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Abstract. Accurate measurement of water vapor in the

climate-sensitive region near the tropopause is very challeng-

ing. Unexplained systematic discrepancies between measure-

ments at low water vapor mixing ratios made by different in-

struments on airborne platforms have limited our ability to

adequately address a number of relevant scientific questions

on the humidity distribution, cloud formation and climate im-

pact in that region. Therefore, during the past decade, the sci-

entific community has undertaken substantial efforts to un-

derstand these discrepancies and improve the quality of wa-

ter vapor measurements. This study presents a comprehen-

sive intercomparison of airborne state-of-the-art in situ hy-

grometers deployed on board the DLR (German Aerospace

Center) research aircraft HALO (High Altitude and LOng

Range Research Aircraft) during the Midlatitude CIRRUS

(ML-CIRRUS) campaign conducted in 2014 over central

Europe. The instrument intercomparison shows that the hy-

grometer measurements agree within their combined accu-

racy (±10 % to 15 %, depending on the humidity regime);

total mean values agree within 2.5 %. However, systematic

differences on the order of 10 % and up to a maximum of

15 % are found for mixing ratios below 10 parts per mil-

lion (ppm) H2O. A comparison of relative humidity within

cirrus clouds does not indicate a systematic instrument bias

in either water vapor or temperature measurements in the up-

per troposphere. Furthermore, in situ measurements are com-

pared to model data from the European Centre for Medium-

Range Weather Forecasts (ECMWF) which are interpolated

along the ML-CIRRUS flight tracks. We find a mean agree-

ment within ±10 % throughout the troposphere and a signif-

icant wet bias in the model on the order of 100 % to 150 %

in the stratosphere close to the tropopause. Consistent with

previous studies, this analysis indicates that the model deficit

is mainly caused by too weak of a humidity gradient at the

tropopause.

1 Introduction

Water vapor is one of the most important trace gases in

Earth’s atmosphere due to its large influence on the ra-

diation budget and atmospheric dynamics. It absorbs and

emits infrared radiation throughout the entire profile of

the atmosphere (Kiehl and Trenberth, 1997). The radia-

tive effect of small changes in water vapor concentration is

most pronounced in the upper troposphere and lower strato-

sphere (UTLS), where absolute H2O mixing ratios are 2–4

orders of magnitude lower than at ground level (e.g., Ra-

manathan and Inamdar, 2006; Solomon et al., 2010; Riese et
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al., 2012). Besides the direct radiative effect, water vapor also

provides one of the strongest feedback parameters to tem-

perature changes in the atmosphere (Manabe and Wetherald,

1967; Dessler et al., 2008).

Additionally, water vapor is the most important parame-

ter for cloud formation and lifetime. From an energy per-

spective, clouds not only influence the radiation balance but

also redistribute energy through latent heat during condensa-

tion and evaporation. Changes in latent heat fluxes influence

global dynamics like the Hadley circulation and extratropi-

cal storm tracks (Schneider et al., 2010). The radiative ef-

fect of clouds is more complex than the effect of greenhouse

gases due to very inhomogeneous cloud cover and different

microphysical and thus radiative properties of clouds at dif-

ferent altitudes. The opposing effects of the reflection of solar

shortwave radiation and the trapping of longwave radiation

determine the net radiative effect of clouds, whether cooling

or heating, depending on cloud properties, surface albedo,

sun elevation etc. (e.g., Liou, 1986; Lynch, 1996; Lee et al.,

2009).

The various atmospheric processes related to water vapor

impose challenges for its measurement. The measurement

accuracy and resolution required to improve our understand-

ing of the atmosphere strongly depend on the research ques-

tion. Regarding the radiative effect of stratospheric H2O, the

main challenge is the absolute accuracy at mixing ratios be-

low 10 parts per million (ppm, equivalent to µmol mol−1)

since small changes of less than 1 ppm significantly impact

the radiation budget (Solomon et al., 2010). For cloud ef-

fects, the challenge is even bigger, especially in very cold

ice clouds where ice supersaturation and cloud properties

are strongly linked (Jensen et al., 2005; Shilling et al., 2006;

Krämer et al., 2009). A 10 % difference in relative humidity

with respect to ice (RHi), which falls within the combined

uncertainty in water vapor and temperature measurements,

can result in substantially different cloud properties.

During the past several decades, a number of H2O mea-

surement intercomparisons during field campaigns includ-

ing aircraft in situ, balloon-borne and satellite instruments

revealed that the relative measurement uncertainty in water

vapor mixing ratio was significantly higher than 10 %, even

occasionally exceeding 100 % at the lowest mixing ratios in

the lower stratosphere (e.g., Oltmans et al., 2000; Vömel et

al., 2007; Weinstock et al., 2009). These large discrepan-

cies motivated the comprehensive intercomparison campaign

AquaVIT-1 at the AIDA (Aerosol Interaction and Dynam-

ics in the Atmosphere) cloud chamber in Karlsruhe in 2007

(Fahey et al., 2014) and the follow-up but as-yet undocu-

mented campaigns AquaVIT-2 and -3 in 2013 and 2015, re-

spectively. In the controlled environment of the cloud cham-

ber, the agreement between the instruments during AquaVIT-

1 was better compared to the measurements on the different

airborne platforms but still in the 20 % range for mixing ra-

tios between 1 and 10 ppm. As a consequence, novel con-

cepts and instruments (e.g., Thornberry et al., 2013; Kauf-

mann et al., 2014, 2016; Buchholz et al., 2017) and improved

techniques for in-flight (Rollins et al., 2011) and ground cal-

ibration (Meyer et al., 2015) were developed to improve the

accuracy of H2O measurements.

Since space and measurement time on research aircraft are

limited and expensive, intercomparable airborne data sets of

water vapor measurements are scarce (e.g., Kiemle et al.,

2008; Jensen et al., 2017a). The most recent comprehen-

sive intercomparison was conducted in 2011 on the NASA

WB-57 high-altitude aircraft during the MACPEX (Mid-

latitude Airborne Cirrus Properties EXperiment) campaign

(Rollins et al., 2014). Similar to the present study, five differ-

ent hygrometers using differing water vapor detection tech-

niques were mounted on the aircraft. In the dry regime be-

low 10 ppm, instruments were found to typically agree within

their stated combined accuracies. However, the authors argue

that the remaining discrepancies are very likely of systematic

nature and result from undetermined offsets in flight (Rollins

et al., 2014). Referring to the accuracy required to address the

questions noted above, it seems that significant progress has

been made in recent years. However, the current measure-

ment accuracy still limits our ability to appropriately assess

questions regarding, for instance, stratospheric water vapor

trends.

