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Chapter 15

INTERCONNECT AND MEMORY
ORGANIZATION IN SOCS FOR
ADVANCED SET-TOP BOXES AND TV

Evolution, Analysis, and Trends

Kees Goossens†, Om Prakash Gangwal†, Jens Röver‡, and A.P. Niranjan‡
† Philips Research Laboratories, Eindhoven, The Netherlands
‡ Philips Semiconductors, Sunnyvale, USA
{Kees.Goossens,O.P.Gangwal,Jens.Roever,Niranjan.AP}@Philips.com

1. Introduction
In this chapter we show that the organization of the communication and

memory infrastructures is critical in today’s complex systems-on-chip (SOCs).
We further show that resource management in the form of scheduling or arbi-
tration is common to them both. The increasing importance of these issues is
illustrated by following the evolution of an advanced set-top box and high-
definition digital TV application (ASTB) and its SOC implementations over
time.

In Section 2, we introduce the application domain (embedded systems for
high-volume consumer electronics), and the application (advanced set-top boxes
for high-definition digital and analog TV). The computation kernels and the
communication (data rates, latencies) needed for real-time audio and video are
demanding. Meeting real-time requirements, while minimizing resources for
cost-effectiveness is challenging for such large heterogeneous SOCs.

In Sections 4 to 6, we review two existing and one possible future SOC im-
plementation of the ASTB application, along the following axes, introduced
in detail in Section 3. We commence with the application itself, including
real-time requirements, the computation kernels, the kinds of traffic flowing
between them, and the logical memories used by them. The following axes
categorize its implementation; the mapping of computation (types and number
of IP blocks) and communication. Then we consider the interconnect organiza-
tion, communication abstraction (how IP blocks interact with the interconnect),
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and the memory organization (how the logical memories are implemented).
Finally, we review arbitration: how traffic types are supported by the intercon-
nect, and how the system as a whole meets its real-time requirements.

The Viper SOC (Section 4) and its successor Viper2 (Section 5) share some
important characteristics (such as a dependence on a single external memory)
but have a different philosophy underlying their architecture. The former im-
plements the interconnect grouped by data-rate requirements (leading to low
and high-bandwidth interconnects), while the latter groups IP blocks by traffic
kind (control traffic, low-latency data traffic, and latency-tolerant data traffic).
A possible future implementation (Section 6) builds on Viper2’s traffic sep-
aration, and additionally integrates multiple on-chip memories and external
memories.

In Section 7, we review the evolution of the ASTB application and imple-
mentations, and observe some trends.

2. The ASTB Application
We focus on embedded systems for high-volume consumer electronics, in

particular, advanced high-quality set-top box and TV systems. The ASTB ap-
plication comprises audio decoding (e.g. AC3, MP3), video decoding (e.g.
MPEG2), video pixel processing (e.g. de-interlacing, noise reduction), and
graphics [1, 2]. These functions are combined to provide different products
(such as analog, digital, and hybrid TV), as well as different modes of op-
eration within a product. For example, digital TV decodes audio and video
before performing further video pixel processing, while analog TV uses noise
reduction instead of video decoding, and in hybrid TV both are present.
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Figure 15.1. Example hybrid (analog and digital) ASTB processing chain.
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Figure 15.1 depicts an example hybrid TV application. The audio pro-
cessing chains for analog and digital remain independent, while the corre-
sponding video-processing chains interact in a convergence to the screen, and
a VCR output. We refer to [3, 4] for more information about the particular
video functions, such as noise reduction (NR), picture rate up-conversion (mo-
tion estimation ME and motion compensation MC, de-interlacing DEINT, up-
conversion UPC, etc.), spatial scaling (horizontal scaling HS and vertical scal-
ing VS), sharpness improvement (e.g. peaking, luminance transition improve-
ment LTI), picture composition PCOMP (e.g. mixing and blending of multiple
pictures and graphics), and display adaptation DA (color conversion, skin tone
correction, blue stretch, green enhancement, etc.). An important characteristic
of many of these functions (such as NR, ME, MC) is their temporal process-
ing nature, i.e. they use previous, current, and (sometimes) next pictures to
generate their output picture. These pictures require significant storage and
subsequent retrieval. Table 15.1 lists some typical computation, communica-
tion, and memory requirements to implement these functions [5, 6].

Table 15.1. Characterization of ASTB applications. Video pixel processing combines many
video-improvement algorithms in a chain. We show typical numbers; however, they depend on
the number of (temporal) processing stages.

computation in out local memory
audio decoding 100 MOPS 32-640 kbps 5 Mbps 5 Mbps 50 kb

MPEG2 video decoding 4 GOPS 10 Mbps 120 MBps 240 MBps 8 MB
video pixel processing 100 GOPS 360 MBps 360 MBps 360 MBps 4 MB

The audio and video decoding functions conform to standards, such as AC3
and MPEG2. Many implementations complying with a standard are therefore
available for these functions [7, 8]. In contrast, video pixel processing func-
tions are often proprietary, and are the differentiating factor for products be-
cause they visibly improve the video picture quality [9, 10, 11].

ASTB SOCs have to support various input/output picture sizes, in particular
standard (SD) and high definition (HD). Some processing is specific to analog
or digital input (e.g. noise reduction is not used for digital input), specific to the
display type (e.g. CRT or matrix), and specific to the number of streams pro-
cessed simultaneously for one screen (e.g. with or without picture-in-picture
PIP). Some modes are static, i.e. fixed for a particular product and do not
change during its lifetime (e.g. CRT versus matrix). Other modes are dynamic
and may change frequently, either triggered by the user (e.g. PIP on/off) or by
the environment (e.g. broadcast change from video to film type, or SD to HD

for main window).
Audio and video processing have intrinsic real-time requirements: for ex-

ample, a video field must be displayed at regular intervals (e.g. 1/50th, 1/60th,
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or 1/100th of a second). Furthermore, audio and video must be synchronized
within strict limits (known as ”lip synchronization”). Only a limited amount
of processing, such as graphics, has less strict timing restrictions.

