
Interconnect-Aware and Layout-Oriented
Test-Pattern Selection for Small-Delay Defects

1,2

Mahmut Yilmaz†, Krishnendu Chakrabarty†, Mohammad Tehranipoor‡

†Dept. Electrical and Computer Engineering
Duke University

{my, krish}@ee.duke.edu

‡Dept. Electrical and Computer Engineering
University of Connecticut
tehrani@engr.uconn.edu

ABSTRACT

Timing-related failures in high-performance integrated cir-
cuits are being increasingly dominated by small-delay defects
(SDDs). Such delay faults are caused by process variations,
crosstalk, power-supply noise, and defects such as resistive
shorts and opens. Recently, the concept of output deviations
has been presented as a surrogate long-path coverage metric
for SDDs. However, this approach is focused only on delay
variations for logic gates and it ignores chip layout, interconnect
defects, and delay variations on interconnects. We present a
layout-aware output deviations metric that can easily handle
interconnect delay variations. Experimental results show that
interconnect-delay variations can have a significant impact on
the long paths that must be targeted for the detection of SDDs.
For the same pattern count, the proposed pattern-grading and
pattern-selection method is more effective than a commercial
timing-aware ATPG tool for SDDs, and requires considerably
less CPU time.

I. INTRODUCTION

Interconnect delays are a major concern for very deep sub-
micron (VDSM) process technologies [1]. The increased suscep-
tibility of VDSM designs to process variations make intercon-
nect delays even more important. Higher process variation and
crosstalk effects have resulted in the emergence of interconnects
as the major contributor to small-delay defects (SDDs) [2]. New
test-generation methods are therefore needed to target SDDs
caused by process variation and crosstalk on interconnects.

In this paper, we address the problem of detecting SDDs by
selecting the best test patterns from a repository test set for
transition-delay faults, which is generated without considering
process variations. The proposed method is based on the use
of the output deviations metric for delay faults, which was
recently introduced in [3]. The output deviations metric is a
measure of the probability that an incorrect signal value will
be captured at a scan flip-flop. As in [3], the output deviation
measure is used as a coverage-metric for SDDs. We show how

1The work of M. Yilmaz and K. Chakrabarty was supported in part by SRC
under Contract number 1588.

2The work of M. Tehranipoor was supported in part by SRC under Contract
numbers 1455 and 1587.

interconnect delay variations can be easily incorporated in the
output deviations metric. We present the impact of interconnect
delays and interconnect delay variations on test pattern selection,
and the coverage of SDDs.

We start with a base set of n-detect transition delay-fault
test patterns and apply our pattern-grading method to measure
the effectiveness of each pattern. Next, we apply our pattern
ordering method and select best patterns from the initial pattern
set. Experimental results show that wire-delay variations must
be taken into account in order to select high-quality patterns for
today’s high performance designs. For the same pattern count,
the proposed pattern-grading and pattern-selection method is
more effective than a commercial timing-aware ATPG tool for
SDDs, and requires considerably less CPU time.

The remainder of the paper is organized as follows. In
Section II, we describe technology trends and predictions that
motivate the need to incorporate process variation on intercon-
nects in an effective test-pattern grading and selection method.
Section III presents an overview of the output deviations metric
that was introduced in [3]. In Section IV, we show how varia-
tions in wire delays can be incorporated in the output deviations
framework. Section V describes the proposed pattern-selection
procedure. In Section VI, we present experimental results for the
IWLS 2005 benchmarks [4]. Section VII concludes the paper.

II. MOTIVATION AND PRIOR WORK

Interconnects are expected to be a major performance limiter
when process technologies shrink to 50nm and below [1], [5].
This is mainly because the technology scale-down in inter-
connects, unlike transistors, does not always lead to higher
performance. ITRS predicts that the wire-delay relative to the
gate-delay will increase considerably for smaller technology
nodes. Inductive effects due to increasing clock frequencies are
expected to push interconnect delays to even higher values,
which will force industry to adopt new interconnect technologies
[1].

Process variation on wires have a greater effect on circuit
delay than process variation for transistors. Studies predict that
process variations on interconnects will have a considerable
impact on critical- and long-path delays [1], [6], [7]. The
reason behind these findings is that interconnects are not only

Paper 28.3
1-4244-4203-0/08/$20.00 c©2008 IEEE

INTERNATIONAL TEST CONFERENCE 1

the dominant contributor to overall path delays, they are also
susceptible to large process variations due to lithography effects,
etching, gradients, and various random effects [8]. For instance,
as much as 40% wire-width variation is estimated for wires of
40nm width [6].

