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Abstract. We analyze the theoretical basis of three different

methods to validate and intercompare satellite measurements

of atmospheric composition, and apply them to tropospheric

ozone retrievals from the Tropospheric Emission Spectrome-

ter (TES) and the Ozone Monitoring Instrument (OMI). The

first method (in situ method) uses in situ vertical profiles for

absolute instrument validation; it is limited by the sparseness

of in situ data. The second method (CTM method) uses a

chemical transport model (CTM) as an intercomparison plat-

form; it provides a globally complete intercomparison with

relatively small noise from model error. The third method

(averaging kernel smoothing method) involves smoothing the

retrieved profile from one instrument with the averaging ker-

nel matrix of the other; it also provides a global intercompar-

ison but dampens the actual difference between instruments

and adds noise from the a priori. We apply the three meth-

ods to a full year (2006) of TES and OMI data. Comparison

with in situ data from ozonesondes shows mean positive bi-

ases of 5.3 parts per billion volume (ppbv) (10%) for TES

and 2.8 ppbv (5%) for OMI at 500 hPa. We show that the

CTMmethod (using the GEOS-Chem CTM) closely approx-

imates results from the in situ method while providing global
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coverage. It reveals that differences between TES and OMI

are generally less than 10 ppbv (18%), except at northern

mid-latitudes in summer and over tropical continents. The

CTM method further allows for CTM evaluation using both

satellite observations. We thus find that GEOS-Chem un-

derestimates tropospheric ozone in the tropics due to possi-

ble underestimates of biomass burning, soil, and lightning

emissions. It overestimates ozone in the northern subtrop-

ics and southern mid-latitudes, likely because of excessive

stratospheric influx of ozone.

1 Introduction

Tropospheric ozone is of environmental importance as a sur-

face pollutant, a precursor of the hydroxyl radical (OH)

oxidant, and an effective greenhouse gas. It is produced

by photochemical oxidation of CO and volatile organic

compounds (VOCs) in the presence of nitrogen oxides

(NOx ⌘NO+NO2). This photochemical production dom-

inates over stratospheric ozone influx on a global scale

(Prather and Ehhalt, 2001). Ozone concentrations can vary

from less than 10 parts per billion volume (ppbv) in clean

surface air to over 100 ppbv in the upper troposphere and in

polluted regions (Logan, 1999). Satellite observations of tro-

pospheric ozone and its precursors are providing a growing
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resource to better understand the processes that control ozone

levels and the effect of human influence (NRC, 2008).

One difficulty in measuring tropospheric ozone from space

is separating it from stratospheric ozone, which accounts

on average for 90% of the total ozone column. The first

approach to derive global tropospheric ozone from satellite

measurements involved subtracting the stratospheric ozone

column measured in the limb from the total ozone column

measured independently in the nadir (Fishman and Larsen,

1987; Fishman et al., 1990; Ziemke et al., 1998, 2005).

This approach has been refined and extended in recent years

(Ziemke et al., 2006; Schoeberl et al., 2007).

Direct retrieval of global tropospheric ozone distributions

from solar backscattered UV spectra was reported by Liu et

al. (2005, 2006) for the Global Ozone and Monitoring Exper-

iment (GOME) and more recently by Liu et al. (2010a) for

the Ozone Monitoring Instrument (OMI) on the EOS Aura

satellite launched in July 2004. Tropospheric ozone has also

been directly retrieved from nadir measurements of thermal

infrared (IR) emission in and around the 9.6 µm absorption

band at high spectral resolution. This was first done for the

Interferometric Monitor Greenhouse gases (IMG) instrument

on the ADEOS platform, which operated for 10 months in

1996 (Turquety et al., 2002). A multi-year record (2004)

of thermal IR observations of tropospheric ozone is avail-

able from the Tropospheric Emission Spectrometer (TES)

also onboard Aura (Beer, 2006). Tropospheric ozone re-

trievals in the thermal IR have also been made from the At-

mospheric Infrared Sounder (AIRS) on Aqua launched in

2002 (Aumann et al., 2003) and the Infrared Atmospheric

Sounding Interferometer (IASI) on MetOp-A launched in

October 2006 (Boynard et al., 2009).

The direct retrievals of tropospheric ozone from TES and

OMI have generated great interest for better understanding

the processes controlling ozone concentrations and testing

chemical transport models (CTMs) (Liu et al., 2006; Zhang

et al., 2006; Parrington et al., 2008). The reliability of the

data is an issue. Both TES and OMI have been validated

with ozonesonde and aircraft measurements (Nassar et al.,

2008; Richards et al., 2008; Boxe et al., 2009; Liu et al.,

2010b), but these in-situ measurements are very sparse. The

quality of the satellite ozone retrieval depends on viewing an-

gle, surface type, vertical structure of ozone and temperature,

cloud and aerosol interferences, and other factors, requiring

a greater validation space than can be achieved from in situ

data alone.

One approach to extend the satellite validation to a global

scale is by comparison to a CTM that has been indepen-

dently evaluated with accurate in situ measurements. Vali-

dation is measured by comparison of the CTM bias against

the satellite data and against the in situ data. Assimilation

of satellite tropospheric ozone observations into CTMs also

provides an indirect validation through comparison with in-

dependent measurements (Geer et al., 2006; Parrington et al.,

2008). The CTM can further serve as a common platform

to intercompare measurements from different satellite instru-

ments with different viewing scenes and vertical sensitivi-

ties (often measured by averaging kernel matrices). Aside

from validation, using the CTM as a common intercompar-

ison platform tests the consistency of the multi-instrument

datasets for CTM evaluation and thus enables better diag-

nostics of CTM biases. Kopacz et al. (2010) used the GEOS-

Chem CTM to test the consistency of multiple satellite CO

data sets. Here we investigate the theoretical basis of the

CTM intercomparison method with satellite retrievals of tro-

pospheric ozone.

Global intercomparisons of satellite tropospheric ozone

profiles have not been reported in the literature so far.