The aim of this study is to provide another step towards

a better understanding of the accuracy of airborne water va-

por measurements. We present a comprehensive intercom-

parison of the primary airborne state-of-the-art hygrometers

operated by the German research community. This unique

data set is used to assess the performance of the individual

instruments and to provide a solid basis for comparison to

the Integrated Forecast System (IFS) of the European Centre

for Medium-Range Weather Forecasts (ECMWF). Section 2

briefly describes the ML-CIRRUS campaign during which

five independent in situ hygrometers were operated simulta-

neously. Section 3 provides a summary of the different instru-

ments. The methodology of the intercomparison is described

in Sect. 4, while the intercomparison itself is discussed in

Sect. 5. In addition, this section also includes a comparison

of relative humidity inside of cirrus clouds as well as an in-

tercomparison of in situ measurements with ECMWF IFS

model data.

2 ML-CIRRUS campaign

The ML-CIRRUS campaign with the DLR (German

Aerospace Center) research aircraft HALO (High Altitude

and LOng Range Research Aircraft) took place in March

and April 2014 with the aircraft based in Oberpfaffenhofen,

Germany. A detailed summary of the scientific goals, the

flight strategy and the instrumentation is given in Voigt et

al. (2017). During the campaign period, HALO performed

16 research flights with 88 flight hours in total. The flights

were designed for a comprehensive characterization of mid-
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Table 1. Measurement technique, range and uncertainty of the different instruments. Resolution values in brackets are time resolutions used

for this intercomparison.

Instrument Technique Measured quantity Range [ppm] Resolution [s] Uncertainty

AIMS Mass spectrometry Gas phase H2O 1–500 0.3 (1) 7 % to 15 %

mixing ratio

FISH Lyman-α fluorescence Total H2O 1–1000 1 6 % ± 0.4 ppm

SHARC TDL Gas phase H2O 10–50 000 1 5 % ± 1 ppm

HAI (1.4 µm closed- TDL Total H2O 20–40 000 0.7 (1) 4.3 % ± 3 ppm

path channel) 4.3 % ± 3 ppm

WARAN TDL Total H2O 100–40 000 2.3 50 ppm or 5 %

Figure 1. Flight tracks of 12 research flights during the ML-

CIRRUS campaign in March/April 2014 used for this study. Lat-

itudes between 36 and 57◦ N were covered mainly over central and

western Europe.

latitude cirrus and contrail cirrus using in situ as well as

remote-sensing instruments. ML-CIRRUS aimed for a bet-

ter understanding of cirrus cloud formation in different me-

teorological conditions (Krämer et al., 2016; Luebke et al.,

2016; Wernli et al., 2016; Urbanek et al., 2017) to improve

our estimation of the radiative impact of cirrus (Krisna et

al., 2018) as well as for air traffic impacts on high cloud

cover (Schumann et al., 2017; Grewe et al., 2017). Therefore,

the flight plans were mainly designed to obtain a maximum

number of flight hours either within cirrus clouds for in situ

measurements or approximately 1 km above cirrus for lidar

and dropsonde measurements. The implications of the flight

strategy on the water vapor intercomparison are discussed in

Sect. 4.1. Looking for cirrus cloud life cycle under different

meteorological conditions, the flights covered almost the en-

tire region of central Europe from the northern British coast

down to Portugal (Fig. 1).

To achieve the scientific goals of the mission, the HALO

payload for ML-CIRRUS comprised instruments to measure

cloud particles, aerosols, trace gases and dynamic parame-

ters. The aircraft cabin was equipped with several novel in

situ instruments for trace gases and aerosols, dropsondes and

a differential absorption lidar (DIAL) system for water va-

por and cloud measurements. Furthermore, cloud particles

and aerosols were measured in situ using a set of nine wing

probes. Since this paper focusses on the intercomparison of

the in situ water vapor measurements during ML-CIRRUS,

only those instruments will be described here in detail. A full

list of instruments, their descriptions and references can be

found in Voigt et al. (2017).

3 Instruments

The HALO payload for ML-CIRRUS included five different

water vapor instruments, which provides the opportunity to

compare different measurement methods and a comparison

of both gas phase and total water measurements. In partic-

ular, three completely independent measurement principles

for water vapor were used: mass spectrometry (AIMS-H2O),

Lyman-α photofragment fluorescence spectroscopy (FISH)

and tunable diode laser absorption spectroscopy (SHARC,

HAI and WARAN). While AIMS-H2O and SHARC mea-

sured gas phase water vapor via a backward-facing inlet,

FISH, HAI and WARAN measured total water (gas phase

+ evaporated cloud particles) using forward-facing inlets. A

summary of key parameters for each instrument is given in

Table 1.

3.1 AIMS-H2O

The Atmospheric Ionization Mass Spectrometer for water

vapor (AIMS) is a linear quadrupole mass spectrometer de-

signed to measure low water vapor mixing ratios typical for

the upper troposphere and lower stratosphere (Kaufmann et

al., 2016; Thornberry et al., 2013) and, in a different con-

figuration, HCl, HNO3 and SO2 (Jurkat et al., 2016). The in-

strument samples gas phase water vapor through a backward-

facing heated inlet. After passing a pressure regulation valve,

sample air is directly ionized in an electrical discharge ion

source. Inside the ion source multiple ion–molecule reactions

www.atmos-chem-phys.net/18/16729/2018/ Atmos. Chem. Phys., 18, 16729–16745, 2018



16732 S. Kaufmann et al.: Midlatitude water vapor intercomparison

form H3O+(H2O)n ion clusters with n = 0. . . 2. The abun-

dance of these ion clusters is then measured by the mass

spectrometer and used to quantify the original water vapor

molar mixing ratio in the ambient air. In order to accurately

link the ion count rate with the H2O mixing ratio, the instru-

ment is calibrated in flight by regularly adding a water vapor

standard generated by the catalytic reaction of hydrogen and

oxygen to form H2O on a heated Pt surface (Rollins et al.,

2011). AIMS operates at a measurement range between 1 and

500 ppm with an overall accuracy of 7 % to 15 %, mainly de-

pending on the actual water vapor concentration (Kaufmann

et al., 2016). During ML-CIRRUS ambient air was sampled

through 8.5 mm ID Synflex tubing, and a bypass flow was

used to reduce the residence time of air in the inlet line to

below 0.2 s. This results in a real measurement frequency of

∼ 4 Hz, corresponding to around 50 m horizontal resolution.

In order to achieve the best possible accuracy of the instru-

ment, it was calibrated once or twice during each research

flight. The stability of the calibration standard was guaran-

teed by six ground reference measurements against a MBW

373LX dew point mirror during the campaign period.

3.2 FISH

FISH (Fast In situ Stratospheric Hygrometer) is a closed-

cell Lyman-α photofragment fluorescence hygrometer which

has been operated on various research aircraft for more than

20 years (Meyer et al., 2015; Schiller et al., 2009). The op-

erating principle of the instrument is described in detail by

Zöger et al. (1999). It uses the Lyman-α radiation of an UV

lamp at 121.6 nm to dissociate water molecules into single

H atoms and excited-state OH molecules. Returning to the

ground state, the OH molecules emit radiation at a wave-

length between 285 and 330 nm. The intensity of this ra-

diation is proportional to the water vapor molar mixing ra-

tio in the measurement cell and is quantified using a photo-

multiplier tube. FISH is calibrated regularly at ground level

to relate the measured signal to the water vapor mixing ra-

tio using a MBW DP30 dew point mirror as a reference

instrument. A detailed description of the calibration proce-

dure can be found in Meyer et al. (2015). FISH is able to

measure water vapor mixing ratios in a range from 1 to

1000 ppm. The overall uncertainty during ML-CIRRUS was

determined to be 6 % relative and ±0.4 ppm absolute offset

uncertainty. FISH was connected to a forward-facing inlet

to sample total water. The pressure difference between in-

let (static + dynamic) and gas exhaust (only static) ensures a

flow rate > 10 standard L min−1 and thus allows for fast mea-

surements in UTLS and cirrus conditions.