Application characteristics From the brief overview of the application
domain we extract the following characteristics.

First, computational requirements vary substantially (three orders of mag-
nitude, cf. the second column of Table 15.1), from low for audio processing
to very high for video pixel processing functions. This leads to a large num-
ber of heterogeneous computation elements. For example, Viper2 (Section 5)
contains 60 dedicated and weakly-programmable IP blocks, two application-
domain-specific VLIW media processors, and one general-purpose RISC pro-
cessor. (A note on terminology: we divide IP blocks in two categories: function-
specific cores, and programmable processors.)

Programmable processors offer the flexibility to implement emerging stan-
dards for audio and video, and differentiation of products (when integrating
SOCs in products). Low cost, power efficiency, and high computational perfor-
mance are achieved through the use of function-specific cores.

Video decoding and video pixel processing operate on large amounts of
data, necessitating large buffers for communication and temporal data. Multi-
tasking processors, especially high-performance VLIW processors, have large
amounts of program instructions (code), which also requires storage. For high
memory requirements, large external (off-chip) memories are more cost effec-
tive than on-chip memories.

The interconnection infrastructure plays a central role in the SOC architec-
ture for a number of reasons. The large amounts of (temporal) video data
have to be transported between many IP blocks, via memory or directly. This
requires a high-performance interconnect. To support the many static and dy-
namic modes of operation, data transportation mechanisms must be highly con-
figurable. Moreover, to configure the SOC for a mode of operation, a flexible
control interconnect must allow IP blocks to be accessed and programmed [12].

Finally, the combination of cores, processors, and interconnect must guaran-
tee the hard-real time requirements of the application. Resource management
(arbitration) of computation (e.g. real-time operating systems), communica-
tion (e.g. traffic classes with different performance), storage (by the external-
memory controller), and their combinations are essential.

3. System Analysis Overview
Before we discuss individual designs, we define the axes along which the

designs are presented. Although the axes are not independent (interconnect
and memory organizations are strongly related, for example), for every axis an
evolution can be identified for successive designs. For each design we discuss
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the application, its computational complexity, and the resulting traffic types.
These are reflected in the interconnect organization, the communication ab-
straction (i.e. how IP blocks interact with the interconnect), the memory orga-
nization, and finally how all these components are managed or arbitrated. We
have some general remarks on a few of these points in this section.

3.1 Traffic Types
Traffic types help us to discuss how communication is mapped to intercon-

nect implementations. The heterogeneity of the processing elements (cf. Sec-
tion 2), results in a variety of traffic types, based on data rate, latency, and jitter
characteristics, see Table 15.2. Based on these traffic types, the three designs
have different interconnect partitionings, as we shall see in Sections 4 to 6, and
summarized in Table 15.4.

Table 15.2. A classication of traffic types.

label data rate latency jitter example
LRLL low low low control traffic
HRLL high low low cache misses

low-jitter HRLT high tolerant low “hard-real-time” video
jitter-tolerant HRLT high tolerant tolerant “soft-real-time” video
jitter-tolerant MRLT medium tolerant tolerant audio & MPEG2 bitstreams

best effort tolerant tolerant tolerant graphics

Control traffic originates from control tasks that are usually mapped on one
or more processors, which must obtain status information from cores and pro-
gram them. It has a low data rate, but requires low latency (LRLL) to minimize
the system response time, e.g. when the application mode changes.

Multi-tasking processors, such as MIPS and especially high-performance
VLIW TriMedia processors, do not have sufficient local memory to contain all
instructions (code) and data of the multiple tasks. Instruction and data caches
are therefore used to automatically swap in and swap out the appropriate in-
structions and data. This leads to high (instantaneous) data rates, and requires
low latency (HRLL).

Dedicated video-processing cores usually operate on and generate stream-
ing (sequential) traffic with high data rates. They are composed in deep chains
without critical feedback loops, and their low-latency requirement can there-
fore be made less critical by using buffers to avoid underflow. The resulting
traffic has a high data rate but is latency tolerant (HRLT). Medium-data-rate
latency-tolerant traffic (MRLT) is generated, for example, by audio and MPEG2
processing cores.

Jitter (latency variation) can be handled similarly, and we use the distinc-
tion between low-jitter and jitter-tolerant HRLT traffic. IP blocks with the latter
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traffic, such as the memory-based video scaler, have an average data-rate re-
quirement but can be stopped when there is no data, and make up by processing
at a higher rate later, or by averaging out data bursts. By contrast, low-jitter
HRLT IP blocks do not tolerate variations in data rates, because they cannot
make up for any lost processing cycles. Examples are video-processing blocks
operating at actual video frequencies, where line and field blanking can not be
used as slack.

Some processing, like graphics, operate on best effort traffic, in the sense
that it gets by on whatever bandwidth and latency it is given.

3.2 Communication Abstraction
As SOCs increase in complexity, the need for IP re-use and associated stan-

dardized SOC design methods has resulted in the notion of a platform [13]. A
platform structures and standardizes SOC architectures, by regulating the kind
of IP blocks that can be used, how they are combined, and how the system
is programmed. Separating the computation (processors and cores) from com-
munication (the interconnect core) has many advantages [14, 15]. In particular,
we show how the use of the device-transaction-level communication standard
(DTL) [16], part of Philips’s Nexperia platform, has been key in allowing the
interconnect to evolve over time, while the IP blocks remained unchanged.
Communication abstraction has been promoted by the VSI alliance, the OCPIP

consortium, and ARM, whose respective VCI [17], OCP [18], AXI [19] protocols
are similar to DTL.

The use of communication abstractions, such as DTL, has several advan-
tages. The development of cores is simplified because DTL is tailored to the
requirements of IP blocks, rather than the interconnect. Moreover, IP blocks
become independent from the interconnect, and hence re-usable. The inter-
connect and IP blocks are glued together by means of (re-usable) adapters.
System-dependent customization is restricted to the adapters, instead being
implemented by the IP blocks or the interconnect. Examples include little/big
endianness conversions, interconnect-dependent sizing of latency-hiding com-
munication buffers. This enables re-use of both the IP blocks and the intercon-
nect.