Technology shrinking is expected to have different effects on
interconnects at various metal layers. For technologies below
45nm, Metal-1 and intermediate-level metal wires (local wires)
are expected to have the same line-widths and thicknesses, thus
they will show similar process variation effects. This is mainly
because these wires usually shrink when traditional scaling is
applied to transistors. The effect of process variations on local
metal layers are expected to have smaller effect on overall
circuit delay because of their relatively shorter lengths compared
to global wires [1], [6]. Global wires, on the other hand, are
expected to have increasing nominal delays and larger impact on
overall circuit delay due to process variations. A recent study in
[7] shows considerable increase in the variation of RC delays
as the wire length increases. In addition to metal layers, vias
are also affected by process variations. The resistance variation
of vias is larger compared to that for metal layers because they
tend to have the smallest possible dimensions [8].

Process variations are not the only parameters affecting the
interconnect delay, and as a result path delays. Crosstalk effects
on wires also have significant impact on a circuit’s timing
uncertainty [9]. The coupling-line length that can change the
voltage levels by 25% of the supply voltage on a victim wire
due to crosstalk is expected drop 40% by 2013 [1], [5]. This
implies that for the same wire length, there will be much stronger
crosstalk effects in the future. Furthermore, at multi-gigahertz
clock frequencies, because of the introduction of inductive
coupling, crosstalk is expected to have 60% greater impact than
predicted by RC models [5].

In view of the above trends and projections, delay-test gen-
eration methods that are oblivious of interconnect and layout-
related effects are not adequate for next-generation technologies.
For instance, the quality of the widely-used traditional transition
delay-fault ATPG [10] has often been questioned because of its
tendency to excite short paths [11], [12]. As a result, a number of
alternative delay-fault pattern generation techniques have been
developed. Most of the proposed methods are aimed at finding
the longest paths in a circuit. Gupta et al. [13] have proposed
the “As Late As Possible Transition (ALAPTF)” fault model,
which attempts to launch one or more transitions at the fault
site as late as possible, i.e., through the least-slack path using
robust tests. This method ignores delay variations and suffers
from the need for a complex, time-consuming search procedure
and robust test-generation constraints. Qui et al. [14] attempt
to find the k longest paths (referred to as KLPG) through the
inputs and output of each gate for slow-to-rise and slow-to-fall
faults. Similar to [13], a considerable amount of pre-processing
is needed to search for long paths. Furthermore, a long path
through a gate may be a short path in the circuit, thus not all
the paths determined by the method are least-slack paths.

Ahmed et al. [11] use static timing analysis tools to find long
(LP), intermediate (IP), and short paths (SP) to each observation
point. Using a timing-unaware ATPG tool, n-detect transition
test patterns are generated. During pattern generation, constraints
are applied to IP and SP observation points to mask them. In
this way, the ATPG tool is forced to generate patterns for LPs.
In the post-processing phase, a pattern-selection algorithm is
used to pick patterns that activate the largest number of end-
points. Similar to previous methods, delay variations are not
considered and a time-consuming search procedure is needed for
determining long paths and for path classification. A functional
delay fault test generation method is proposed in [15]. This
method generates sequences of instructions for testing delay
faults. However, it requires a fault-free unit that can run the
instructions for the test program. Similar to earlier methods, this
scheme also involves a lengthy pre-processing step.

The “number of activated long paths” is a useful metric
for evaluating the quality of delay-fault pattern quality, but a
more computationally-tractable method is clearly needed. Such
a method must also be a good measure of long-path excitation.
An alternative evaluation method, referred to as the “Statistical
Delay Quality Model” has been proposed by Sato et al. [16].
This pattern-grading metric is based on a delay-defect distribu-
tion function, which requires delay-defect statistics for fabricated
ICs. The method assigns a “Statistical Delay Quality Level
(SDQL)” to each test set to evaluate its quality. A drawback
of this metric is the need for delay-defect distributions for real
chips. This data is not available before production and it is
difficult to obtain it during production test.

Due to the growing interest in SDDs, the first commercial
timing-aware ATPG tools were introduced recently, e.g., new
versions of Mentor Graphics FastScan, Cadence Encounter Test,
and Synopsys TetraMax tools [17]–[19]. These tools attempt
to make ATPG patterns more effective for SDDs by exercising
longer paths. However, only a limited amount of timing informa-
tion is supplied to these tools, either via Standard Delay Format
(SDF) files (for FastScan and Encounter Test) or through a Static
Timing Analysis (STA) tool (for TetraMax). As a result, none of
these tools take into account process variations, crosstalk, power-
supply noise, or similar SDD-inducing effects on path delays.
Instead, these tools rely on the assumption that the longest paths
in a design are more prone to SDDs.