3.3 SHARC

SHARC (Sophisticated Hygrometer for Atmospheric Re-

searCh) is a tunable diode laser (TDL) hygrometer developed

at DLR Flight Experiments. It is a closed-cell hygrometer

which uses the absorption line of water vapor at 1.37 µm.

To cover a wide humidity range, SHARC uses a dual-path

Herriott type cell with a single-pass absorption length of ap-

proximately 0.17 m and a multi-pass absorption length of

approximately 8 m. The cell is completely fiber-coupled to

minimize parasitic absorption outside the measurement vol-

ume and has a very compact volume of 83 cm3. The mea-

surement range is from 10 to 50 000 ppm, constrained by

the detection limit of the absorption signal at low water va-

por mixing ratios. The overall uncertainty is 5 % relative

and ±1 ppm absolute offset uncertainty. SHARC was op-

erated with a 6.35 mm backward-facing stainless-steel inlet

during ML-CIRRUS sampling gas phase H2O with a total

flow of 15 standard L min−1 at ground level, decreasing to

1.5 standard L min−1 at the highest flight levels. The real-

time data reduction uses a multi-line Voigt fit at 5 Hz to cal-

culate the water vapor mixing ratio. For the intercompari-

son, the data were averaged to 1 Hz. The instrument was cal-

ibrated on the ground against a MBW 373LX dew point mir-

ror.

3.4 HAI

HAI (Hygrometer for Atmospheric Investigations) is a four-

channel TDL hygrometer which uses two different absorp-

tion wavelengths (1.37 and 2.6 µm) in both closed- and open-

cell geometries (Buchholz et al., 2017). HAI uses a complete

physical model in combination with spectral water absorp-

tion line parameters mostly measured at the Physikalisch-

Technische Bundesanstalt Braunschweig (PTB) (Pogány et

al., 2015) and monitors pressure, temperature and absorption

path length in order to calculate the water vapor concentra-

tion for a given absorption spectrum without prior calibra-

tion. The accuracy of this approach was verified recently by

a side-by-side comparison (Buchholz et al., 2014) of a pre-

vious PTB laser absorption spectrometer with the German

national primary humidity standard. HAI has 1.5 m optical

path length for the closed cell and 4.2 m for the open path.

For this work, we use data from the 1.37 µm closed-cell chan-

nel of HAI in the range of 20 to 40 000 ppm since only that

channel provided data within the required uncertainty margin

during ML-CIRRUS. The overall uncertainty for this chan-

nel is 4.3 % relative and ±3 ppm absolute offset uncertainty.

The closed cell was connected to a 12.7 mm forward-facing

stainless-steel inlet and was actively pumped. The effective

time resolution of the instrument is 0.7 s, corresponding to a

spatial resolution at flight altitude of around 150 m.

Atmos. Chem. Phys., 18, 16729–16745, 2018 www.atmos-chem-phys.net/18/16729/2018/
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3.5 WARAN

The WARAN (WAter vapoR ANalyzer) instrument consists

of a commercial WVSS-II (SpectraSensors Inc., USA) tun-

able diode laser instrument in combination with a custom

inlet and an additional pump for the flow through the mea-

surement cell (Kaufmann et al., 2014; Groß et al., 2014).

While the instrument was operated on other campaigns par-

allel to a frost point hygrometer (Heller et al., 2017), during

ML-CIRRUS the WARAN was integrated in the AIMS rack

and connected to a forward-facing inlet to sample total water.

The inlet pylon was the same as used for AIMS-H2O. As for

the other instruments operating with a forward-facing inlet,

only cloud-free measurement sequences are used for the in-

tercomparison. The instrument was calibrated on the ground

after the ML-CIRRUS campaign using a MBW 373LX dew

point mirror as a reference. Due to the high detection limit

of the instrument (> 50 ppm, stated by the manufacturer), the

intercomparison of this instrument is limited to tropospheric

conditions. During ML-CIRRUS the WARAN was mainly

used to detect cloud water. Due to the enhancement of ice

particles in the inlet by a factor between 20 and 35, mea-

sured total-water mixing ratios are relatively high (Afchine

et al., 2018). Hence the instrument detection limit allows for

cloud water quantification for most clouds except for very

thin cirrus.

3.6 Additional instrumentation

For data evaluation with respect to relative humidity, cloud

detection and model intercomparison, we use additional pa-

rameters measured on board HALO during ML-CIRRUS.

Static pressure and static temperature are measured by

the Basis HALO Measurement and Sensor System (BA-

HAMAS; Krautstrunk and Giez, 2012; Giez et al., 2017).

The accuracy of the pressure sensor is 0.3 hPa; the accuracy

of the static temperature measurement is 0.5 K. The SHARC

hygrometer (see Sect. 3.3) is also part of BAHAMAS. Cloud

detection was done using data from the Cloud and Aerosol

Spectrometer with Detection of Polarization (CAS-DPOL),

which was mounted under the wing of HALO (Baumgardner

et al., 2001; Voigt et al., 2017). The cloud probe measures

particles in a size range between 0.5 and 50 µm and is thus

sensitive to natural cirrus as well as contrail ice particles.

4 Methodology and conditions for intercomparison

Similar to previous approaches (e.g., Rollins et al., 2014; Fa-

hey et al., 2014; Meyer et al., 2015) we use the data set from

the entire ML-CIRRUS campaign in order to achieve good

statistics. This section describes the framework of the inter-

comparison and the methodology of the data evaluation in-

cluding the determination of a water vapor reference value.

4.1 Flight strategy

A discussion of the flight strategy during ML-CIRRUS is im-

portant since the campaign did not aim for a statistically uni-

form sampling in terms of water vapor but rather the inves-

tigation of cirrus clouds. The flight patterns typically consist

of three components:

1. sampling inside cirrus clouds in order to obtain in situ

information on particle distribution and their interaction

with trace gases and aerosols,

2. remote-sensing segments of cirrus clouds by lidar and

radiation measurements where HALO flew ∼ 1 km

above the cirrus,

3. transferring flight segments to approach specific

weather systems like warm conveyor belts or mountain

lee wave regions over western Europe (dark blue and

magenta flight tracks in Fig. 1).

In total, we have around 160 000 1 Hz data points in the

UTLS with H2O mixing ratios between 3 and 1000 ppm. Of

those data points, approximately 22 % are in stratospheric

conditions (θ > 350 K), and 33 % are in-cloud measurements.