3.3 Memory Organization
We distinguish several logical memories for data use. These are: algo-

rithmic memories (e.g. temporal field memories, field to frame conversion
memories, line memories of a scaler), state memories (e.g. local variables of a
hardware or software task), and decoupling memories. Decoupling memories
even out differences in data production and consumption rates of IP blocks, e.g.
due to field and line blanking, horizontal and vertical data access patterns of
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video scalers. In the following discussions we omit state memories because, in
the designs we discuss, they are always part of the IP block. A second type of
logical memories are used to store instructions of programmable processors.

Memories that pertain to the communication architecture include pipelining,
packetization, latency-hiding, and clock-domain-crossing memories. Pipelin-
ing memories are used to increase the operating frequency of interconnects.
Packetization memories are required to convert the data of IP blocks to the
format used by the interconnect (e.g. 64-bit words). Latency-hiding memo-
ries remove or hide latency and jitter introduced by communication networks,
memory controllers, RTOS task scheduling, and so on. For example, a 128-
byte buffer is used in Viper. A small amount of memory is used to safely cross
different clock domains.

All the kinds of logical memories are mapped to (implemented by) physical
memories, basically on-chip or off-chip memories. For each of the designs,
we show how the different logical memories are mapped to on- or off-chip
memories (but we do not further sub-divide in RAM, flash, register files, etc.).

3.4 Arbitration
The ASTB application can be analyzed in terms of its computation and com-

munication, but, additionally, it has real-time constraints for audio and video.
To meet real-time requirements computation, communication, and memory re-
sources must be arbitrated, or managed. For example, a simple first-come first-
serve bus arbiter cannot distinguish low-latency from latency-tolerant traffic,
and cannot offer differential data-rate services. Both are important in meeting
real-time requirements. Two key issues in each of the designs are the arbitra-
tion of critical resources (such as external-memory bandwidth), and managing
the interaction of various arbiters (e.g. those of external memory and on-chip
interconnect).

4. Viper
Viper [1] is a highly integrated multimedia SOC targeted at advanced set-top

box and digital TV (ASTB) applications. It provides progressive SD, and in-
terlaced SD and HD outputs. Viper’s main functions are video decoding (e.g.
MPEG2), audio decoding (e.g. AC3), and video pixel processing to improve
picture quality and to convert between image formats (e.g. de-interlacing).
It simultaneously supports two video streams (e.g. one high definition of
1920x1080 pixels interlaced at 60Hz, and one standard definition of 720x480
pixels interlaced at 60Hz) and three audio streams.
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4.1 Computation Mapping
Viper contains two processors (a MIPS-PR3940 and a TriMedia TM3218)

and 50 function-specific cores. The cores include video-processing modules
such as MPEG2 decoders (with high computation and communication require-
ments), audio/video input/output modules (e.g. MPEG2 transport-stream parser)
and general-purpose peripherals (e.g. UART interface, USB controller). As
noted in Section 2 their communication requirements and memory usage vary
significantly.
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Figure 15.2. Simplified block diagram of Viper.

4.2 Communication Mapping
Memories are required to a) store instructions and data for both proces-

sors, b) function as an algorithmic memory (in particular temporal data, and
for vertical scaling), and c) decouple IP blocks if their processing rates do not
match. On-chip memories cannot be used in many of these cases because they
would be too large. Hence it is advantageous to merge all data and instruc-
tion memories in one external memory. This results in high data rates for the
off-chip memory from streaming cores (HRLT), and from data and instruction
accesses of the programmable processors (HRLL). To hide the latency to the
background memory the MIPS and TriMedia processors all have data and in-
struction caches. In Viper, all IP blocks are masters, i.e. they autonomously
write to and read from the memory. In Figure 15.2 master and slave ports are
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labeled M and S, and all read (R) and write (W) ports are masters. This avoids
the need for a central DMA agent that has to be programmed by a processor,
which could be a bottleneck. Given the particular combination of many masters
and one slave, it makes sense to optimize the combination of external-memory
controller and interconnect, as we shall see in the next section.

The status and program registers of all cores can be accessed at locations
in a global memory map. This control traffic is generated by a few masters
(the programmable processors) requiring access to many slaves (the cores), in
contrast to the data traffic. Control traffic has low data rates, but requires low
latency, to reduce the system response time (e.g. when the application mode
changes).

4.3 Interconnect Organization
A single-hop broadcast interconnect, such as a shared bus (multi-master and

multi-slave) that connects all IP blocks (including external memory), is not a
feasible solution for a SOC like Viper. It cannot fulfill the bandwidth require-
ments of high-data-rate traffic, and certainly cannot offer the required low la-
tency for control (LRLL) and cache traffic (HRLL). In Viper the traffic is there-
fore partitioned over several different interconnects, with traffic separated on
the basis of data-rate requirements. There are two interconnects: one for low-
data-rate (LRLL, control traffic) to medium-data-rate traffic (MRLT, audio and
encoded MPEG2), and one for high-data-rate traffic, both low latency (HRLL,
cache misses) and latency tolerant (HRLT, video). Below, we first discuss each
interconnect in turn, and then how they interact.

The low to medium-bandwidth interconnect The idea underpin-
ning this interconnect is that low latency can be ensured for control traffic by
isolating it from high-data-rate traffic. Two 32-bit PI busses [20] are used: M-
PI (see Figure 15.2) for control traffic from the MIPS and DMA traffic from
streaming cores, and T-PI for control traffic of the TriMedia. MRLT DMA traf-
fic is added to the M-PI bus to increase its utilization. The two busses are
connected by a bridge (C-BRIDGE, with a master and slave port on both sides),
to allow both processors access to all cores for programming.

