the
form of dark spots and elongated patterns, respectively.

• Strong bright source: physical source related to a high
content of CO2 ice. The corresponding B2.3 is the highest
among the three sources while R1.1 is higher than for
the dark source due to a lower dust content. This source
predominates principally in the areas surrounding the
dark source.

• Weak bright source: physical source related to a high
content of CO2 ice. The corresponding R1.1 is the highest
among the three sources while B2.3 is higher than for the
dark source but lower than for the strong bright source.
This source may correspond to a physical state of the ice—
different from the strong bright source—that greatly pre-
dominates on the dune scarp.
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Fig. 8. Abundance maps corresponding to the six endmembers extracted using BPSS.

Fig. 9. Abundance maps corresponding to the six endmembers extracted using MVC-NMF.

In the following sections we detail, for each method, the
recombination process that is carried out to reconstruct the three
physical sources.

B. VCA

The interpretation of the endmembers extracted by VCA is
conducted by examining the associated spectra and abundance
maps in Figs. 6(a) and 7, respectively. The spectral parameters

R1.1 and B2.3 are detailed in Table I. Lastly, the recombined
abundance maps corresponding to the physical sources are
displayed in Fig. 11(a).

1) Dark Source: Endmembers 1 and 5 are identified to be
related to the dark source due to the lowest R1.1 and B2.3

among the six endmembers.
The combination of the two endmembers into a single phys-

ical source is also justified by the opposite vertical trends
that affect the abundance maps 1 and 5. Both maps show



CEAMANOS et al.: INTERCOMPARISON AND VALIDATION OF TECHNIQUES FOR SPECTRAL UNMIXING 4351

Fig. 10. Abundance maps corresponding to the six endmembers extracted using spatial-VCA.

very low spurious abundances, either for the top or the bot-
tom rows, coming from the atmospheric residue described in
Section II-B-1. This interpretation is also pointed out by the
complementary slopes of the spectra (b1.1−2.2 > 1 for endmem-
ber 1 and b1.1−2.2 < 1 for endmember 5).

The abundance map resulting from the fusion of the two ini-
tial abundance maps eliminates the vertical trend, thus revealing
the dark structures over the Russell dune. As a matter of fact,
the red pixels of the recombined abundance map highlight the
dark spots on the top of the dune, the dark elongated patterns
along the gullies and some areas belonging to the base of the
northeast-facing defrosted scarp.

2) Strong Bright Source: Endmember 3 is identified to rep-
resent the strong bright source due to the highest B2.3 among
all the extracted endmembers and a medium R1.1.

The abundance map of the strong bright source shows a
spatial coherence with the dark source as the green areas
surround the red pixels, particularly on the top of the dune.

3) Weak Bright Source: Endmembers 2, 4, and 6 are iden-
tified as being related to the weak bright source as they all
correspond to the highest R1.1 and a medium B2.3.

The splitting phenomenon that affects this physical source
comes from the coupling of two nonlinear residues. On the
one hand, the predominance of CO2 ice for this physical
source leads to a typical smile pattern in the abundance map
of endmember 6 (see Section II-B-1). This is pointed out
by the anomalous lower abundances for the horizontal edges.
The presence of a spectral smile residue makes endmember 6
enough energetic to be extracted independently. On the other
hand, the differences of R1.1 among the three endmembers are
explained by the different illumination conditions that happen
over the scene. A qualitative study of the HiRISE DTM corre-

sponding to the Russell dune (see Section II-B-1) reveals that
endmember 6 predominates at low SZA while endmembers 2
and 4 correspond to SZA values that are similar to the av-
erage angle used in the photometric correction. An accurate
photometric correction by the real SZA would increase R1.1

for endmember 6, thus matching the other two endmembers in
terms of apparent reflectance.

The abundance map resulting from the fusion of the three
endmembers highlights in blue the areas which are poor in dark
and strong bright sources.

C. BPSS

Given the nature of the BPSS algorithm the interpretation of
the corresponding results must be carried out differently than
it is done for VCA. As it is stated in Section III-B, BPSS may
extract associated spectra that do not exist in the hyperspectral
image. As a consequence, the parameters R1.1 and B2.3, shown
in Table II, are less relevant and must be taken into account in
an indicative manner. Similarly to VCA, Figs. 6(b), 8, and 11(b)
detail the results of BPSS.