Rodgers and Connor (2003) presented a general method to

compare measurements from two satellite instruments with

different averaging kernels, by smoothing the retrievals from

the instrument with higher vertical resolution using the av-

eraging kernels of the instrument with lower vertical resolu-

tion. The method was applied by Luo et al. (2007) and Ho et

al. (2009) to compare retrieved CO profiles from TES and the

Measurement Of Pollution In The Troposphere (MOPITT)

instrument. As we will see, it cannot be used to diagnose

biases between two instruments when the vertical sensitivi-

ties of both instruments are weak. We will show that using a

CTM as an intercomparison platform is a far more accurate

method.

We analyze here the theoretical basis for the above three

different methods to validate and intercompare satellite re-

trievals on a global scale, focusing on tropospheric ozone

measurements from TES and OMI both on the Aura satellite:

(1) the in situ method (here using ozonesondes), (2) the CTM

method, and (3) the averaging kernel smoothing method of

Rodgers and Connor (2003). We apply and compare the three

methods for a full year (2006) of TES and OMI data, and also

use 2005–2007 ozonesonde data to better constrain the in situ

validation. We show how the different methods provide dif-

ferent results, and discuss the value of the CTM method as a

versatile and accurate tool for instrument validation and in-

tercomparison as well as CTM evaluation.

2 TES and OMI ozone profile retrievals

The Tropospheric Emission Spectrometer (TES) and the

Ozone Monitoring Instrument (OMI) are both on the EOS

Aura satellite launched in July 2004 into a polar, sun-

synchronous orbit with an ascending equator crossing time

of ⇠13:45. TES is a Fourier transform IR spectrometer

with high spectral resolution (0.1 cm�1 apodized in nadir)

and a wide spectral range (650–3050 cm�1) (Beer, 2006).

The standard products of TES (“global surveys”) consist of

16 daily orbits of nadir-viewing measurements with a spa-

tial resolution of 5⇥8 km2 spaced 1.6� along the orbit track

every other day. Global coverage is achieved in 16 days.

We use TES V003 data. Nassar et al. (2008) and Richards

Atmos. Chem. Phys., 10, 4725–4739, 2010 www.atmos-chem-phys.net/10/4725/2010/
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et al. (2008) presented the validation of TES V002 ozone

retrievals with ozonesondes globally and with aircraft data

over the Pacific, and they found a high bias of 3–10 ppbv.

The TES V003 data have a similar positive bias (Boxe et al.,

2009; also see Sect. 4.1).

OMI is a nadir-scanning instrument that measures

backscattered solar radiation over the 270–500 nm wave-

length range with a spectral resolution of 0.42–0.63 nm (Lev-

elt et al., 2006). OMI has a large field of view of 114� with a

swath of 2600 km. It has a spatial resolution of 13⇥24 km2

at nadir and daily global coverage. We use the direct retrieval

of ozone profiles developed by Liu et al. (2010a). Validation

with ozonesondes showed that OMI has a positive bias of

5–10% in the troposphere (Liu et al., 2010b).

We use a full year of TES and OMI data for 2006, includ-

ing 169 TES global surveys. We exclude data poleward of

60� where satellite sensitivities are weak due to low bright-

ness temperature for TES and high solar zenith angle for

OMI. OMI has daily global coverage; we select OMI ob-

servations along the TES sampling locations for comparison.

We remove cloudy observations and other erroneous data fol-

lowing the TES ozone data quality flag as defined in Oster-

man et al. (2009). TES V003 ozone data include some un-

physical retrievals with anomalously high ozone near the sur-

face and anomalously low ozone in the middle troposphere

(“C-curve” shape). We have developed an additional flag to

filter these profiles (also described in Osterman et al., 2009).

For OMI, we remove cloudy observations (effective cloud

fraction >30%).

Ozone retrievals from TES and OMI are both based on the

optimal estimation method of Rodgers (2000), as described

by Bowman et al. (2006) and Liu et al. (2010a), respectively.

The true vertical profile of concentrations is represented as

a vector x whose elements are the constituent amounts, ei-

ther as mixing ratios or partial columns at different verti-

cal levels. The retrieval algorithm minimizes the differences

between observed and simulated radiance spectra subject to

constraints from a priori profiles xa. The retrieved vertical

profile x̂ can be expressed as a linear combination of x and

xa,

x̂ = Ax + (I � A)xa + " + b (1)

whereA is the averaging kernel matrix that describes the ver-

tical sensitivity of the retrieval to the true profiles. It is de-

termined by the instrument characteristics and by the a pri-

ori error covariance matrix. The term "+b is the retrieval

error including errors in the measurement and in the radia-

tive transfer model. We separate it into a random noise (")

and a systematic bias (b). TES retrieves natural logarithms

of ozone volume mixing ratios (VMR) in ppbv at 67 pres-

sure levels up to 0.1 hPa, while OMI retrieves partial ozone

columns in Dobson Units (DU) for 24 layers with thicknesses

of approximately 2.5 km.

Direct comparison of TES and OMI ozone profile re-

trievals is not appropriate because they have different

averaging kernels (A) and use different a priori profiles (xa).

TES a priori profiles are monthly mean MOZART CTM val-

ues (Brasseur et al., 1998) averaged over a 10� latitude⇥60�

longitude grid (Bowman et al., 2006). OMI a priori profiles

are based on a latitude- and month-dependent ozone profile

climatology (McPeters et al., 2007) derived from 15 years

of ozonesonde and Stratospheric Aerosol and Gas Experi-

ment (SAGE) data (Liu et al., 2010a). To remove the discrep-

ancy from the use of different a priori profiles, we reprocess

the retrievals to a common fixed a priori (xc) (Rodgers and

Connor, 2003):

x̂
0
= x̂ + (A � I)(xa � xc) (2)

We choose xc by averaging the original OMI a priori profiles

within the latitude band of 30� S–30� N and apply it to all

TES and OMI retrievals. Results from Eq. (2) are very simi-

lar to retrievals with the fixed a priori for both TES (Kulawik

et al., 2008) and OMI because the retrieval is only weakly

non-linear. We remove the prime henceforth for simplicity

of notation and refer to x̂ as the retrieved vertical profile re-

processed as per Eq. (2).