The dedicated search for cirrus conditions leads to a higher

detection frequency of both in-cirrus and above-cirrus sam-

pling relative to their natural occurrence. Since we expect the

mode value of the RHi distribution to be close to 100 % in-

side cirrus (e.g., Ovarlez et al., 2002; Jensen et al., 2017b),

this allows for an independent check of the absolute values of

the gas phase water vapor measurements. However, extensive

in situ sampling in cirrus limits the data for intercomparison

of total and gas phase instruments. The remote-sensing legs

and the transfer segments provide a comprehensive water va-

por data set within the lower stratosphere. The lidar requires

a certain vertical distance from the cirrus upper edge; hence

most of the stratospheric data were sampled roughly 1 km

above that level. Directly above cirrus level fewer data points

are sampled. During the transfer segments, flight altitude and

horizontal position of the aircraft are independent of meteo-

rological conditions; however, due to the typical high flight

altitude of HALO, most of these data points are within the

lower stratosphere.

Overall, the ML-CIRRUS flight strategy shifts the sam-

pling of water vapor compared to unbiased sampling of the

UTLS in a way that there is a higher detection frequency of

humid upper-tropospheric air within cirrus clouds, higher de-

tection frequency of stratospheric measurements at a distance

of around 1 to 1.5 km to the tropopause and only a small de-

tection frequency of data in dry tropospheric conditions and

directly above the tropopause. However, the measurement

strategy should only affect the amount of data in certain wa-

ter vapor ranges and not the performance of each instrument

within its specification.

www.atmos-chem-phys.net/18/16729/2018/ Atmos. Chem. Phys., 18, 16729–16745, 2018
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4.2 Data processing and filtering

In order to construct a consistent data set from all five water

vapor instruments on board HALO, the specific time reso-

lutions and response characteristics are considered for each

instrument. The goal is to retain as much information as

possible while minimizing data-processing-related artifacts.

Since all instruments reported data either with a non-uniform

frequency or in 1 Hz intervals, the latter was used to unify

the data. For AIMS, the 1 Hz data are created by averaging

over three data points. Data from FISH are on a 1 Hz inte-

ger time basis. For SHARC and HAI, the 1 Hz resolution

data are interpolated onto integer values. The only instrument

with a lower time resolution than 1 Hz is the WARAN with

∼ 0.4 Hz. Since it is not useful to interpolate this data set onto

a 1 Hz interval, each measured value is assigned to the clos-

est integer time value. This processing allows comparison of

the H2O measurements directly without imposing any sub-

stantial interpolation artifacts in the measured values which

could affect the interpretation of the intercomparison.

Since three instruments (FISH, HAI and WARAN) mea-

sured total water, cloud sequences were filtered out for the

comparison of gas phase H2O. The cloud filtering was done

in a two-step process using both the total water measure-

ments themselves and cloud probe particle measurements by

the CAS-DPOL. To make sure that in-cloud data are def-

initely filtered out, all data with total water concentrations

above saturation are flagged as “in-cloud”. However, this im-

plies that supersaturated cloud-free conditions are left out as

well. As a quality check for the filtering procedure, parti-

cle concentrations measured by the CAS-DPOL are used to

double-check the cloud mask. In this step, very few addi-

tional data points are rejected, which might be due to very

thin sublimating clouds or the different positions of cloud

probe under the wing and water vapor inlets at the top fuse-

lage.

Further data filtering was applied manually in order to

clear data that suffer from obvious sampling artifacts. Con-

cerning AIMS, the pressure regulation of the instrument

(Kaufmann et al., 2016) during ML-CIRRUS was not fast

enough to compensate for the pressure drop during the fast

first ascent on each flight. For this reason, H2O data in that re-

gion are not reliable and not included in the archived data set.

Furthermore, there are a few ascent and descent sequences

where one or more instruments showed a significant time lag

of a couple of seconds compared to the other instruments.

The causes of these lags and their intermittent occurrence are

not clear, and the respective sequences are filtered out.

4.3 Reference value

The determination of a reference value for the intercompari-

son is guided by various considerations. One possibility is the

agreement on a common reference instrument. The airborne

intercomparison during MACPEX (Rollins et al., 2014), for

Figure 2. Water vapor molar mixing ratio measurements for the re-

search flight on 3 April 2014. AIMS (black) and SHARC (green)

measured in situ gas phase H2O, while FISH (blue), HAI (orange)

and WARAN (red) measured total water. Panels (a) and (b) are pro-

files of H2O in situ measurements plotted against potential tem-

perature, showing the descent between 54 904 and 58 522 s and the

descent between 59 139 and 61 398 s, respectively. Panel (c) is the

time series of the complete flight including the HALO flight altitude

in gray.

example, used the Harvard Lyman-α as a single instrument

reference. However this approach is complicated for the in-

strument combination deployed during ML-CIRRUS since

there was no instrument on HALO which measured gas

phase H2O and simultaneously covered the complete range

of mixing ratios. For that reason, we follow the approach

of the AquaVIT campaign described in Fahey et al. (2014),

where the mean value of a set of instruments was used as

a reference. This allows for a combined intercomparison of

data in the lower stratosphere (AIMS, FISH) and in the up-

per troposphere in cirrus clouds (AIMS, SHARC) and clear

sky (AIMS, FISH, SHARC, HAI). We further compare the

middle troposphere at higher H2O mixing ratios (SHARC,

HAI, WARAN). The reference value for each 1 s step is cal-

culated as the mean of AIMS, FISH, SHARC and HAI data

points with the condition that at least two instruments pro-

vided valid data for a single time step. For the lower strato-

sphere, the reference is the mean value of AIMS and FISH

measurements. For the troposphere, generally all four instru-

ments are used for the calculation of the reference except

for cloud sequences and depending on data availability. Data

from the WARAN are not included in the reference calcula-

tion since their uncertainty is significantly higher.
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Figure 3. Scatterplots of data from the five in situ water vapor instruments on HALO during ML-CIRRUS. (a) Clear-sky measurements of

AIMS and FISH covering the stratosphere and upper troposphere, (b) AIMS and SHARC measuring gas phase H2O. This plot thus includes

in-cloud gas phase H2O data. (c) HAI vs. FISH for clear-sky upper-tropospheric mixing ratios. (d) WARAN vs. SHARC data extending up

to 10 000 ppm with a lower cutoff of the WARAN at 100 ppm. The strong wet bias of the WARAN that occasionally occurs during the first

ascent of the plane is marked orange. These data points are left out for the further intercomparison.