The high-bandwidth interconnect The high data-rate requirements
to access external memory cannot be fulfilled with a tri-state bus, such as the
PI bus. Even with large tri-state drivers, it would be too slow because of a high
capacitive load due to the large number of IP blocks. Observe, however, that all
high-data-rate traffic is destined to the off-chip memory, that is, many masters
communicate with a single slave. This leads to the design of a specialized
64-bit point-to-point memory-access interconnect (PPMA) that connects the IP

blocks directly to the memory controller, see Figure 15.2. The PPMA allows
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multiple active high-speed transactions because, essentially, it consists of a set
of independent direct (non-pipelined) wires from the IP blocks to the memory
controller. The MIPS and memory controller are re-used from earlier designs,
and have different interfaces. As a result, the MIPS is connected to the memory
controller using a PI bus (F-PI) running at processor speed (the M-PI bus runs
more slowly), via a gate (F-GATE, which has only a slave port at the MIPS side).
As discussed next section, this arrangement is not ideal because it increases the
MIPS’s latency when accessing the external memory.

The memory controller can efficiently schedule multiple outstanding trans-
actions, as all client requests are visible. However, in this interconnect design,
the very large number of long global (top-level) wires running from the many
IP blocks to the single memory controller significantly complicated clock-tree
balancing and global timing closure.

IP blocks are connected to the PPMA by means of adapters that packetize
(format) the data of the IP blocks to 128-byte data bursts. The packetization
memory that is required for this is merged with the latency-hiding memory.
The latter hides the access latency an IP block would see before it is served
by the memory controller. The use of adapters is essential to implement the
communication abstraction, further discussed in Section 4.4.

Combining the two interconnects To allow cores on the PI busses
access to the external memory, two additional gates (M-GATE and T-GATE) are
used. The F-PI and M-PI MIPS PI busses are connected by the MIPS bridge
(M-BRIDGE). The interconnects are summarized in Table 15.4.

In Section 4.6 we discuss the performance and arbitration issues of the cho-
sen interconnect scheme, in particular the role of the gates.

4.4 Communication Abstraction
In this design, there are two different interconnects: a point-to-point PPMA

of 64 bits wide, and tri-state PI busses of 32 bits wide. PI busses are used for the
control traffic and the MIPS PPMA interface because IP blocks were only avail-
able with tri-state PI-bus interfaces. Alternative bus implementations (multi-
plexed or wired-OR) were therefore not considered although tri-state busses
can cause testability and lay-out problems. The F-GATE is another penalty (in
terms of additional latency for the MIPS cache misses) because the memory
controller does not use the PI bus protocol. These observations motivate the
communication-abstraction concept introduced in Section 3.2, i.e. IP blocks
use an abstract point-to-point interface and protocol suitable for them, which
is converted to different interconnect protocols by means of adapters. In fact,
communication abstraction was already used to connect IP blocks to the PPMA

(except for those on the F-PI bus), and proved to be very successful in re-using
these IP blocks in Viper’s successors, even as interconnects evolved.
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4.5 Memory Organization
Most logical memories are mapped on the external memory, because they

are too large to be kept on chip. This includes algorithmic memories (such
as SD/HD fields for temporal processing), decoupling memories (e.g. SD/HD

fields), and the instruction memories for the processors. The only exception is
the line memories of the memory-based scaler, which are mapped to on-chip
local memory. Both processors use instruction and data caches to hide the
latency of accessing data and instructions in the external memory.

Latency-hiding memories, which hide the variations in data-access latency
(jitter) to the external memory, are kept on chip. This jitter is introduced by the
memory controller when it arbitrates between the urgent cache misses of the
processors (HRLL), the heavy data rates of streaming traffic (HRLT), and the re-
maining traffic (e.g. best-effort graphics). These latency-hiding memories are
implemented in the adapters (the boxes marked R and/or W in Figure 15.2).
They are merged with the packetization memories that are required to convert
the IP block’s data to the format used. The interconnect, memory controller,
and overall system requirements determine this format. None of the intercon-
nects (PI busses, PPMA) are pipelined. The bridges and gates contain only
memory to synchronize clock domains. They are therefore circuit-switched,
that is, they make an end-to-end connection between the master and the slave,
occupying all intervening interconnects. While this simplifies transaction han-
dling, it also causes a performance bottleneck, as we shall see below.

4.6 Arbitration
No arbitration takes place in the PPMA. Instead the memory controller con-

siders all outstanding requests from all IP blocks connected to it. The memory
controller optimizes the bandwidth to the external memory. The run-time-
programmable arbitration scheme uses time-division multiplexing, with two
priorities per slot. The higher priority guarantees a maximum latency to low-
jitter clients, and the lower priority allows other clients to use the bandwidth
left over.

Traffic with similar characteristics is coalesced before entering the PPMA,
conceptually adding a first level of round-robin arbitration. This includes both
the (multiple) read and write ports of a single core (e.g. VMPG in Figure 15.2),
and multiple cores (e.g. VIP1 and VIP2). This reduces the number of top-level
wires to the memory controller.

The arbitration of the PI busses proceeds independently, except when ad-
dressing a slave behind a bridge or gate. In this case, both busses are locked
until the slave has responded (non-pipelined circuit switching). This works
well for the inter-PI bus bridges (M- and C-BRIDGE) and F-GATE. However,
when accessing the PPMA through the M-GATE and T-GATE a transaction can
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be stalled for some time, depending on the traffic class of the master (e.g. best
effort). During this time the F-PI bus is locked. For example, a DMA access
of the USB module on the M-PI bus can in this way stall the MIPS for some
duration, if the MIPS tries to program a core at the same time. For this reason,
the latency of control traffic can vary considerably: from 10-20 cycles without
DMA interference, to 100+ cycles with interference.

Hence, the way in which traffic types are separated (by data rates rather
than latency) and mapped (on separate, yet interacting interconnects) causes
interacting arbitration schemes (of the PI busses and memory controller). This
complicates guaranteeing the real-time behavior required by the application,
and forces overdimensioning of parts of the system (in particular the PI bus
frequency). These observations suggest improvements for Viper’s successors.