Intercomparison between satellite instruments is much

easier to analyze mathematically if the retrieved vertical pro-

files x̂ have the same dimensions and units. To achieve this

we interpolate TES retrievals on the OMI pressure grid, and

convert the TES log(VMR)-based averaging kernels to par-

tial columns on the OMI pressure grid, as described in Ap-

pendix A. In this manner, the reprocessed TES (x̂TES) and

OMI (x̂OMI) retrievals are both partial ozone column profiles

on the OMI pressure grid:

x̂TES = ATES x + (I � ATES)xc + "TES + bTES (3)

x̂OMI = AOMI x + (I � AOMI)xc + "OMI + bOMI (4)

with all terms on the right hand side of Eqs. (3) and (4) also

computed on the OMI pressure grid.

Figure 1 shows sample averaging kernel matrices for TES

and OMI. The trace of the matrix gives the number of inde-

pendent pieces of information on the vertical profile, called

the Degrees of Freedom for Signal (DOFS) (Rodgers, 2000).

We computed the DOFS in the troposphere as the trace of

the tropospheric sub-matrix based on the National Center for

Environmental Prediction (NCEP) thermal tropopause used

in OMI retrievals. The tropopause pressure ranges within

90–130 hPa in the tropics (20� N–20� S), and increases with

increasing latitude to ⇠250 hPa at 60�. The TES averaging

kernel matrix in Fig. 1 has DOFS=2.0, indicating two pieces

of information in the vertical profile with peaks in sensitivity

around 700 hPa and 400 hPa. Conversion of the TES averag-

ing kernel matrix to partial ozone columns on the OMI pres-

sure grid (Appendix A) only slightly reduces the DOFS (1.9)

and does not significantly modify the structure, as shown in

the central panel of Fig. 1. The converted TES averaging

kernel matrix ATES can be compared directly with the OMI

www.atmos-chem-phys.net/10/4725/2010/ Atmos. Chem. Phys., 10, 4725–4739, 2010
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Fig. 1. Sample averaging kernel matrices for TES (left) and OMI (right) ozone retrievals below 100 hPa (cloud-free ocean scene at 28� N,

58�W on 6 August 2006). Each line is a row of the averaging kernel matrix; row elements are dimensionless. The central panel shows

TES averaging kernels recomputed as sensitivities to partial ozone columns on the OMI pressure level grid as described in Appendix A. The

colored numbers are centers of the OMI pressure grid (hPa). Red colors represent relatively high pressure levels and blue colors represent

relatively low pressure levels. The degrees of freedom for signal (DOFS) in the troposphere are shown inset. The horizontal dotted line

shows the tropopause pressure (120 hPa) used for this retrieval.

Fig. 2. Mean tropospheric DOFS for TES (left) and OMI (right) retrievals of tropospheric ozone in January (top) and July 2006 (bottom).

The data are averaged on a 4�⇥5� grid. Red colors indicate relatively high DOFS, and blue colors indicate relatively low DOFS. White areas

indicate lack of data meeting the retrieval criteria described in the text.

averaging kernel matrix AOMI. The OMI averaging kernel

matrix shows weaker sensitivity than TES with DOFS=1.0

in the troposphere, although this is partly due to a weaker as-

sumed a priori error constraint in TES (Kulawik et al., 2006;

Liu et al., 2010a). The different sensitivities result in large

differences between TES and OMI observations as will be

discussed below. The OMI sensitivity peaks at 700–500 hPa,

overlapping with that of TES.

Figure 2 shows the global distributions of TES and OMI

tropospheric DOFS for January and July 2006. There are typ-

ically 1–2 DOFS for TES and 0.5–1 for OMI, with lower val-

ues at high latitudes (>45�). Both TES and OMI show higher

DOFS at northern mid-latitudes in summer than in winter,

reflecting higher surface temperatures (TES) and lower so-

lar zenith angles (OMI). TES has higher DOFS than OMI

everywhere. The TES V003 ozone has ⇠0.5 higher DOFS

than the V002 data due to improvement of the nadir temper-

ature retrievals (Osterman et al., 2009).

3 Tropospheric ozone distributions from TES and OMI

Figure 3 shows the seasonally averaged TES and OMI re-

trievals of tropospheric ozone at 500 hPa. OMI data have

been sampled at the TES observation locations. Both TES

and OMI data have been reprocessed with a single fixed a pri-

ori following Eq. (2), and thus the variability is driven solely

by the satellite information. The general geographic features

and seasonal variability observed by TES and OMI are very

similar. They both observe the zonal wave-one pattern in the

Atmos. Chem. Phys., 10, 4725–4739, 2010 www.atmos-chem-phys.net/10/4725/2010/
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Fig. 3. Tropospheric ozone distributions in unit of ppbv from TES (left) and OMI (right) at 500 hPa for the different seasons of 2006:

March-April-May (MAM, uppermost row), June-July-August (JJA, middle top row), September-October-November (SON, middle bottom

row), and December-January-February (DJF, lowermost row). The central two columns show the GEOS-Chem ozone simulation smoothed

by the corresponding averaging kernels. All data use a single fixed a priori as described in the text and are averaged on the 4�⇥5� grid of

GEOS-Chem. The purple color represents relatively low values and the red color represents relatively high values. White areas indicate lack

of data meeting the retrieval quality criteria.

tropics, with higher ozone over the Atlantic than the Pacific.

They both show enhanced ozone pollution in the summer-

time (JJA: June-July-August) of northern mid-latitudes due

to increasing photochemical production, and high ozone over

southern Africa in SON (September-October-November) due

to lightning (Sauvage et al., 2007b) and biomass burning

(Duncan et al., 2003).