1) Dark Source: Endmember 5 is identified to be related to
the dark features according to the lowest B2.3. While having the
lowest R1.1, endmember 2 is not interpreted as representing the
dark source since such a low level of apparent reflectance does
not exist in the image and is unphysical (see Section IV-C2 for
more details).

Besides the agreement of the extracted spectrum with the
characteristic spectral features of the dark source, the abun-
dance map of endmember 5 is correlated with the dark struc-
tures revealed by the other methods.
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Fig. 11. (a) Color composite image illustrating the spatial distribution of the three physical sources over the Russell dune extracted by VCA. The dark, strong
bright, and weak bright sources are show in red, green, and blue, respectively. (b), (c) and (d) Same as Fig. 11(a) for BPSS, MVC-NMF, and spatial-VCA.

TABLE I
VCA ENDMEMBERS—APPARENT REFLECTANCE AT 1.1 μm AND

ABSORPTION DEPTH AT 2.3 μm—(D): DARK SOURCE, (S): STRONG

BRIGHT SOURCE, (W): WEAK BRIGHT SOURCE

TABLE II
BPSS ENDMEMBERS—APPARENT REFLECTANCE AT 1.1 μm AND

ABSORPTION DEPTH AT 2.3 μm—(D): DARK SOURCE, (S): STRONG

BRIGHT SOURCE, (W): WEAK BRIGHT SOURCE

2) Strong Bright Source: Endmembers 1 and 2 are related
to the strong bright source. Due to the combination of the
atmospheric residue and the BPSS properties, this source has

TABLE III
MVC-NMF ENDMEMBERS—APPARENT REFLECTANCE AT 1.1 μm AND

ABSORPTION DEPTH AT 2.3 μm—(D): DARK SOURCE, (S): STRONG

BRIGHT SOURCE, (W): WEAK BRIGHT SOURCE

TABLE IV
spatial-VCA ENDMEMBERS—APPARENT REFLECTANCE AT 1.1 μm AND

ABSORPTION DEPTH AT 2.3 μm—(D): DARK SOURCE, (S): STRONG

BRIGHT SOURCE, (W): WEAK BRIGHT SOURCE

been split into two endmembers that do not exist in the image
and are difficult to explain from a physical point of view.
The combination of both endmembers is necessary to obtain
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a coherent strong bright source in terms of spectrum and
abundance map. This interpretation is justified by the following
reasons based on the examination of the associated spectra:
(i) The spectral slope of both spectra is complementary due
to the atmospheric residue as in Section IV-B1 (b1.1−2.2 > 1
for endmember 1 and b1.1−2.2 < 1 for endmember 2);
(ii) a spurious fingerprint at 2 μm for endmember 1, which is
reversed for endmember 2; and (iii) the R1.1 values of both
endmembers are either too high or too low from a physical
point of view. Likewise, the abundance maps also confirm
this interpretation since (i) the endmembers 1 and 2 show a
strong anticorrelation (for all k pixels with s1,k + s2,k > 50%,
correlation(s1,k, s2,k) = −0.62) and (ii) endmembers 1 and 2
are always present in similar proportions (for all k pixels with
s1,k + s2,k > 50%, mean(s1,k) = 0.26, var(s1,k) = 3.10−3,
mean(s2,k) = 0.30, var(s2,k) = 4.10−3). It is straightforward
to verify that the combination of these two endmembers using
similar proportions results in a spectrum with similar R1.1 and
B2.3 to the strong bright source extracted by the other methods.

Similarly to VCA, the resulting abundance map of the strong
bright source shows a strong correlation with those areas sur-
rounding the dark source pixels. In addition, several yellow
pixels coming from the combination of the dark and strong
bright sources are observed over the dune ridge. This is in
agreement with a linear mixing scenario for which the spatial
resolution of CRISM may not suffice to resolve both sources.