5. Viper2
Viper2 is a successor of Viper, and targets mid to high-end analog, digi-

tal, and hybrid (both analog and digital) TV, including wide-XGA plasma and
LCD displays. Viper2 extends Viper by handling 100Hz interlaced and 60Hz
progressive displays. It upgrades the conversion of interlaced to progressive
output video from SD to HD. It also includes advanced video improvement al-
gorithms, such as motion-compensated Digital Natural Motion for SD pictures.

5.1 Computation Mapping
Viper2 contains three processors (one MIPS PR4450 and two TriMedia TM3260)

and 60 function-specific cores. The cores are similar to those of Viper, but have
higher computational and communication requirements due to HD output.

5.2 Communication Mapping
Viper2 has one external memory, like Viper. The second TriMedia adds

more HRLL cache-miss traffic, and the larger number of cores, with higher
data rates, load the external memory close to its maximum.

5.3 Interconnect Organization
Recall that in Viper, the interconnects are defined by data-rate requirements:

PPMA for high-data-rate traffic, and the PI busses for low to medium-data-rate
traffic. Their interaction via the gates leads to performance issues on the PI

busses (cf. Section 4.6). For Viper2, this problem would have been more
acute with the increased number of IP blocks. This is addressed by partition-
ing the interconnect on the basis of traffic types instead. Cache misses (HRLL),
streaming data (MRLT and HRLT), and control traffic (LRLL) are separated in
three interconnects, respectively. No bridges are required between these inter-
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Figure 15.3. Simplified block diagram of Viper2.

connects, and hence there is no interaction between their arbiters. This avoids
the traffic interactions of Viper. (Observant readers will notice the M-GATE

in Figure 15.3, which, however, is only used during booting and debug.) Be-
low, we describe each of the interconnects, and return to arbitration issues in
Section 5.6. The interconnects are summarized in Table 15.4.

The device control and status interconnect (DCS) The DCS in-
terconnect differs from Viper’s PI busses in several ways. First, the traffic to
be transported over the DCS interconnect is homogeneous (only low-data-rate
low-latency traffic), in contrast to the PI busses in Viper. Only single-word
transactions are allowed, to ensure low latency. Second, it is a synchronous or
asynchronous wired-OR bus, not a tri-state bus, to lower the length and num-
ber of wires, and so increase its frequency and improve its testability. Timing
closure is alleviated by structured post-lay-out netlist modification. Further, to
ensure low latency, the load on the DCS busses is kept to less than 0.5% (one
data word per cycle corresponds to 100%). Finally, to hide the significant dif-
ference in speed between the processors and the core being accessed, posted
writes and reads can be used. A posted read accesses a (possibly out-of-date)
copy of a core’s registers in the adapter of the core, which is in the fast DCS
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clock domain instead of the slower core’s clock domain. By the combined ef-
fects of these improvements the latency of the control interconnect of Viper2
is the same as in Viper, despite the increase in the number of IP blocks.

The bridge (C-BRIDGE in Figure 15.3) between the MIPS (M-DCS) and Tri-
Media (T-DCS) interconnects functions as before (i.e. both interconnects are
locked when addressing a core through the C-BRIDGE).

The high-bandwidth low-latency interconnect The three proces-
sors all require low-latency access to the external memory for their cache
misses. They are therefore connected directly to the memory controller, us-
ing non-pipelined wires. Viper’s F-PI bus and F-GATE to connect the MIPS to
the memory controller have been eliminated.

The pipelined memory-access interconnect (PMA) The pipelined
memory-access interconnect (PMA) is Viper2’s medium to high-bandwidth la-
tency-tolerant interconnect. In Viper, the 64-bit point-to-point PPMA has direct
wires between the memory controller and all IP blocks with high data rates (ex-
cept for the MIPS). In Viper2, this is no longer feasible because the Viper2’s
increased chip area results in longer wires, and the medium-data-rate cores on
the PI bus are moved to the PMA. Moreover, the number of medium to high-
data-rate IP blocks has increased, as well as their data-rate requirements (to
deal with HD instead of SD pictures).

The PMA therefore contains two innovations. Both hinge on the fact that
many masters communicate with a single slave, like in Viper. First, the out-
standing transactions from multiple cores are presented one at a time to the
memory controller, to reduce its complexity, and to decouple the PMA commu-
nication arbitration from the memory arbitration (breaking global arbitration
into local subarbitrations). The memory controller is now independent of the
number of cores, making it more re-usable. We return to the PMA arbitration
in Section 5.6.

Second, the point-to-point wires of PPMA of Viper have been replaced by a
pipelined multiplexed interconnect to reduce the length and amount of wires,
to ease lay-out and timing verification. A tree topology clearly fits well with
exposing a single transaction to the memory controller, as transactions of dif-
ferent cores converge towards the top. In Figure 15.3 the cores on the dark
shaded background connect to a PMA of 8 nodes (shown as hatched boxes),
using 28 ports, but it is clearly scalable to a larger number of masters. Note
that the tree topology is motivated by lay-out and timing closure, and that a
node in the tree is not necessarily a point of arbitration (further discussed in
Section 5.6).

The adapters glueing the cores and PMA together contain combined memo-
ries for clock-domain crossings, packetization (to convert data from the cores
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to 128-byte PMA bursts), and pipelining and latency-hiding memory (to over-
come the latency and jitter introduced by the memory controller and PMA).

5.4 Communication Abstraction
In Viper, re-use of legacy IP blocks required the F-PI bus with its associ-

ated side effects (cf. Section 4.4). This motivates the creation of IP blocks
that are independent of the interconnect, which was already applied to Viper’s
PPMA interconnect. Many of Viper’s IP blocks were re-used in Viper2 without
change, proving the value of the methodology. Even the adapters that con-
nected the IP blocks to the PPMA required only minor modifications for the
PMA (e.g resizing of the packetization and latency-hiding buffers).