Also shown in Fig. 3 are the GEOS-Chem CTM profiles

(xCTM) sampled along the TES orbit track at the observa-

tion time, and then smoothed with the averaging kernels from

TES and OMI over the OMI pressure grid:

x̂CTM TES = ATES xCTM + (I � ATES)xc (5)

x̂CTM OMI = AOMI xCTM + (I � AOMI)xc (6)

Details on the GEOS-Chem CTM are given in Appendix B.

The model reproduces the large-scale spatial variability ob-

served by TES and OMI (correlation coefficient r>0.8 for all

seasons), although it tends to have lower values as will be dis-

cussed in Sect. 6. Figure 3 shows the effect of smoothing by

the TES vs. OMI averaging kernels when applied to the same

model fields. By comparing in Fig. 4 the differences between

model fields smoothed by TES vs. OMI averaging kernels

(x̂CTM TES�x̂CTM OMI) to the observed differences between

TES and OMI (x̂TES�x̂OMI), we find that most of the ob-

served differences are explainable by instrument sensitivity

(different averaging kernel matrices in Eqs. 5 and 6). The

residuals represent the actual bias between the instruments

as computed by the CTM method and will be discussed in

Sect. 5.2.

4 Validation and intercomparison methods

Intercomparison of TES and OMI ozone profiles needs to

account for their different vertical resolutions. The difference

from directly comparing TES and OMI is given by:

1 = x̂TES � x̂OMI (7)

= bTES � bOMI + (ATES � AOMI)(x � xc)

Here and in what follows we consider the average over a suf-

ficiently large number of retrievals (e.g. 5–25 retrieved pro-

files over each 4�⇥5� grid in Fig. 3) so that the random error

terms "TES and "OMI average out to zero. The observed dif-

ference 1 thus computes the true difference between TES

and OMI bTES�bOMI, but with an additional noise term re-

flecting biases in the a priori profile weighted by the differ-

ence between the averaging kernel matrices of the two in-

struments. Directly intercomparing the two ozone profiles is

not appropriate because the noise term can dominate over the

true difference as shown in Fig. 4.

We describe here three different methods for validating

and intercomparing TES and OMI measurements of tropo-

spheric ozone: (1) independent validation of each with in

www.atmos-chem-phys.net/10/4725/2010/ Atmos. Chem. Phys., 10, 4725–4739, 2010



4730 L. Zhang et al.: Intercomparison methods for satellite measurements of atmospheric composition

Fig. 4. Mean TES minus OMI differences in ozone concentrations (ppbv) at 500 hPa for the four seasons of 2006. The left panels show

the observed differences. The right panels show the differences attributable solely to instrument sensitivity, as indicated by results from a

GEOS-Chem simulation smoothed with TES vs. OMI averaging kernels. Positive values (red colors) indicate that TES is higher than OMI,

and negative values (blue colors) indicate that TES is lower than OMI. Gray areas indicate lack of data meeting the retrieval quality criteria.

situ sonde measurements; (2) use of the GEOS-Chem CTM

as a comparison platform; and (3) comparison of OMI ozone

profiles with TES profiles smoothed by OMI averaging ker-

nels. The first method provides absolute validation, assuming

that ozonesondes measure the true profiles, but is limited by

the sparsity of ozonesonde observations (see Sect. 5.1). The

second method provides a global intercomparison and also

an indirect validation through independent evaluation of the

CTM with ozonesonde data. The third method also provides

a global intercomparison (with dampening of the difference

between instruments, as we will see) but no validation. Re-

sults from each method will be presented in Sect. 5.

4.1 In situ method

Validations against ozonesonde data have been presented

by Worden et al. (2007) and Nassar et al. (2008) for older

versions of TES data (V001 and V002), and by Boxe

et al. (2009) for TES V003 and V004 data in the Arctic

(>60� N). Validation of OMI ozone data is given by Liu et

al. (2010b). Here ozonesonde vertical profiles for a satellite

viewing scene are interpolated to the OMI retrieval pressure

grid and smoothed with the instrument averaging kernel

matrix:

x̂sonde TES = ATES x + (I � ATES)xc (8)

x̂sonde OMI = AOMI x + (I � AOMI)xc (9)

where x̂sonde TES and x̂sonde OMI are the smoothed

ozonesonde profiles. Comparisons with satellite re-

trievals for that scene (x̂OMI and x̂TES) measure the retrieval

error ("+b). Averaging over a number of comparison scenes

provides an estimate for the systematic error or bias (bTES
and bOMI), and the residuals provide statistics for the random

error ("TES and "OMI). The average difference 1 between

TES and OMI derived from common ozonesonde validation

profiles measures the true difference in bias between the two

instruments, i.e., their internal consistency:

11 =
�

x̂TES � x̂sonde TES

�

�
�

x̂OMI � x̂sonde OMI

�

(10)

= bTES � bOMI

4.2 CTM method

We propose an intercomparison method that uses a CTM as a

transfer platform. We apply the instrument averaging kernels

to the CTM simulated vertical profiles as described in Sect. 3.

From Eqs. (5) and (6), the differences between model and

observation are:

x̂CTM TES � x̂TES = ATES(xCTM � x) � bTES (11)

Atmos. Chem. Phys., 10, 4725–4739, 2010 www.atmos-chem-phys.net/10/4725/2010/



L. Zhang et al.: Intercomparison methods for satellite measurements of atmospheric composition 4731

Table 1. TES and OMI ozone biases relative to ozonesondesa.