3) Weak Bright Source: The weak bright source is com-
posed by endmembers 3, 4, and 6. The associated spectra of
endmembers 4 and 6 correspond to a high R1.1 and medium
B2.3. Again, the spectrum of endmember 3 presents a R1.1 and
B2.3 that cannot be found in the image.

Similarly to the VCA dark source, endmembers 4 and 6
show strong values at the bottom or the top of the image.
This anomaly is originated in the atmospheric residue as the
slopes of the two endmembers underline (b1.1−2.2 > 1 for
endmember 4 and b1.1−2.2 < 1 for endmember 6). Contrarily,
endmember 3 is particularly dominant in the center of the image
with abundance values up to 0.6, indicating an origin linked
with the smile effect residue (see Section IV-B3).

The regions corresponding to the weak bright source are
widespread over the dune scarp as shown by the combined
abundance map.

D. MVC-NMF

The examination of the endmembers extracted by the MVC-
NMF algorithm are conducted by examining the associated
spectra and abundance maps shown in Figs. 6(c) and 9, re-
spectively. The corresponding spectral parameters R1.1 and
B2.3 are detailed in Table III while the combined abundance
maps corresponding to the physical sources are displayed in
Fig. 11(c). Similarly to BPSS, MVC-NMF may extract spectra
that are absent from the image and thus the spectral parameters
must be considered carefully.

1) Dark Source: Endmember 1 is identified as the dark
source due to the lowest R1.1 among all endmembers. Contrary
to VCA and BPSS, the parameter B2.3 is less discriminative for

MVC-NMF as all spectra, except for number 3, have similar
low values.

Again, the corresponding abundance map reveals the struc-
tures related to the dark features with high accuracy.

2) Strong Bright Source: Endmember 3 is identified to be
related to the strong bright source due to the highest B2.3

among all the extracted endmembers.
Similarly to the other methods, the corresponding abundance

map highlights the areas that surround the dark features, partic-
ularly on the top of the dune.

3) Weak Bright Source: Endmembers 2, 4, 5, and 6 are
identified as belonging to the weak bright source due to a high
R1.1 and a medium B2.3.

Again, the splitting phenomenon affecting this physical
source comes from atmospheric and photometric residues. For
example, the abundance maps of the endmembers 4 and 5
present the vertical dichotomy detailed in Section IV-B1.

The abundance map obtained by combining the original ones
is in agreement with the spatial distribution of the weak bright
source extracted by the other methods.

E. Spatial-VCA

The scrutiny of the endmembers extracted by the spatial-
VCA algorithm is based on the examination of the correspond-
ing extracted spectra and abundance maps shown in Figs. 6(d)
and 10, respectively. Likewise, the spectral parameters are
detailed in Table IV and the combined abundance maps are
shown in Fig. 11(d).

1) Dark Source: Endmembers 4 and 5 are identified to be
related to the dark source due to the lowest R1.1 and B2.3

among the six endmembers.
Similarly to VCA, the fusion of the two endmembers is jus-

tified by spectral and spatial reasons, respectively, the vertical
dichotomy and the complementary spectral slopes caused by
the atmospheric residue.

Although the combined abundance map is broadly in agree-
ment with the dark sources extracted by the other methods, a
slight overestimation of abundance is detected for the upper
rows probably due to a persistent residual contribution from the
atmosphere.

2) Strong Bright Source: Endmember 3 is recognized as
being the strong bright source because of the highest B2.3

among all the extracted endmembers and a higher R1.1 than
for the dark source.

Contrarily to other methods, the associated abundance map
shows some differences as the green areas mask the red pixels
on some places of the top of the dune. This may come from
the penalization of spatially confined sources—such as the dark
source—coming from the spatial preprocessing.

3) Weak Bright Source: Endmembers 1, 2, and 6 are asso-
ciated to the weak bright source due to the highest R1.1 and a
medium B2.3.

This source splitting may come from both atmospheric and
photometric residues. The recombination of these three end-
members is justified by the coherence of the resulting abun-
dance map in comparison to other methods.
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Fig. 12. From left to right, abundance maps corresponding to the dark source extracted by the algorithms VCA, BPSS, MVC-NMF, and spatial-VCA.