The DTL (device-transaction-level) protocol [16] that is used has several
profiles, which are related to the traffic types. The MMIO (memory-mapped
IO) profile is chiefly used for control traffic (LRLL). The MMBD (memory-
mapped block data) and MMSD (memory-mapped streaming data) profiles are
used by IP blocks to communicate via shared on- or off-chip memory. MMBD

and MMSD are used predominantly for reading and writing, respectively. Cache
misses (HRLL) use MMBD, while streaming (audio MRLT and video HRLT)
cores use MMSD or MMBD.

The use of DTL ensures that IP blocks can transparently connect to any of the
interconnects (direct IP to IP communication, PMA, DCS interconnect), making
it easier to move IP blocks within a design, and to re-use them across designs,
with possibly different interconnects.

5.5 Memory Organization
All algorithmic memories (such as SD/HD fields for temporal processing),

the decoupling memories, and the instruction code for the processors are mapped
to external memory. There are two exceptions. The first, like in Viper, is the
line memories of the memory-based video scaler (MBS), which are mapped to
on-chip local memory of the MBS. Second, a small local memory is introduced
in one place to (significantly) reduce the bandwidth pressure on external mem-
ory. Although this introduces another slave, it statically connects only two IP

blocks, and hence is not part of the PMA.
All processors use instruction and data caches to hide latency.
The adapters contain latency-hiding memories for cores, to even out vari-

ations in data access latency to external memory. This variation is due to the
combined effects of the memory controller (like in Viper), and the PMA arbitra-
tion (new in Viper2). The adapters contain packetization memories to convert
IP-block data to a format suitable for efficient transport over the PMA. The
packetization memories and latency-hiding memories are merged for area effi-
ciency.
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There are no pipeline memories in the DCS. The PMA is a pipelined circuit-
switched interconnect. This means that every node in the tree contains some
pipeline stages, to decrease wire lengths, allow higher operating frequencies,
and ease timing closure. Circuit switching entails that a transaction that is
accepted occupies all nodes on the path from the IP block to the memory con-
troller. To eliminate run-in and run-out of the pipeline, and hence loss of band-
width, transactions are prefetched as close as possible to the top of the tree,
based on their scheduled order.

5.6 Arbitration
The two DCS interconnects are arbitrated independently, using a round-robin

scheme (Table 15.3). M-DCS and T-DCS have 6 and 4 masters, and 32 and 38
slaves, respectively. The bridge is circuit switched; it locks both interconnects
when addressing a slave at the other side of the bridge.

The memory controller has four inputs, one for each processor and one for
PMA. The PMA offers a sequentialized view on the cores, i.e. the multiple
active transactions of IP blocks are offered one at a time to the memory con-
troller. The memory controller arbitrates its inputs using a round robin to aim
for low latency. To guarantee a maximum latency, burst lengths are limited.

Table 15.3. Arbitration overview.

location traffic aim method
DCS LRLL low latency round robin

memory controller HRLL low latency round robin with cut off
PMA top low-jitter HRLT maximum latency time-division multiplexing
PMA top jitter-tolerant HRLT minimum bandwidth priorities
PMA top best effort best effort round robin
adapters (all) coalescing round robin

Recall from Section 3.1 that jitter-tolerant HRLT cores have an average data-
rate requirement but can be delayed when there is no data, whereas low-jitter
HRLT cores cannot be delayed. Best-effort cores can operate on whatever band-
width and jitter they are given.

The PMA uses the fact that many masters contend for a single slave, and ar-
bitrates low-jitter cores using time-division multiplexing (to guarantee a max-
imum latency), jitter-tolerant cores with priorities (to guarantee a minimum
bandwidth), and best-effort cores with a round robin. These arbitration mech-
anisms are applied (prioritized) in the order listed in Table 15.3. (The TDMA

slots are skipped when unused. Note that priorities alone do not guarantee a
minimum bandwidth, but their combination with system invariants does.) The
arbitration scheme is fully programmable at run time.
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The multi-stage arbitration scheme of PMA is motivated by performance
requirements, and maps only partially to the physical tree of PMA nodes, which
is driven by back-end issues. A node in the physical tree is not necessarily a
point of arbitration. In fact, only at the top of the PMA does arbitration take
place.

Like in Viper, traffic with similar characteristics is coalesced in the adapters
before they enter the PMA, conceptually adding a first level of round-robin
arbitration. This includes both the (multiple) read and write ports of a single
core (e.g. QVCP1 in Figure 15.3), and multiple cores (e.g. AIO1 to AIO3,
SPDIO, and GPIO).

6. An Example Future SOC
In this section we take a leap into the future, and describe a speculative

SOC, based on an extrapolation of Viper and Viper2. We present a design that
illustrates the trends that we foresee, but intermediate and hybrid solutions are
very likely between Viper2 and the future SOC sketched here.

Future applications will contain more advanced video-processing functions,
at higher picture resolutions. Examples are motion-compensated high-defini-
tion noise reduction and temporal up-conversion, as well as a move to MPEG4
and advanced graphics. We further expect higher and more dynamic data rates.

6.1 Computation Mapping
The number of processors increases to support emerging media-processing

applications, and (system-integrator-defined) differentiation of products. The
number of function-specific cores also increases, to efficiently implement stan-
dard or proprietary application kernels (e.g. PixelPlus and subpixel luminance-
transient improvement).

6.2 Communication Mapping
As the number of processors increases, the amount of data and instruction

cache misses (HRLL) grows. This is an undesirable trend, because low latency
is hard to guarantee for more than a few users of any shared resource, whether
it is an external memory or an interconnect. There are several (partial) solu-
tions. First, minimize the use of caches, e.g. reduce multi-tasking to decrease
code memory size and increase locality, or improve memory management such
as software prefetching in combination with scratch-pad memories. Second,
lower the dependency on low latency, e.g. by using hardware multi-threading,
or by increasing the emphasis on streaming instead of random-access traffic.
Third, use fewer shared resources, e.g. use multiple memories, and intercon-
nects that allow concurrent accesses such as switches and networks.
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Control traffic (LRLL) essentially suffers from the same low-latency prob-
lems. However, current solutions can be used in the near future because the
available head room can accommodate the increase in (low-data-rate) control
traffic.