Latitude band N (TES) TES bias ± � (ppbv) N (OMI) OMI bias ± � (ppbv)

860 hPa 500 hPa 300 hPa 860 hPa 500 hPa 300 hPa

20� N–60� N 398 4.6±12.1 5.7±13.5 17.9±36.5 1976 2.1±4.1 3.1±6.2 7.1±28.3

(2.1±4.4)b (3.3±6.0) (11.1±29.2)

20� S–20� N 102 7.5±12.6 3.2±7.5 �1.9±11.2 486 0.5±3.6 2.0±8.3 2.4±9.4

(�0.2±3.6) (0.3±7.8) (1.0±7.3)

60� S–20� S 28 3.3±4.6 6.5±5.8 4.6±20.0 106 1.4±3.9 1.9±5.2 0.5±12.8

(0.4±4.5) (0.9±6.0) (4.4±9.5)

a Mean difference and standard deviation as determined by difference with ozonesonde data for 2005–2007 (see text). N is the number of

comparison profiles.
b Values in paretheses are the OMI validation statistics if subsampling the OMI/sonde comparisons at the TES observation locations.

x̂CTM OMI � x̂OMI = AOMI(xCTM � x) � bOMI (12)

so that the difference between TES and OMI with reference

to the CTM is given by:

12 =
�

x̂TES � x̂CTM TES

�

�
�

x̂OMI � x̂CTM OMI

�

(13)

= bTES � bOMI + (ATES � AOMI)(x � xCTM)

The CTM method thus adds an extra noise

(ATES�AOMI)(x�xCTM) to the true difference bTES�bOMI.

This extra term is similar to the noise term in Eq. (7),

however, by replacing the a priori profile xc with a state-

of-the-art CTM simulation the magnitude of this noise term

is reduced (kx�xCTMk<kx�xck). This advantage can be

quantified by comparison of CTM results with ozonesonde

measurements, as described in Sect. 5.

4.3 Averaging kernel smoothing method

Rodgers and Connor (2003) proposed an intercomparison

method in which the profile from the instrument with higher

vertical resolution is smoothed by averaging kernels of the

instrument with lower vertical resolution. TES ozone re-

trievals have higher DOFS than OMI, hence we apply the

OMI averaging kernel matrices to the TES retrievals:

x̂TES OMI = AOMI x̂TES + (I � AOMI)xc (14)

The resulting difference 1 between TES and OMI is given

by:

13 = x̂TES OMI � x̂OMI (15)

= AOMI bTES � bOMI + (AOMI ATES � AOMI)(x � xc)

We see that 13 does not actually measure the true difference

bTES � bOMI between the two instruments, but smoothes the

TES bias by the OMI averaging kernel matrix, and also in-

cludes an extra term reflecting the difference between the a

priori and true profiles. To optimize the method one should

minimize this extra term, and therefore we adjust the TES

original retrievals to the OMI geographically varying a pri-

ori profiles instead of the single fixed a priori. Even so, the

method fails as a true intercomparison because it does not

return the actual difference bTES�bOMI. We will assess the

importance of this shortcoming below.

5 Results from the different methods

We examine here how the CTM method (Sect. 4.2) and the

averaging kernel smoothing method (Sect. 4.3) compare to

the standard set by the in situ method (Sect. 4.1). The in situ

method gives the true measure of consistency between the

two instruments (11=bTES�bOMI) but is limited by avail-

able ozonesonde coincidences.

5.1 In situ method

We use the ensemble of worldwide ozonesonde measure-

ments for 2005–2007 available from the Aura Validation

Data Center for tropospheric studies (Schoeberl et al., 2007;

Liu et al., 2010b; http://avdc.gsfc.nasa.gov;), giving us more

comparison profiles than for 2006 alone. We find the val-

idation results for individual years are similar. For com-

parison to the satellite data we require spatial coincidence

within 2� longitude and 2� latitude, and temporal coinci-

dence within 10 h, similar to the coincidence criteria applied

by Nassar et al. (2008). This results in 528 TES/sonde co-

incidences and 2568 OMI/sonde coincidences within 60� S–

60� N for 2005–2007. OMI has more coincidences because

of its daily global coverage. About 80% of the comparison

profiles are at northern mid-latitudes (20�–60�N).

Table 1 summarizes the mean differences and standard de-

viations for TES and OMI relative to the ozonesonde data

for three latitudinal bands at 860, 500, and 300 hPa. Our val-

idation results for TES V003 data are very similar to those

obtained for V002 data by Nassar et al. (2008). At north-

ern mid-latitudes (20�N–60� N), TES has a positive bias of

5.7±13.5 ppbv (mean ± standard deviation) at 500 hPa and

www.atmos-chem-phys.net/10/4725/2010/ Atmos. Chem. Phys., 10, 4725–4739, 2010
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Fig. 5. TES and OMI ozone retrieval biases relative to ozonesondes in unit of ppbv at 500 hPa averaged over the four seasons of 2005–2007.

Each point represents the mean bias over a sonde launch site. Values are shown as differences between retrieved ozone concentrations and

the ozonesonde data with averaging kernels applied. Red colors indicate a positive bias in the satellite data.

Fig. 6. Differences between TES and OMI estimated by the CTM

method (left) and by the averaging kernel (AK) smoothing method

(right), relative to the in situ method at 500 hPa (black crosses) and

860 hPa (red dots). The in situ method uses ozonesonde profiles for

2006 as absolute validation. The data are for 180 TES/OMI/sonde

coincidences in 2006. Correlation coefficients (r) and slopes of the

reduced-major-axis regression lines (sl) are shown inset. Reduced-

major-axis regression lines (solid) and the 1:1 line (dashed) are also

shown.

17.9±36.5 ppbv at 300 hPa. In the tropics and southern mid-

latitudes, TES has a positive bias of 3.2–7.5 ppbv in the lower

troposphere and less in the upper troposphere. The OMI bi-

ases are also positive but smaller than TES and less variable.

The OMI validation statistics are similar if we subsample

the OMI/sonde comparisons at the TES observation locations

(see Table 1).

Figure 5 shows the distribution of satellite minus

ozonesonde differences at 500 hPa averaged over each sonde

site for the four seasons. The global mean bias relative to

the sondes at 500 hPa is 5.3±12.3 ppbv for TES (n=528) and

2.8±6.6 ppbv for OMI (n=2568). The seasonal variation of

TES biases is small. At northern mid-latitudes OMI has a

positive bias of 1.2 ppbv in summer and 4 ppbv in other sea-

sons.