5 Intercomparison

The basis for the intercomparison of H2O data during ML-

CIRRUS is time series from each instrument, an example

sequence of which is shown in Fig. 2c for the flight on

3 April 2014. For all total-water instruments, only cloud-free

data are used for the intercomparison. This flight aimed for

in situ and remote measurements of thin cirrus over Ger-

many which were potentially influenced by Saharan dust

(Weger et al., 2018). Flight altitude and water vapor mixing

ratios in Fig. 2 show the alternation of tropospheric in situ

legs (H2O ∼ 30. . . 120 ppm) and lidar legs in the stratosphere

(H2O ∼ 5 ppm). Except for the WARAN, which seems to

measure too high at the beginning of the flight, all instru-

ments agree reasonably well in both upper troposphere and

lower stratosphere. Figure 2a shows a profile for the upper

troposphere and lower stratosphere using data from the sec-

ond descent (indicated by dotted lines in Fig. 2c). The in-

struments follow the same structures in both regions with a

much higher variation in H2O mixing ratios in the upper tro-

posphere. The agreement also holds for the second profile

down to 3 km altitude (Fig. 2b); however mixing ratios there

are too high to be measured by AIMS and FISH. The short

ascent to 8 km after the profile shows a significant deviation

between SHARC, HAI and WARAN. Both total-water in-

struments (HAI and WARAN) measure higher values than

the SHARC, which is most likely due to wet contamination

of their measurement cells when encountering liquid clouds

during the descent. Sequences with such contamination are

identified for the entire data set and filtered out for the inter-

comparison (less than 1 % of the data).

5.1 Correlation of single instruments

To investigate the overall performance of the different mea-

surement systems, 12 ML-CIRRUS flights were combined

similar to the one shown in Fig. 2. This complete data set is

used to produce the scatterplots in Fig. 3, where selections

of four combinations of instrument pairs are displayed. The

scatterplot of AIMS and FISH in Fig. 3a shows a very close

correlation from below 4 ppm up to ∼ 600 ppm correspond-

ing, to the upper limit of AIMS. For stratospheric mixing

ratios below 10 ppm the correlation broadens, with AIMS

exhibiting a tendency to higher humidity values and FISH

to lower humidity values. Figure 3b shows the correlation

between AIMS and SHARC, the two instruments measur-

ing solely gas phase H2O, and is thus the only correlation

plot where in-cloud data are displayed together with clear-

sky data. Consistent with Fig. 3a this correlation is very nar-
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Figure 4. Relative difference of the measurements of AIMS, FISH, SHARC, HAI and WARAN from the mean H2O molar mixing ratio

value which is used as a reference (details see text). The small dots are the single measurement points (1 Hz values). The big squares, triangle

and circle are mean values of the relative difference for specific bins of H2O mixing ratio. The broad bars represent the 25th–75th percentile,

while the narrow bars stand for the 10th–90th percentile within the bins. All points with a deviation between −1 % and +1 % fall on the ±1

line. Values in the gray box on the left-hand side represent the overall mean values for the different instruments.

row, slightly widening only for the high concentrations at

the upper AIMS measurement limit. A similar narrow cor-

relation is found for HAI vs. FISH (Fig. 3c) from 20 ppm

up to 1000 ppm. For all three scatterplots (Fig. 3a–c) corre-

lation coefficients are higher than 0.99. In contrast to pan-

els a–c, Fig. 3d spans the range to higher humidity from 10

to 10 000 ppm, displaying data from WARAN and SHARC.

Between 100 and 300 ppm, the WARAN shows a slight dry

bias, which disappears for higher mixing ratios. Compared

to the other instruments, the WARAN exhibits a significantly

larger scatter, with complete sequences lying well above the

one-to-one line. These sequences are associated with initial

ascent during the flights, where the WARAN occasionally

shows a wet bias (data points marked orange in Fig. 3d).

These data points are omitted from the intercomparison. The

dry bias and larger scatter are also reflected in the correla-

tion coefficient, which is 0.94 for Fig. 3d. The comparison

with WARAN measurements during other campaigns sug-

gests that the deviations are likely caused by systematic off-

sets in the original calibration of the instrument. Thus, the

analysis is probably only valid for this specific instrument

during the ML-CIRRUS campaign. Overall, the correlation

plots indicate a good agreement for AIMS, FISH, SHARC

and HAI throughout the entire campaign.

5.2 Deviation with respect to reference value

In order to quantify the performance of each instrument, the

deviations of each instrument from the reference value (see

Sect. 4.3) are displayed in Fig. 4, similar to previous studies

(Fahey et al., 2014; Rollins et al., 2014). On the x axis, the

H2O reference value is shown. The y axis denotes the relative
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difference for each instrument from that reference value. The

small dots are the measured 1 Hz values; the big symbols are

mean values for logarithmic bins in H2O. Additionally, the

broad bars represent the interquartile range in each bin, and

the narrow bars are the 10th–90th percentiles. In the gray

box on the left, mean values and respective percentiles for

the entire data set of each instrument are shown. As shown

in Table 2, the mean deviations of AIMS, FISH, SHARC and

HAI are below 2.5 %, indicating that there is no consistent

systematic bias when averaging over the entire data set. The

situation looks different for the WARAN instrument, where

the dry bias at low H2O mixing ratios can be clearly seen

in the H2O-resolved deviation but not in the overall mean

(Fig. 4e).

When looking at Fig. 4a and b in more detail, the agree-

ment between AIMS and FISH in the lower stratosphere be-

low 10 ppm seems good with single values of both instru-

ments mostly falling within ±15 %. Since these are the only

two instruments measuring in the low ppm range, the plot is

a direct comparison of both instruments. In fact, there is a

systematic difference between both instruments for humidity

conditions between 4 and 10 ppm. In that region the mean

values of the instruments differ by 4 % to 16 %, with AIMS

measuring higher and FISH measuring lower mixing ratios.

Interestingly, the difference between the instruments for the

driest conditions (3.5 to 4.5 ppm) is smaller than for the next

several bins (2.4 % vs. 6.5 %). However, the spread in the

data is too large to judge if this difference is significant. Ex-

amining all of the time series plots from the campaign (not

shown) reveals that there are some distinct stratospheric legs

where AIMS is up to 1 ppm higher than FISH (correspond-

ing to a relative deviation of ∼ 20 %). The reason for this

deviation is not completely clear; one explanation could be

a contamination of the AIMS vacuum system. However, it is

unlikely that this is the only cause since the behavior changes

occasionally from one leg to another within the same flight.

For upper-tropospheric measurements (where more than the

two instruments contribute to the reference value), the agree-

ment of the mean values with the reference is better than

5 %. The same holds for the SHARC measurements (Fig. 4c)

throughout its complete range with a slight tendency to lower

mixing ratios (3 % to 4 %) compared to the reference be-

tween 30 and 200 ppm. HAI data (Fig. 4d) also fall in the

same range of variation, with mean values being consistently

slightly higher by about 3 % than the reference value in the

range between 30 and 2000 ppm. For both SHARC and HAI,

the single measurement scatter is within ±20 % with respect

to the reference. Considering the fact that all four instru-

ments contribute to the reference value, one can state that

FISH and SHARC tend to consistently report slightly lower

mixing ratios than AIMS and HAI. The WARAN measure-

ments (Fig. 4e) fall off compared to the other four instru-

ments, exhibiting a significant low bias for mixing ratios be-

low 300 ppm. However, these data are still within the uncer-

tainty specifications of the instrument (see Table 1).