MRLT and HRLT traffic increases because of the growth in the number of
function-specific cores, which tend to implement streaming computation. In-
creasing picture dimensions from standard to high definition, also boosts HRLT

traffic (e.g. sixfold for temporal up-conversion).
Thus, future interconnects must address the rise in communication needs,

but architectural opportunities to limit the increase in traffic types that are hard-
est to implement, low latency in particular, should also be exploited.

6.3 Interconnect Organization
We see several trends that affect communication.
First, the number of processors grows, resulting in more masters and LRLL

traffic for the control interconnect. Busses like DCS are single-hop broadcast
media, for which latency increases for two reasons. The arbiter frequency
slows down because global arbitration must take more masters into account,
and because the wires from IP blocks to the arbiter become longer. Moreover,
without concurrent transactions and with limited operating frequency, only a
subset of masters can have low latency.

Second, the increasing number of processors gives rise to more cache-miss
(HRLL) traffic, which cannot be supported by only one slave (the external mem-
ory). Again, with a single shared resource, not everyone can have low-latency
access. Hence multiple memories (slaves) are required. They are probably ex-
ternal because processor instructions are too large to fit on chip. Some kind of
switch must connect multiple masters (processors) to multiple slaves (memo-
ries).

Third, we have seen that the amount of HRLT traffic grows due to larger pic-
tures. Communicating only via a single external memory is no longer feasible,
for bandwidth reasons, and we foresee a combination of multiple off-chip and
on-chip memories. The former, while not ideal for energy dissipation and pin-
ning, is indispensable because HD (temporal) video data is too large to be kept
on chip. The latter reduce the bandwidth pressure on external memories, and
lower the latency and power to access data. In Viper2 a similar technique is
used once (cf. Section 5.5), but shared on-chip memories will gain in number
and importance. In both cases, we see a growing number of slaves, which the
PMA interconnect alone cannot address.

Finally, both Viper and Viper2 contain IP blocks (tunnels) to communicate
with off-chip components, either in a system-on-package or multi-chip setting.
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Similar examples are USB, PCI, and PCI EXPRESS. A further rise in the use of
these interfaces (and hence masters and slaves) is likely.

Networks on chip (NOC)

From the preceding discussion we conclude that any future interconnect
must deal with many masters and many slaves, with high data rates. Busses
cannot fulfill the bandwidth requirements. Switches [12] fare better because
they offer concurrent master-slave communications, but are not scalable to the
extent we require (50+ masters, and 50+ slaves). The PMA interconnect is
optimized for a single slave, and multiple instantiations would be necessary.
Multiple switches, or networks on chip (NOC) [21, 22, 23, 24] are scalable,
and can solve many of the issues listed here. A NOC consists of a collection
of routers (or switches) that transport data in packets. Adapters, now called
network interfaces, connect routers to IP blocks and packetize the transactions
of the IP blocks. The remainder of this section compares NOCs with the other
interconnects.

First, we observe that wires connecting IP blocks are underutilized (as little
as 10% [25]). Both PMA and NOCs reduce the number of wires that intercon-
nect IP blocks by sharing them. However, instantiating PMA multiple times
to address multiple slaves would increase the number of wires. Therefore,
NOCs are better scalable in the number of attached slaves, as illustrated in Fig-
ure 15.4.

# masters

# slaves

30
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4 6 701

PMA

NOC

PI

DCS

Figure 15.4. Interconnect evolution.

Second, a NOC is scalable in the sense that adding more routers results in
more bandwidth. A NOC copes well with many masters and slaves because
many transactions can take place concurrently. There are several reasons for
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this. First, a NOC has distributed arbitration, unlike a bus or switch. This re-
moves a major bottleneck, cf. Section 6.6. Second, in the appropriate topology
(such as a mesh or (partial) fat tree, e.g. Figure 15.5) there are many indepen-
dent paths that can be used simultaneously. Finally, packet switching is com-
monly used in NOCs, instead of circuit switching, employed in Viper2’s PMA.
As interconnects increase in size (number of routers), their diameter (distance
between master and slave) grows, and reserving wires end to end (from master
to slave) for the duration of the transaction becomes inefficient. The set-up
and tear-down phases of the circuit take longer, causing congestion (blocking
other transactions) [26]. (Fundamentally, multiple interconnects with circuit-
switching bridges, such as those in Viper and Viper2, suffer from the same
problem, discussed in Section 4.6.) Packet switching reduces these problems,
by allowing pipelined transactions (on a single path), possibly at the cost of
higher latency. NOCs can therefore offer tremendous bandwidth between many
masters and slaves [27].
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Figure 15.5. Simplified block diagram of future SOC.

Third, while NOCs scale in terms of bandwidth, this is not so clear cut for
latency. Packet switching has both positive and negative effects on the latency.
High operating frequency of (point-to-point) links and routers, and concurrent
transactions reduce the latency, while arbitration per router, and possible con-
gestion may increase it. In any case, placing IP blocks with latency-critical
communication close to one another in the NOC topology reduces the number
of router hops, and hence the latency (e.g. proc 1 and memory controller 1 in
Figure 15.5).

Finally, a major advantage of NOCs is their ability to offer differentiated
services [28]. This means that different traffic types can be implemented on a
single NOC, and that different traffic types can be multiplexed on a single net-
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work port. In Section 6.6 we discuss the strong relation between NOC services
and NOC arbitration.

6.4 Communication Abstraction
The re-use of Viper2 IP blocks in a NOC is straightforward due to the use

of DTL. The adapters from DTL required little modification to change from
Viper’s PPMA to Viper2’s PMA internal communication protocol. However,
moving from Viper2’s circuit-switching PMA to a NOC’s packet switching is
more elaborate (e.g. end-to-end flow control, transaction reordering, distributed
memory), but existing IP blocks are unaffected.