5.2 CTM method

Figure 6 (left) compares the TES minus OMI differences 12

obtained by the CTM method (Sect. 4.2) to those obtained

by the in situ validation method at 500 and 860 hPa. Results

are shown for the 180 TES/OMI/sonde coincidences in the

year 2006 where we can measure the true instrument differ-

ences 11=bTES�bOMI through the calibration provided by

the sonde profiles (x-axis in Fig. 6). The CTM method pro-

vides a close approximation to the true results from the in

situ method. Correlation with results of the in situ method is

high at both 500 and 800 hPa (r=0.89–0.91) and slopes are

near unity (0.96–0.99).

The close agreement between the CTM and in situ meth-

ods lends confidence in using the CTM method for deriving
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Fig. 7. Seasonally averaged TES minus OMI ozone differences (ppbv) at 500 hPa computed by the in situ method (left) and the CTMmethod

(right). The in situ method is applied to 2005–2007 data while the CTM method is applied to 2006 data. Red colors indicate that TES ozone

is higher than OMI. Gray areas indicate lack of data meeting the retrieval quality criteria.

global patterns of differences between TES and OMI. Fig-

ure 7 shows the global distribution of TES minus OMI dif-

ferences at 500 hPa obtained by the CTMmethod for the four

seasons of 2006, and compares these differences with those

from the in situ method. We previously showed in Fig. 4

how differences in instrument sensitivity contributed most

of the TES vs. OMI differences at 500 hPa; Fig. 7 shows

the residuals not attributable to instrument sensitivity. These

are generally less than 10 ppbv. The largest inconsistencies

between TES and OMI occur in the summertime northern

mid-latitudes where TES is higher than OMI (TES – OMI

differences >10 ppbv), and over South America, Africa and

Indonesia where TES is lower than OMI (TES – OMI dif-

ferences<�10 ppbv). At northern mid-latitudes TES is gen-

erally higher than OMI, but in winter there is a broad re-

gion within 20� N–40� N where TES is lower than OMI. The

CTM method shows that TES is generally lower than OMI

in the tropics, which is not apparent from the in situ method

because of sparse spatial sampling of ozonesonde measure-

ments.

5.3 Averaging kernel smoothing method

Figure 6 (right) compares the TES minus OMI differences

13 obtained by the Rodgers and Connor (2003) averaging

kernel smoothing method (Sect. 4.3) to those obtained by the

in situ method. We see that the averaging kernel smooth-

ing method generally underestimates 11, as would be ex-

pected from the application of the OMI averaging kernel

matrix AOMI to the TES systematic bias bTES, which tends

to be positive (Fig. 5). The slopes of the reduced-major-

axis (RMA) regression lines are less than 1, especially at

860 hPa where the OMI sensitivity is low. The 1 values ob-

tained by the two methods are only moderately correlated

(r=0.70 for 500 hPa and 0.52 for 860 hPa). We find that the

inability of the averaging kernel smoothing method to re-

produce the true intercomparison from the in situ method is

mostly due to the bias smoothing termAOMIbTES in Eq. (15).

The additional noise term AOMI(ATES�I)(x�xc) is small in

comparison, although this reflects our use of the OMI geo-

graphically varying profile as common a priori xc for both

retrievals. It would be the dominant term had we used the

single fixed a priori profile.

The averaging kernel smoothing method has the advantage

over the in situ method of extending the intercomparison to a

global scale, although one has to be wary of results in view of
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Fig. 8. Differences of simulated GEOS-Chem (GC) ozone concentrations (ppbv) at 500 hPa with ozonesondes (left), TES (central), and OMI

(right), averaged for the four seasons of 2006. Comparisons with TES and OMI use the GEOS-Chem profiles smoothed by the respective

instrument averaging kernels as shown in Fig. 3. Satellite measurements have been corrected for the mean positive biases of 5.3 ppbv for

TES and 2.8 ppbv for OMI. Red colors indicate that the model simulation is biased high and blue colors indicate that the model simulation

is biased low. Black areas in the central and right columns indicate where differences between TES and OMI computed by the CTM method

as shown in Fig. 7 are larger than 10 ppbv or smaller than �10 ppbv, indicating that the satellite measurements are not consistent.

the deficiencies shown in Fig. 6. We find that the spatial pat-

terns of TES minus OMI differences at 500 hPa obtained by

the averaging kernel smoothing method are similar to those

obtained from the CTM method (r>0.8 for all seasons).

6 Application to CTM evaluation

The consistency between TES and OMI data in most regions

lends confidence to using these data to evaluate the GEOS-

Chem CTM simulation. Figure 8 shows the differences of the

GEOS-Chem ozone simulation with TES and OMI measure-

ments at 500 hPa for the four seasons of 2006. Comparison

with the sonde measurements is also shown. We have sub-

tracted from the TES and OMI data the global mean positive

biases of 5.3 and 2.8 ppbv respectively, as revealed by the

ozonesonde comparisons. For purpose of model evaluation,

we consider TES and OMI to be consistent if their differ-

ences do not exceed 10 ppbv. Regions where the differences

exceed 10 ppbv are shown in black in Fig. 8. These include

some tropical continental regions as well as large areas at

northern mid-latitudes.

Both TES and OMI measurements at 500 hPa show that

GEOS-Chem underestimates ozone by more than 10 ppbv

over Africa and South America; weaker negative biases ex-

tend over most of the tropics. Available sonde observations

also show the model underestimate, but with very limited

spatial and seasonal resolution. The underestimate could

reflect a number of factors. Lightning is the dominant con-

tributor to tropical tropospheric ozone, but its magnitude is

highly uncertain and may contribute to the model bias, par-

ticularly over the South Atlantic (Sauvage et al., 2007a, b).

Jaeglé et al. (2004, 2005) found that soil NOx emissions

in GEOS-Chem are a factor of 2 too low over north trop-

ical Africa in spring and summer due to rain-induced mi-

crobial pulsing, and this could cause 5–7 ppbv seasonal un-

derestimates of ozone over Africa (Sauvage et al., 2007b).