Figure 5. PDFs of relative humidity with respect to ice calculated

from AIMS (black) and SHARC (green) data and the static air tem-

perature measurement on HALO inside cirrus clouds for the entire

campaign. Dark green indicates overlap regions. The cloud flag is

the same used for filtering the total water measurements. The cen-

ter of the respective distribution is 94 % for SHARC and 97 % for

AIMS.

5.3 Comparison of relative humidity in clouds

The comparison of relative humidity measurements in clouds

can be considered as a further measure for the quality of the

H2O measurements which is independent from any kind of

reference value. In contrast to measurements in liquid clouds,

much stronger deviations of RHi from saturation are possi-

ble in ice clouds due to their higher thermodynamic inertia.

RHi inside cirrus clouds can be very variable due to advec-

tion as well as small-scale turbulence inside the cloud (e.g.,

Gettelman et al., 2006; Petzold et al., 2017). However, if the

measurements include a sufficiently even sampling of me-

teorological conditions, a distribution of RHi with a mode

value close to 100 % would be expected. In order to calculate

RHi from the measured H2O mixing ratios, we have used the

static temperature and static pressure measurements on board

HALO to calculate water vapor partial pressure and satura-

tion pressure. The saturation pressure over ice is calculated

using Eq. (7) from Murphy and Koop (2005).

Here, we compare in-cloud measurements of RHi for

the two water vapor instruments with backward-facing in-

lets, AIMS and SHARC (see also Fig. 3b). In total, more

than 50 000 in-cloud data points were acquired during ML-

CIRRUS, with numbers varying between 2000 and 11 000

for individual flights. The frequency distribution of RHi for

the entire data set of the ML-CIRRUS campaign is shown

in Fig. 5. Data from both instruments are almost normally

distributed, with mean values slightly below ice saturation.

Fitting a normal distribution to both data sets, they peak

at RHi = 97 % for AIMS (52 700 data points) and 94 % for

SHARC (56 300 data points). The full width at half max-
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Table 2. Statistic summary of the five instruments including number of points entering the comparison, mean deviation and spread of the

data.

Number of Mean deviation from Spread: quartiles (10th/90th

Instrument data points reference [%] percentiles) [%]

AIMS 151 947 +1.4 −2.2/+5.3 (−5.8/+9.5)

FISH 94 392 −2.2 −4.6/+0.6 (−9.0/+3.6)

SHARC 149 741 −1.4 −3.6/+0.6 (−6.4/+3.1)

HAI 92 277 +2.3 −0.4/+3.1 (−2.1/+6.4)

WARAN 19 550 −7.5 −11.3/−1.7 (−20.3/+4.1)

Figure 6. Mean values for RHi inside cirrus measured by AIMS

(black) and SHARC (green) for each ML-CIRRUS flight. Broad

bars denote the interquartile range; narrow bars denote the 10th–

90th-percentile range.

imum of the distribution is 26.7 % for AIMS and 19.4 %

for SHARC. Both distributions are slightly asymmetric with

a tail towards higher supersaturation which is more pro-

nounced in the SHARC measurements. This agrees with re-

sults from Ovarlez et al. (2002), who find similar asymmetric

distributions for temperatures below −40 ◦C.

Considering the instrumental uncertainties, both distri-

butions appear reasonable. However, the question remains

whether the slight shift of the center of the RHi distribu-

tion relative to 100 % is caused by systematic instrument

biases (H2O and temperature), inlet issues (e.g., sucking in

and evaporating ice particles) or a sampling bias in the flight

strategy. If the sampling were biased toward either form-

ing/growing cirrus or evaporating cirrus, one would expect

a positive or negative RHi bias with respect to saturation, re-

spectively. During ML-CIRRUS, individual flights typically

targeted specific meteorological conditions, e.g., the updraft

region of warm conveyor belts or mountain wave cirrus.

Hence, a sampling bias for individual flights is very likely.

In order to investigate that, Figure 6 shows the mean values

for the in-cloud RHi distributions of AIMS and SHARC in-

cluding interquartile ranges and 10th–90th-percentile ranges

for each flight. For flight nos. 1–5, AIMS and SHARC devi-

ate by 4 % to 8 % with one exception on flight no. 3, where

the deviation is around 20 %. These data originate from a

two-step profile through cirrus clouds with high updraft ve-

locities over the Balearic Islands. During that flight, there is

a systematic difference between AIMS and SHARC which is

most pronounced during the two cirrus transects (difference

of around 20 % compared to 7 % to 10 % during the rest of

the flight). From the high updraft velocity, one would rather

expect supersaturation inside the cirrus. For flight no. 7, there

is not enough in-cloud data from AIMS to produce a reason-

able RHi distribution. For flight nos. 8, 9 and 10, the agree-

ment of both instruments is almost perfect, while for the last

two flights AIMS tended to measure slightly lower RHi val-

ues than SHARC but with a difference of less than 3 %. The

spread of the RHi measurements is similar for both instru-

ments (AIMS interquartile range: 10 % to 20 %; SHARC in-

terquartile range: 8 % to 17 %), with the lower values for

SHARC arising from a slightly better precision.

The observed trend could be an indication of instru-

mental drift over the campaign period; however we can-

not state which instrument is subject to a drift. Flights with

mean super- or subsaturation are almost evenly distributed

for AIMS, while SHARC measurements are slightly sub-

saturated, especially during the first half of the campaign.

From the present data, we do not have clear evidence for an

overall sampling bias during the campaign. A possible bias

affecting RHi derived from both instruments could be a bias

in the static temperature measurement on board HALO since

we use the same temperature information for both instru-

ments. However, the median and mean values of the distri-

butions deviate by less than 6 % from saturation for most of

the flights, indicating that temperature is not significantly off.

5.4 Comparison to the ECMWF numerical weather

prediction model

The extensive ML-CIRRUS in situ data set of upper-

tropospheric and lower-stratospheric humidity further en-

ables an evaluation of the accuracy of UTLS humidity in

the ECMWF (European Centre for Medium-Range Weather

Forecasts) numerical weather prediction (NWP) model. A

correct representation of water vapor is crucial for weather

and climate prediction via various pathways. Besides the tro-
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posphere, where water vapor is obviously important for cloud

formation and precipitation, the stratospheric mean state also

influences the predictability in the troposphere (Douville,

2009). Moreover, biases in modeled stratospheric water va-

por can induce a frequently observed cold bias in the extrat-

ropics (e.g., Boer et al., 1992; Stenke et al., 2008; Chen and

Rasch, 2012).