V. VALIDATION

In this section, we aim at validating the results obtained
by the proposed methodology based on spectral unmixing
followed by recombination of the extracted endmembers into
meaningful sources. First, Fig. 11 underlines the validity of
both processes in a qualitative way as a quite similar relevant
planetary scenario is unveiled after interpretation of the color
composite images. The notable spatial similarities among the
four composite abundance maps represent a cross-validation
of the different endmember extraction techniques as well as it
validates the corresponding recombination effort. A more in-
depth validation is carried out by using the ground truth for
the dark source that was introduced in Section II-C. In this
matter, abundance maps are validated using the ground truth
assuming that the dark features resolved by the HiRISE instru-
ment correspond to the extracted dark source. Unfortunately,
reference abundance maps cannot be built for the bright sources
from the HiRISE image as they are not distinct by neither
markedly different level of apparent reflectance nor structural
specificities. Prior to the comparison, the registration procedure
(see Section II-C3) is repeated using the same parameter values
for the abundance maps provided by the VCA, BPSS, MVC-
NMF, and spatial-VCA algorithms. Fig. 12 displays the four
maps related to the dark source after cropping them to fit the
intersection between the CRISM ROI and the HiRISE image.
These products must be compared with the reference map
in Fig. 3(b).

Several indicators are used to assess the similarity between
the ground truth and the unmixing abundance maps. First, the
Pearson correlation coefficient r is computed between both
types of abundance maps to measure the similarity as regards
to relative spatial distribution. Second, the average value of
the absolute error ǫ is computed to complete the quantitative
validation. Since misregistration is expected to be one of the
main sources of error, several experiments are carried out by
calculating r and ǫ according to registration accuracy [see
Fig. 4(c)]. In this way, r and ǫ are summarized in Table V by
(1) considering all pixels (mean(rreg) = 0.7), (2) taking into
account only those areas whose associated registration correla-
tion meets rreg > 0.7 (∼50% of the pixels with mean(rreg) =
0.83), and (3) by selecting the best registered area (∼1% of the
pixels with mean(rreg) = 0.96). The region corresponding to
the third experiment is shown in Fig. 5. A last experiment is

Fig. 13. Distribution of the dark abundances corresponding to the ground truth
and the unmixing abundance maps.

performed for the whole population of pixels by computing the
distribution of abundance values for the ground truth and the
unmixing results (see Fig. 13).

In the first experiment, results show a quite good agreement
between the unmixing results and the ground truth with r and ǫ
values up to 0.69 and down to 0.08, respectively. As regards
to correlation, all methods provide notable r values—close
to 0.7—except for BPSS, which attains r = 0.57. This slight
underperformance may be explained by the noisy background
of the BPSS dark abundance map displayed in Fig. 12 and
may point to a higher sensitivity of this method to the presence
of dust. On the other hand, the examination of ǫ reveals that
the abundances provided by the spatial-VCA approach are
slightly worse with ǫ = 0.14. This bias is mostly originated in
the atmospheric residue affecting the upper rows in the form
of a small overestimation that is conjugated with a poorer
registration accuracy [see Figs. 4(c) and 12]. Contrarily, the
average error for other methods is always ǫ ≤ 0.10. As for the
second experiment, misregistration issues are proved to be an
important source of error since the corresponding results out-
perform those of the first experiment, particularly in terms of r.
As a matter of fact, all methods undergo a significant correlation
improvement up to 0.06. The improvement of ǫ is less important
as this indicator is less sensible to the spatial distribution of the
abundance values. In this matter, the best value ǫ = 0.08 seems
to represent the intrinsic accuracy of the proposed methodology.
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TABLE V
VALIDATION RESULTS REGARDING (1) ALL PIXELS(mean(rreg) = 0.7), (2) THE MODERATELY WELL-REGISTERED AREAS (rreg > 0.7,

mean(rreg) = 0.83), AND (3) AN IMPROVED REGISTRATION (mean(rreg) = 0.96). r IS THE PEARSON CORRELATION

COEFFICIENT AND ǫ IS THE AVERAGE VALUE OF THE ABSOLUTE ERROR

Likewise, the third experiment corroborates the improvement
tendency according to registration accuracy as r increases up
to 0.83 for the MVC-NMF algorithm. Contrarily, the average
error is slightly higher in this particular case probably because
of the high heterogeneity of the selected area in terms of dark
abundance [see Fig. 5(a)] or the presence of nonlinearities
coming from the surface. As for the spatial-VCA algorithm,
parameter ǫ reveals a notable disagreement with the ground
truth that may underline a somewhat faulty extraction of the
dark source by this approach.