Some underestimates occur over the seasonal biomass burn-

ing regions, such as southern Africa and South America

in September-October-November (SON), possibly reflecting

a negative bias of the GFEDv2 biomass burning emission

inventory (van der Werf et al., 2006) used in the model.

Nassar et al. (2009) previously conducted a detailed analy-

sis of the GEOS-Chem model simulation of tropical tropo-

spheric ozone in the context of the El Niño event in October–

December 2006, and found that overly strong convection in

the model can also contribute to the ozone underestimate.

Both satellite instruments reveal a year-round model over-

estimate in the northern subtropics, which had been no-

ticed in previous GEOS-Chem model simulations (Liu et al.,

2006), and also in the extra-tropical southern hemisphere,

where ozonesonde measurements are very sparse. Down-

ward stratospheric ozone fluxes are expected to be largest

over these regions due to the subtropical jet streams (Hsu et

al., 2005). The GEOS-Chem model simulates transport of

ozone from stratosphere using the “Synoz” flux boundary
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condition of McLinden et al. (2000), with a global cross-

tropopause ozone flux of 495 Tg ozone per annum (a�1),

but this may not adequately represent the stratosphere-

troposphere exchange over these regions. Further investi-

gation of these model errors is warranted but is beyond the

scope of the paper.

7 Summary

We have analyzed the theoretical basis of three different

methods to validate and intercompare satellite retrievals of

atmospheric composition. The first method (in situ method)

uses in situ vertical profiles for absolute instrument valida-

tion. The second method (CTM method) uses a chemical

transport model (CTM) as an intercomparison platform. The

third method (averaging kernel smoothing method) involves

smoothing the retrieved profile from one instrument with

the averaging kernel matrix of the other. The three meth-

ods were illustrated and compared using a full year (2006)

of tropospheric ozone data from the Tropospheric Emis-

sion Spectrometer (TES) and the Ozone Monitoring Instru-

ment (OMI), both aboard the EOS Aura satellite.

An important preliminary step to the intercomparison is

to convert the retrievals for the different instruments to use

the same units, grid, and a priori information. We showed

how to perform the unit conversion between TES (original

retrieval in logarithm of mixing ratio units) and OMI (orig-

inal retrieval in partial pressure units), by operating on the

TES averaging kernel matrices without significantly degrad-

ing the information content. Both TES and OMI averaging

kernels show peak sensitivity to ozone concentration in the

middle troposphere (700–400 hPa). There are typically 1–

2 degrees of freedom for signal (DOFS) in the troposphere

for TES and 0.5–1 for OMI. Comparison of collocated TES

and OMI data for the full year of 2006 shows similar geo-

graphic features and seasonal variability. Application of the

averaging kernels of TES and OMI to ozone profiles from the

GEOS-Chem CTM indicates that much of the difference in

the data between the two instruments simply reflects differ-

ences in instrument sensitivity.

Direct intercomparison of measurements from two satel-

lite instruments introduces a noise term due to error in the

a priori profile (the difference between the a priori pro-

file and the true profile) that can dominate over the true

difference. We examined how the three different valida-

tion/intercomparison methods can improve on this situation.

The in situ method provides absolute validation of the satel-

lite instruments and true intercomparison, but it is limited

by the sparseness of the in situ data. The CTM method by

contrast provides a globally complete intercomparison. It in-

troduces noise from error in the CTM profile but that is gen-

erally smaller than the error from the generic a priori pro-

file. The averaging kernel smoothing method also provides a

global intercomparison but it dampens the actual difference

between the two instruments (particularly when sensitivity is

low). The CTM method has three major advantages: (1) it

allows intercomparison of satellite instruments over the full

range of operating conditions, (2) it enables indirect valida-

tion against in situ data using the CTM as a transfer function,

and (3) it exploits the satellite data for CTM evaluation.

We applied each method to the analysis of differences be-

tween TES and OMI tropospheric ozone retrievals. For the

in situ method, using the global ozonesonde database, we

find 528 TES/sonde coincidences and 2568 OMI/sonde co-

incidences within 60� S–60� N for 2005–2007 (80% of these

are between 20� N and 60� N). Both instruments show an

overall positive bias. The global mean bias at 500 hPa is

5.3±12.3 ppbv for TES and 2.8±6.6 ppbv for OMI. Appli-

cation of the CTM method to the 180 TES/OMI/sonde coin-

cidences for 2006 shows that it closely reproduces the results

of the in situ method while providing a globally complete in-

tercomparison perspective. The averaging kernel smoothing

method does not perform as well.

We find from the CTM method that differences between

TES and OMI are generally within ±10 ppbv (18%). The

largest differences are at summertime northern mid-latitudes

where TES is higher than OMI (TES – OMI differences

>10 ppbv), and over tropical continents where TES is lower

than OMI (TES – OMI differences <�10 ppbv).

We used the CTM method to diagnose GEOS-Chem

model biases for regions where the two satellite instru-

ments are consistent, exploiting the much better global cov-

erage afforded by the satellite data relative to ozonesondes.

We first removed the mean instrument biases revealed by

the ozonesonde validation (+5.3 ppbv for TES, +2.8 ppbv

for OMI). Both satellite (TES and OMI) and in situ mea-

surements show that GEOS-Chem underestimates ozone at

500 hPa in the tropics; this could reflect model errors in

convective transport and in NOx emissions from lightning,

soil, and biomass burning. Both TES and OMI reveal model

overestimates in the northern subtropics and southern extra-

tropics that could reflect excessive stratospheric ozone influx

in these latitudinal bands. The consistency of measurements

from TES and OMI allows integration of the two into mod-

els and combining their advantages (better vertical structure

from TES, daily global coverage from OMI) to improve our

understanding of tropospheric ozone.