The model data used for analysis of ML-CIRRUS are

provided by the Integrated Forecasting System (IFS) of the

ECMWF (IFS Version 40r1). For analysis, we use a combi-

nation of analysis data with hourly forecasts starting every

12 h from the analysis at 00:00 and 12:00 UTC. The data set

covers the region of 20–70◦ N, 60◦ W–20◦ E. The model in-

cludes 137 vertical model levels, with pressure intervals of

18 hPa near 7 km altitude and 7 hPa near 15 km height. For

typical flight altitudes near 11.5 km (200 hPa) the vertical res-

olution is around 300 m (10 hPa). The horizontal resolution

of the data used is 0.5◦. Higher horizontal resolution would

be available from IFS but would not provide more informa-

tion due to the hourly time resolution. The data are interpo-

lated linearly to the measurement position for a given HALO

position (latitude and longitude) above the WGS84 refer-

ence ellipsoid. Vertical interpolation is performed in the log-

arithm of pressure fields (which varies more smoothly than

pressure) based on the static pressure measured by HALO-

BAHAMAS (Schumann et al., 2015). The output frequency

is 0.1 Hz along the flight track, resulting in a distance of

roughly 2 km between adjacent data points. The reference

H2O mixing ratio is averaged accordingly over 10 s intervals.

Except for the time resolution, the methodology of the inter-

comparison of model data and measurements is the same as

used in Sect. 5.2, simply treating the interpolated model data

as a “new” instrument. In Fig. 7, the relative deviation of the

ECMWF data is plotted against the measured reference H2O

value (same method as used for Fig. 4). The small dots rep-

resent the interpolated model data point for each valid refer-

ence value (see Sect. 4.3). Similarly to in Fig. 4, the black tri-

angles denote bin-wise mean values of the relative difference,

while the gray bars and whiskers represent the interquartile

range and the 10th–90th-percentile range, respectively. In or-

der to get an idea if the sampled air mass is of stratospheric

or tropospheric origin, the individual data points are color-

coded with potential temperature averaged from the HALO

onboard measurements.

As can be seen in Fig. 7, the comparison between the

model and measurements is different in two distinct hu-

midity regimes. At the higher tropospheric mixing ratios

above 30 ppm, there is a remarkably good agreement be-

tween mean bin values, and the interquartile range is mostly

within ±10 %. The single values exhibit a larger scatter, re-

sulting in 10th and 90th percentiles of around −30 % and

+20 %, respectively. This could be expected considering the

high natural variability in water vapor compared to the model

resolution. The distribution of mean relative differences sug-

gests a slight bias in that region, with ECMWF being slightly

lower. With a mean value near 3 %, this bias is very small

when considering the overall scatter of the data and the inter-

polation of the model onto the flight path. The interpolation

procedure is also the reason for the single data points resem-

bling the shape of a mirrored S. This behavior results from

comparing the measurement signal with high spatial variabil-

ity with the rather smooth model data. When using a logarith-

mic y scale and the more variable measured mixing ratio as

a reference on the x axis, it results in an S-like shape in the

individual data points.

The character of the intercomparison differs for lower mix-

ing ratios below 30 ppm found in the tropopause region and

the lower stratosphere. In that region, the model significantly

overestimates the humidity. The biggest differences between

measurement and model occur at mixing ratios between 5

and 8 ppm, typical values for the region directly above the

tropopause. The maximum difference is found in the bin be-

tween 5.5 and 6.5 ppm, where the mean difference is 115 %

(statistics from 382 data points). The difference decreases

again for mixing ratios below 5 ppm, indicating a better

agreement between measurement and model with increasing

distance to the tropopause. The mean difference for the dri-

est bin (3.5 to 4.5 ppm with 2383 data points) of 46 % is less

than half of the more humid neighboring bins. However, it

still is significant and positive, meaning that ECMWF shows

a systematic wet bias for the entire probed region in the lower

stratosphere in spring.

The maximal differences close to tropopause mixing ra-

tios indicate that the difference between measurement and

model is caused by too weak of a humidity gradient at the

tropopause, partially explained by the model grid resolu-

tion of about 300 m vertically near the tropopause. Here,

narrow inversions may form between subsiding dry strato-

spheric air and upward mixing of humid cold tropospheric

air (Birner et al., 2002) which might not be covered by the

coarse resolution of a global model. The difference in hu-

midity gradients is directly evident in the humidity profiles.

Figure 8 shows one ascent (Fig. 8a) and one descent (Fig. 8b)

through the entire tropopause region on 11 April 2014. Con-

sistent with Fig. 7, we observe a good agreement between

model and measurement in the troposphere. Directly above

the tropopause, the humidity gradient in the model is weaker

compared to the measurements for both profiles, resulting

in overestimation of water vapor by the model in that re-

gion. This feature is independent from the absolute height of

the tropopause (∼ 11.8 km in Fig. 8a, ∼ 10.4 km in Fig. 8b),

which is well represented in the model when comparing mea-

sured and modeled temperature profiles. With increasing ver-

tical distance to the tropopause, measurement and model ap-

proach similar values, which is consistent with the overall

intercomparison in Fig. 7. The region above the tropopause

where we observe a significant difference between mea-

surements and model varies from around 1 km above the

tropopause in Fig. 8a to around 3 km in Fig. (8b). Thus, the
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Figure 7. Relative difference of H2O mixing ratio between ECMWF analysis and measurement reference for all ML-CIRRUS flights. Model

data are interpolated in space and time on each flight track. The reference value on the x axis is the same as in Fig. 4. As in Fig. 4, the

triangles, broad bars and narrow bars represent the mean values, 25th–75th percentiles and 10th–90th percentiles, respectively. Single data

points are color-coded with potential temperature.

Figure 8. Profiles of water vapor mixing ratio and temperature from

in-situ measurements and the ECMWF model. The blue line is the

water vapor reference value from in-situ observations; the green line

is the interpolated ECMWF model data. Data shown here originate

from one ascent (a) and one descent (b) through the tropopause on

11 April 2014 (flight #11). The water vapor profiles agree well in the

upper troposphere; in the lower stratosphere we observe a stronger

gradient in the measurements compared to the model. The verti-

cal position of the thermal tropopause (black: measured by HALO;

gray: ECMWF) is well represented in the model.

weaker gradient is certainly no artifact of the vertical inter-

polation of the model.

Our results support previous studies (e.g., Kunz et al.,

2014; Dyroff et al., 2015). The latter study shows a good

Table 3. Relative difference between ECMWF IFS data and mea-

surements for different potential temperatures.

Potential Standard deviation

temperature No. of Mean relative of relative

range [K] points difference [%] difference [%]

> 370 761 16.9 8.9

360–370 1087 36.7 20.1

350–360 1759 87.5 49.1

340–350 1210 30.0 29.8

330–340 2213 11.3 25.1

agreement between measurement and model for vertical dis-

tances to the tropopause of 6 km and higher and model wet

bias between 2 and 6 km above the tropopause for the extrat-

ropics. During ML-CIRRUS, the maximum distance above

the tropopause was 3.5 km; hence the measurements are

probably not stratospheric enough to leave the wet-bias re-

gion. However, the trend towards better agreement deeper in

the stratosphere can be seen in the color coding in Fig. 7

as well as in Table 3 where mean difference are binned by

potential temperature rather than the mixing ratio. It turns

out that the wet bias strongly peaks at potential tempera-

tures between 350 and 360 K (mean difference of 88 %),

whereas it decreases from there with increasing altitude in

the stratosphere (higher potential temperature) as well as into

the troposphere (lower potential temperature). Both single

profiles and the overall intercomparison allow the observed

differences in lower-stratospheric humidity to be attributed

to the too-weak humidity gradient of ECMWF above the
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tropopause compared to the observations in European spring

conditions.