Several conclusions can be drawn regarding the experiment
expressed by Fig. 13. First, the VCA approach underestimates
dark abundances in comparison with the ground truth as many
pixels correspond to null abundances. This fact may come from
the non-positivity and the sum-to-one constraints that result
in more restrictive abundance maps. Second, BPSS shows a
rather good agreement with the reference abundance map as the
abundance distribution only suffers from a small overestimation
(average abundance of 0.17 for BPSS and 0.08 for the ground
truth). This point underlines the relevance of Fig. 13 since
conclusions drawn based on Table V might have indicated an
inferior accuracy of BPSS as regardss the other techniques.
Third, MVC-NMF presents the best histogram in comparison
to the ground truth (average abundance of 0.16) even though
a little overestimation is still observed. Eventually, the results
of the spatial-VCA approach confirm the initial conclusions
drawn according to Table V. As a matter of fact, the dark abun-
dances are generally overestimated with an average abundance
of 0.21.

In relation to the small overestimation affecting the major-
ity of the methods, it should be noted that the ground truth
may contain slightly underestimated abundances. The reference
abundance map generated from the HiRISE image is built by
selecting those pixels whose radiance value is much lower than
the neighboring pixels. Nonetheless, the dark source may exist
in areas classified as brighter ice in the form of a minor dust
contamination. The corresponding dust particles may be too
small to be resolved spatially by the HiRISE instrument while
the corresponding spectral contribution may be strong enough
to be detected by the CRISM instrument. As a consequence,
the corresponding abundances in the unmixing outcomes would
be wrongly considered as being overestimated in comparison
to the ground truth. In that case, the average abundance of the
ground truth would increase and so would the accuracy of the
methods BPSS, MVC-NMF, and spatial-VCA. Another reason
to explain the differences between the results coming from the
unmixing and the reference may be related to nonlinear contri-
butions and limitations of the endmember extraction methods.

Eventually, an indication of the accuracy of the conducted
unmixing is provided by the reconstruction of the original
image with the estimated endmembers and their associated
abundances. This is done by using the linear mixture model
to approximate each pixel by the corresponding linear combi-
nation of endmembers weighted by the estimated abundances.
By doing this, the average reconstruction error of the image
[i.e., the term e in (1)] is calculated by means of the signal-
to-noise ratio as 36 dB for VCA, 41 dB for BPSS, 43 dB
for MVC-NMF, and 35 dB for spatial-VCA. These results
show a very satisfactory reconstruction by all methods, BPSS
and MVC-NMF particularly. After inspection of the signal-to-
noise ratio maps, the reconstruction error was found to be very
homogeneous with no pixels under 30 dB. These results are an
additional proof that the linear model is indeed relevant and
may be valuable in future research to locate those confined
areas with slightly higher reconstruction errors that may point
to nonlinear effects.

VI. CONCLUSIONS

In this paper, we have carried out validation and intercom-
parison of a comprehensive selection of state-of-the-art spectral
unmixing techniques applied on planetary hyperspectral data.
An appropriate case study has been defined by choosing a hy-
perspectral image acquired by the CRISM instrument display-
ing the Russell dune. This particular area of Mars is suitable for
testing the benefits of spectral unmixing under a linear model
because of the coexistence of two distinct materials—dark
features and brighter ice—resulting in geographic subpixel
mixtures at the CRISM resolution.