Appendix A

Converting TES averaging kernels to the OMI pressure

grid

TES averaging kernels are based on retrieval of logarithms

of ozone volume mixing ratio (VMR) on a 67-layer pres-

sure grid at fixed pressure levels. We convert them to par-

tial columns on the OMI 24-layer pressure grid to enable di-

rect comparison of TES and OMI vertical sensitivities and to
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facilitate the mathematical interpretation of the intercompar-

ison. The conversion involves the following steps:

(1) Convert the TES log(VMR)-based averaging kernel

(A) to VMR-based (A1). This is done by rewriting Eq. (1)

for the TES retrieval in the text so that x̂, xa, and x are pro-

files of ozone VMR:

ln x̂ = ln xa + A(ln x � ln xa) + " (A1)

By definition of A1, we must have:

x̂ = xa + A1(x � xa) + "
0 (A2)

Let xi denote the VMR for layer i, which is the i-th element

of x, and assume that the difference between xi and xa,i is

relatively small so that

ln xi � ln xa,i ⇡
xi � xa,i

xa,i
(A3)

with the same relationship holding between x̂i and xa,i . The

elements a1,ij of the converted averaging kernel A1 are then

related to the elements aij of the averaging kernel A by:

a1,ij =

✓

xa,i

xa,j

◆

aij (A4)

(2) Convert the averaging kernel for VMR (A1) to an aver-

aging kernel for partial ozone column (A2). Let x1 denote an

ozone profile in unit of ppbv and x2 denote the same profile

in Dobson Units (1DU=2.69⇥1016molecules cm�2). Their

elements in layer i (x1,i and x2,i) are related through:

x2,i = x1,i
C1Pi

mag
(A5)

where 1Pi is the layer thickness in unit of Pa,

ma=4.808⇥10
�26 kg is the mean molecular mass of air,

g=9.81⇥102 cm s�2 is the acceleration of gravity, and

C=3.72⇥10�28DUcm2 is a unit conversion factor. Both

averaging kernels A1 and A2 follow Eq. (A2), so that the

elements a2,ij of A2 are given by:

a2,ij =

✓

1Pi

1Pj

◆

a1,ij (A6)

(3) Interpolate the resulting averaging kernel matrix (A2)

to the OMI grid (A3). Transformation of averaging kernels

to a different grid has been described by von Clarmann and

Grabowski (2007). LetM represent the mapping matrix that

interpolates the retrieved profile from the coarse 24-layer

OMI pressure grid to the fine 67-layer TES pressure grid.

The regridded averaging kernel matrix (A3) is then given by:

A3 =M⇤A2M (A7)

where M⇤=(MTM)�1MT is the pseudo inverse of M and

MT is its transpose. The resulting averaging kernel matrix

A3 for TES (ATES in the text) applies to partial columns on

the OMI pressure grid and can be directly compared with the

OMI averaging kernel matrix AOMI.

Appendix B

The GEOS-Chem CTM

GEOS-Chem is a global 3-D model of atmospheric compo-

sition (v8-01-04; http://acmg.seas.harvard.edu/geos/) driven

by GEOS assimilated meteorological observations from the

NASA Global Modeling and Assimilation Office (GMAO).

General descriptions of GEOS-Chem are given by Bey et

al. (2001) and Park et al. (2004). The model is applied here to

a global simulation of tropospheric ozone-NOx-VOC-aerosol

chemistry for January–December 2006 using GEOS-4 data

and with an 8-month spin-up. Meteorological fields in the

GEOS-4 data have a temporal resolution of 6 h (3 h for sur-

face variables and mixing depths) and a horizontal resolution

of 1� latitude by 1.25� longitude, with 55 layers in the verti-

cal from surface to 0.01 hPa. We degrade here the horizontal

resolution to 4� latitude by 5� longitude for input to GEOS-

Chem.

We use global anthropogenic emissions for 2000 from

the Emission Database for Global Atmospheric Re-

search (EDGAR) inventory (Oliver and Berdowski, 2001),

replaced with the following regional inventories: the Euro-

peanMonitoring and Evaluation Programme (EMEP) for Eu-

rope in 2000 (Vestreng and Klein, 2002), Zhang et al. (2009)

for Asia in 2006, and the NEI-99 for the United States with

downward corrections of 50% in NOx emissions from point

sources and 60% in CO emissions as described by Hudman

et al. (2007, 2008). Biomass burning emissions are from the

Global Fire Emission Database version 2 (GFEDv2) (van der

Werf et al., 2006). Soil NOx emissions are computed us-

ing a modified version of the Yienger and Levy (1995) al-

gorithm with canopy reduction factors described in Wang et

al. (1998). Emissions of NOx from lightning are linked to

deep convection following the parameterization of Price and

Rind (1992) with vertical profiles taken from Pickering et

al. (1998). We use a NOx yield per flash of 125 moles in

the tropics and 500 moles at northern mid-latitudes (north

of 30�N) (Hudman et al., 2007). The resulting lightning

source is scaled to be 6 Tg nitrogen per annum (a�1) glob-

ally. Transport of ozone from the stratosphere is simulated

using the “Synoz” flux boundary condition of McLinden

et al. (2000), with a global cross-tropopause ozone flux of

495 Tg ozone a�1.

The GEOS-Chem simulation of tropospheric ozone has

been evaluated in many studies with measurements from

surface sites (Fiore et al., 2002, 2003; Wang et al., 2009),

ozonesondes (Sauvage et al., 2007a; Nassar et al., 2009), air-

craft (Jaeglé et al., 2003; Hudman et al., 2004; Auvray et al.,

2007; Hudman et al., 2007; Zhang et al., 2008), and satellites

(Martin et al., 2002; Liu et al., 2006; Parrington et al., 2008).
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Jaeglé, L., Jaffe, D. A., Price, H. U., Weiss, P., Palmer, P. I., Evans,

M. J., Jacob, D. J., and Bey, I.: Sources and budgets for CO and

O3 in the Northeastern Pacific during the spring of 2001: Results

from the PHOBEA-II Experiment, J. Geophys. Res., 108(D20),

8802, doi:10.1029/2002JD003121, 2003.
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