6 Discussion and summary

We intercompare water vapor measurements from different

state-of-the-art in situ instruments on board the DLR research

aircraft HALO during the midlatitude UTLS field project

ML-CIRRUS. It is the first comprehensive intercomparison

of all primary airborne hygrometers operated by the German

research community including three TDL instruments (HAI,

SHARC and WARAN), one mass spectrometer (AIMS) and

the established Lyman-α hygrometer FISH. The intercom-

parison includes a large span of humidity conditions from

lower-stratospheric to lower-tropospheric H2O molar mixing

ratios, with different instruments covering different parts of

the mixing ratio spectrum. This work focusses on the inter-

comparison of gas phase water vapor measurements, mean-

ing that only clear-sky data are used from instruments mea-

suring total water (HAI, FISH and WARAN). The flight strat-

egy of ML-CIRRUS focused on the investigation of midlat-

itude cirrus clouds with in situ and remote-sensing (lidar)

instrumentation. Hence, the majority of data points origi-

nate from the midlatitude upper troposphere and lower strato-

sphere above Europe and the western Atlantic in spring 2014.

The agreement between the in situ instruments, expressed

by the relative difference to a reference value (mean value

of at least two instruments), is generally good and consistent

with previous intercomparison studies (Rollins et al., 2014).

For all instruments except the WARAN, the overall mean de-

viation from the reference value is below 2.5 %. This is an in-

dication for the successful efforts to improve the accuracy of

UTLS H2O measurements during the past decade, motivated

by large discrepancies that have been found before (Fahey et

al., 2014). Still, systematic discrepancies remain between the

instruments in specific regimes which need to be addressed

in order to improve our understanding of the humidity bud-

get in the lowermost stratosphere or of cirrus formation under

very cold conditions (Gao et al., 2004; Krämer et al., 2009;

Jensen et al., 2017a). One major issue is the difference be-

tween FISH and AIMS for stratospheric mixing ratios below

10 ppm. The observation that the mass spectrometer AIMS

measures systematically higher mixing ratios than FISH is

similar to the findings during the MACPEX intercompari-

son (Rollins et al., 2014). During that campaign, the maxi-

mum difference of bin mean values is 13.7 % in the range

5.5–6.5 ppm. Although this difference is still within the com-

bined uncertainty of the instruments, it hampers the detailed

investigation of trends in the lower-stratospheric water vapor

budget, which are of the same order of magnitude and highly

uncertain, even in their sign (e.g., Hegglin et al., 2014; Los-

sow et al., 2018).

We investigate RHi measurements in cirrus clouds from

AIMS and SHARC as an independent metric of the abso-

lute accuracy of the H2O measurements. This is not straight-

forward, as RHi in cirrus clouds is known to differ signif-

icantly from saturation depending on the dynamics of the

cloud. Still, considering a sufficiently large database, the data

can be used as an independent indicator of the absolute accu-

racy of the measurements under UTLS conditions. Data from

both instruments have a mode value close to ice saturation

(less than 10 % difference of mean value for all flights). An

overall instrumental or sampling bias seems unlikely since

flights with mean super- and subsaturation in clouds are al-

most evenly distributed. The same holds for a possible bias in

the aircraft temperature measurement which would similarly

propagate into the RHi distribution. However, we do observe

a drift between the in-cloud measurements of the two instru-

ments over the course of the measurement campaign. While

AIMS measures higher RHi values than SHARC in the be-

ginning of the campaign, mean RHi values agree much better

during the second half of the campaign. When considering

the entire data set (including clear-sky data), this drift is not

apparent, which makes a change in the performance of one

instrument unlikely.

A comparison of the measured H2O mixing ratios with

ECMWF IFS data is accomplished using the same method-

ology as for the instrument intercomparison. The gridded

ECMWF data are interpolated in space and time along the

flight path of HALO with a resolution of 0.1 Hz. Measure-

ment and model show generally good agreement throughout

the upper troposphere with bin-wise mean values of the dif-

ference typically within ±10 % (consistent with, e.g., Flen-

tje et al., 2007) with a slight tendency towards a model dry

bias which, however, is not statistically significant. Below

mixing ratios of 30 ppm, we observe a significant wet bias

in the ECMWF model with highest mean deviation from

the measurements around 6 ppm or at a potential tempera-

ture of 355 K. In that regime, mean deviations are on the

order of 100 % with an interquartile range of 70 to 140 %.

The large wet bias of the model in the tropopause region

is consistent with findings in previous studies (e.g., Kunz

et al., 2014; Dyroff et al., 2015). The model wet bias de-

creases substantially at higher potential temperatures, lead-

ing to a mean difference of only 17 % at potential temper-

atures above 370 K. The fact that the model bias shows a

clear maximum at the tropopause indicates that this issue is

likely caused by too strong numerical smoothing reducing

humidity gradients near the tropopause rather than an overall

bias of stratospheric mixing ratios. Kunz et al. (2014) found

a similar feature with good agreement between FISH mea-

surements and ECMWF reanalysis data at altitudes higher

than 6 km above the tropopause. The issue of too-weak gra-

dients at the tropopause is discussed extensively by, for ex-

ample, Birner et al. (2002), Gray et al. (2014) and Saffin et

al. (2017). In particular, the lower-stratospheric wet bias is

very sensitive to the horizontal interpolation of the specific

humidity field in the semi-Langrangian IFS model (Diaman-

takis, 2014), leading to a too high diffusivity, which in turn
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causes a cold bias at the extratropical tropopause (Stenke et

al., 2008). However, it is difficult and cost intensive to ad-

dress the issue in the model since it would require adjusting

core dynamical model processes or increasing the model res-

olution (Saffin et al., 2017; Pope et al., 2001). Additionally,

the model suffers from a lack of assimilated information on

lower-stratospheric water vapor since specific humidity data

from radiosondes are only assimilated below a certain thresh-

old pressure level (depending on the type of sonde; see An-

dersson et al., 2007). Given the large model uncertainty in

H2O concentrations close to the tropopause, it is difficult, for

example, to correctly evaluate the radiative effects of water

vapor in that region where the atmosphere is very sensitive

to even small changes in H2O (Solomon et al., 2010; Riese

et al., 2012).

Despite the limitation to one-dimensional data for the in

situ measurements, high-spatial-resolution data as obtained

from aircraft can help to point out important small-scale dif-

ferences which are difficult to assess when comparing model

to satellite data due to their limited (especially vertical) res-

olution (e.g., Lamquin et al., 2009). The intercomparison

shows that our approach to comparing in situ data with model

data can be particularly useful for investigating model perfor-

mance around the tropopause. Hence, it could be worthwhile

to extend this type of intercomparison to reanalysis data like

the new climate reanalysis data set (ERA-5) of the ECMWF

or include further NWP models like the Icosahedral Nonhy-

drostatic (ICON) model from the German Weather Service.
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