First, while two methods were considered for evaluating the
number of endmembers in the test image only the ELM tech-
nique provided a realistic input for the subsequent endmember
extraction. Then, spectral signatures extracted by the selected
unmixing techniques were characterized and examined by spec-
tral indicators to ensure their physical correctness. As a result,
the initially selected methods N-FINDR, MVES, and SISAL
were discarded due to unsatisfactory results. By contrast, the
techniques VCA, BPSS, MVC-NMF, and spatial-VCA revealed
the same three physically meaningful sources. An effort of
recombination was however required due to repeated splitting
of physical sources into a few endmembers caused by residual
nonlinearities. For that purpose, the spectral indicators were
considered together with spatial correlations among the end-
member abundance maps. In that matter, we noted that spectra
belonging to the physical sources are better reconstructed from
endmembers extracted by the VCA and spatial-VCA methods
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due to the pure pixel assumption. Exhaustive evaluation of
the unmixing outcomes was also conducted by comparison
of derived abundance maps with a reference. In that matter,
very high-resolution HiRISE imagery and geomorphological
techniques were used to generate a reference abundance map
for the physical source related to the dark features happening in
the Russell dune.

The quality of the results is estimated through several
indicators— the correlation coefficient and average error be-
tween the reconstructed abundance maps and the groud truth
and the superposition of the abundance distributions by means
of the corresponding histograms. To our knowledge, this quan-
titative assessment represents the very first attempt to validate
abundance maps produced by spectral unmixing of real data in
an independent and quantitative manner. In that matter, global
and local comparisons show that misregistration inaccuracies
between the HiRISE and CRISM images represent the major
source of error. For the best registered areas, the MVC-NMF
and VCA methods outperform the BPSS and spatial-VCA
techniques in terms of correlation coefficient. This ranking
is however put into perspective after considering the average
error and, particularly, the distribution of abundance values and
average reconstruction error. As a matter of fact, BPSS shows
significantly better performances than stated by the correla-
tion indicator, agreeing quite satisfactorily with the reference
histogram and showing the second lowest reconstruction error
in terms of signal-to-noise ratio. On the other hand, the first
position of the MVC-NMF method is never questioned since
it generally provides the best results. As for the spatial-VCA,
experimental results point to slightly lower performances which
are probably due to the inherent penalization of the spatial
preprocessing as for spatially confined sources such as the
dark features on the Russell dune [21]. Eventually, the side
effect of imposing the positivity and sum-to-one constrains
turns into a lack of sensitivity, particularly in the VCA case,
in the form of extremely low dark abundances frequently set to
zero. As matter of fact, the abundance constraints might be less
relevant in our case since physical sources—related to positive
abundance values—are obtained after recombination of initial
endmembers.

We conclude that abundance maps provided by VCA, BPSS,
and MVC-NMF are generally accurate, i.e., sufficient for an ini-
tial planetary interpretation. In this matter, the results given by
VCA and MVC-NMF—rather than BPSS which is much more
computer intensive—can be considered as a primary quick look
that helps revealing physical sources in the scene of study
together with subtle residues of instrumental or atmospheric
corrections. As a matter of fact, unmixing results may be used
to iteratively drive the improvement of the image preprocessing,
which has proved to be critical as for the existence of non-
linearities in this paper. As regards to the pure pixel assumption,
the algorithms BPSS and MVC-NMF seem to outperform the
VCA-based approaches in terms of estimated abundances while
the latter extract more physically coherent spectra. An issue
deserving further research would be to evaluate the risks of
extracting unphysical endmembers when performing unmixing
with BPSS and MVC-NMF as it happens for the MVES and
SISAL algorithms.

Although examination of the HiRISE image and experimen-
tal results regarding reconstruction error confirm the linear
mixing hypothesis in our case, some residual nonlinearities
may prevail. Major causes are (i) intrinsic variability of the
physical sources, (ii) nonlinear mixing at the grain size scale,
and (iii) adjacency effects due to multiple scattering between
the atmosphere and the surface. All these factors may be
related to uncertainties affecting the abundance maps provided
by spectral unmixing. In order to take into account existent
nonlinearities and improve the accuracy of the results, linear
unmixing must be followed by a complete physical analysis
of the image through the inversion of a physical model. First,
simulating the spectra of the physical sources with radiative
transfer algorithms will allow building a comprehensive physi-
cal model of the scene with some free parameters including the
source abundances. Second, model inversion will be performed
for all CRISM spectra using the estimated abundance maps as
the most probable solution. By doing this, the risk of multiple
solutions will be diminished as regards to the improved abun-
dance maps.
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