A NOC has the ability to offer different services to different connections,
on a single network port. For example, a multi-tasking processor can request
a connection to shared memory per task, with different properties per connec-
tion, such as bandwidth, latency, transaction ordering, and flow control. In fact,
this is essential when multiplexing several logical communications over USB

or PCI EXPRESS to off-chip components. It also eases the design of real-time
multimedia applications [24], like those discussed here. If we want to take
advantage of this capability, DTL must be extended to deal with connections
(optional for backward compatibility). This tendency can already be observed
in the appearance of thread and connection identifiers in OCP and AXI.

6.5 Memory Organization
In Section 6.3 we argued that multiple external memories will be likely in

future SOCs to cope with increasing HRLL cache traffic and HRLT traffic (for
algorithmic and decoupling memories).

We also foresee multiple on-chip memories for low power, to lower data
access latency, and to relieve pin and bandwidth pressures. Viper2’s processor
and cache memory model can be extended to a memory hierarchy, as is illus-
trated in Figure 15.5. Proc 2 has its own cache (not shown), but can overflow
to memory mem 2, which is relatively close (one hop), or memory mem 1,
further away (two hops, but still on chip), or one of the external memories
memory controller 1 or memory controller 2 (two hops, but passing through
a memory controller). In fact, all memories are accessible to any of the IP

blocks, but at non-uniform cost (although possibly within a uniform address
space, i.e. NUMA). Similarly, all IP blocks can be programmed by any of the
processors. A multi-master multi-slave NOC interconnect is therefore useful
for both data and control traffic, as suggested by Figure 15.4.

On-chip memories can function as caches or scratch pads (for data and
instructions). By keeping inter-IP-block communication on chip the latency
and jitter introduced by memory controllers is eliminated, reducing the size of
latency-hiding memories (cf. Section 5.5).
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Like for Viper2, the network interfaces contain latency-hiding memories
for streaming cores, to even out variations in data access latency. If the NOC

offers low-latency and/or low-jitter communication, these and on-chip latency-
hiding memories can be reduced. The network interfaces also use some mem-
ory to packetize the data to the format used by the NOC routers, and to cross
clock domains. NOCs have pipelined routers (even in circuit-switched vari-
ants), and sometimes pipelined links too, to increase the operating frequency
of the network. The ÆTHEREAL NOC from Philips, for example, provides a
combined guaranteed-bandwidth-and-latency service with a router pipeline of
three words deep [27].

6.6 Network Services and Arbitration
A major advantage of NOCs is their ability to offer differentiated services.

This means that different traffic types can be implemented on a single NOC by
means of a protocol stack [14], and different traffic types can be multiplexed
on a single network port. Different DTL profiles and traffic coalescing, like
that of Viper and Viper2, is then taken care of by the network (interface). In
particular, the ÆTHEREAL NOC [28] offers guaranteed bandwidth, and best-
effort connections, that are useful for the traffic types listed in Table 15.2.

However, sophisticated global arbitration such as PMA’s, is more expensive
when using the distributed arbitration of NOCs. Time-division multiplexing
is relatively cheap, but distributed priority- or rate-based arbitration is not ac-
ceptable, in terms of buffering cost of routers [27]. The PMA interconnect can
take advantage of its tree topology for its arbitration, but this is harder even in
regular NOC topologies such as fat trees and meshes. NOC services are there-
fore less expressive and flexible than PMA arbitration. Moreover, it is harder
for distributed arbitration to be of the same quality as global arbitration (cf.
contention and congestion). However, given the abundance of bandwidth [27],
this can be addressed by bandwidth overallocation, with best-effort traffic con-
suming unused capacity.

7. Conclusions
The advanced set-top box and hybrid TV (ASTB) application is demand-

ing in terms of computation (high-definition video pixel processing), memory
(temporal video data), and communication (high data rates) requirements. The
first results in heterogeneous computation elements (function-specific cores,
various processors). Instruction, algorithmic, and decoupling memories are all
large and mapped in off-chip memory. The communication infrastructure is
critical because it must connect many IP blocks with high data rates, in a flexi-
ble manner for product differentiation and run-time mode changes. Finally, the
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application centers on real-time audio and video, which means that the system
resources (memories, interconnect) must be carefully managed (arbitrated).

Viper’s interconnect is separated by data-rate requirements, resulting in a
low- to medium-bandwidth interconnect (for LRLL and MRLT) consisting of
two bridged PI busses, and a high-bandwidth interconnect (PPMA for HRLL

and HRLT) of dedicated wiring (Table 15.4). Utilization of both interconnects
is high, but the circuit-switched M-GATE between the interconnects causes in-
terference of arbiters for different traffic types, making real-time guarantees
more intricate.

Table 15.4. Mapping traffic types to interconnect structures.

LRLL MRLT HRLT HRLL

Viper PI PI PPMA PPMA

Viper2 DCS PMA PMA point to point
future DCS / NOC NOC NOC point to point / NOC

To avoid this, Viper2’s interconnect is separated by traffic kind, resulting
in three independent interconnects: two bridged DCS interconnects for LRLL

control traffic, dedicated wiring for HRLL cache-misses, and the PMA intercon-
nect for MRLT and HRLT audio and video. The PMA uses a sophisticated global
arbitration scheme (Table 15.3) that distinguishes low-jitter HRLT, high-jitter
HRLT traffic, and best-effort classes, for a high utilization.

Future systems will use multiple on- and off-chip memories, increasing the
number of masters and slaves, see Figure 15.4. This motivates a move to multi-
hop interconnects, such as networks on chip (NOC). NOCs are scalable in the
number of masters and slaves, in bandwidth, and to a lesser extent in latency.
NOCs can offer differentiated services and very high bandwidth, but their dis-
tributed arbitration favors scheduling simpler than that used in Viper2’s PMA.

The challenge for future SOCs for real-time applications is to define ad-
vanced memory organizations (e.g. a hierarchy of on- and off-chip memories),
and to offer different communication services (different traffic classes) with an
interconnect structure that is both scalable and cost efficient, e.g. a NOC.
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