Another drawback of timing-aware ATPG tools is that they
lead to a considerable increase in test generation time and pattern
count compared to a traditional timing-unaware transition delay-
fault (TDF) ATPG. We evaluated a commercial timing-aware
ATPG tool using the IWLS 2005 benchmark circuits [4]. The
relative run-times (ratio of run-time for timing-aware ATPG to
timing-aware TDF ATPG) for the benchmarks are shown in
Figure 1. For the “netcard” benchmark, which has over 1.5 M
logic cells, there is a 209x increase in CPU time when timing-
aware ATPG is used. For smaller benchmarks, we observed a
3-65x increase in run times. We therefore conclude that the run-
time of timing-aware ATPG does not scale well with circuit

Paper 28.3 INTERNATIONAL TEST CONFERENCE 2

Fig. 1. CPU time of timing-aware ATPG relative to traditional TDF ATPG for
the IWLS 2005 benchmark circuits.

size. Unless commercial ATPG tools are improved to deal with
large designs, users will be forced to partition their designs into
smaller pieces and run timing-aware ATPG on smaller circuits,
with adverse impact on fault coverage.

The complexity of today’s ICs and shrinking process tech-
nologies are also leading to prohibitively high test data volumes.
For example, the test data volume for transition-delay faults is 2-
5 times higher than that for stuck-at faults [20]. The 2005 ITRS
document predicted that the test data volume and test application
time for integrated circuits will be as much as thirty times larger
in 2010 than they were in 2005 [1]. Therefore, pattern-selection
methods are required to reduce the total pattern count while
effectively targeting SDDs.

Test-pattern reordering methods, which rank test patterns
and place the most effective test patterns at the top of the
reordered test sequence, promise reductions in both testing time
and test data volume [21]–[23]. If highly effective test patterns
are applied first in a reordered test set, defective chips will
fail earlier, reducing test application time in an abort-at-first-
fail environment. The reordered test set can be simply truncated
to fit test-data-volume and meet test-time budgets.

Therefore, there is a pressing need for improved, layout-aware
pattern generation methods that can handle delay variation on
interconnects. These methods must be able to identify high-
quality delay-test patterns with low CPU times from a large
repository of candidate test patterns. Some early work has been
reported in this direction [3], [24], [25], but none of these
techniques handle variation on interconnects. This work is an
attempt to fill this void by making the output deviations metric
from [3] cognizant of interconnect and layout.

III. OVERVIEW OF OUTPUT DEVIATIONS

The concept of gate-delay defect probabilities (DDPs) and
signal-transition probabilities were introduced in [3]. These
probabilities extend the notion of confidence levels, defined in
[23] for a single pattern, to pattern-pairs; however, [3] does not

consider layout information, or realistic defects such as resistive
shorts, opens, crosstalk, and supply-voltage noise.

In [3], DDPs were assigned to the gates in a netlist. DDPs
for a gate are provided in the form of a matrix called the Delay
Defect Probability Matrix (DDPM). An example of a DDPM
(with entries chosen arbitrarily) for a 2-input OR gate is shown
in Table I. The rows in the matrix correspond to each input
port of the gate and the columns correspond to the initial input
state during a transition. Each entry denotes the probability that
the corresponding L → H (rising) or H → L (falling) output
transition is delayed beyond a threshold. For instance, the entry
in the first row and the third column for the DDPM in Table I
shows that there is 50% probability that there will be a delay
defect because of the transition on IN0 when the output makes
a H → L transition starting with the initial input state of “10”.

TABLE I
EXAMPLE DDPM A 2-INPUT OR GATE

Initial Input State
prob 00 01 10 11

Inputs IN0 0.21 0 0.5 0.11
IN1 0.12 0.20 0

For an N -input gate, the DDPM consists of N ·2N entries. If
the gate has more than one output, each output of the gate has
a different DDPM, which depends on the inputs affecting the
output. Note that the DDP is 0 if the corresponding final input
state cannot provide the expected output transition.

We next discuss how a DDPM is generated. Each entry in
DDPM indicates the probability that the delay of the gate is
more than a predetermined value, i.e., the critical delay value
(TCRT). Given the probability density function (pdf) of a delay
distribution, the DDP is calculated as:

DDP = Prob(x > TCRT) =
∫ ∞

TCRT

pdf(x) dx (1)

For instance, if we assume a Gaussian delay distribution
for all gates (with mean μ) and set the critical delay value to
μ+X ps, each DDP entry can be calculated by replacing TCRT

with μ + X and using a Gaussian pdf. Note that the delay
for each input-to-output transition delay may have a different
mean (μ) and standard deviation (σ). The delay distribution can
be obtained in different ways: (i) Using the delay information
provided by the Standard Delay Format (SDF) file; (ii) Using
slow, nominal, and fast process corner transistor models; (iii)
Simulating process variations. In the third method, employed
here and in [3], transistor parameters affecting the process
variation and the limits of the process variation (3σ) are first
determined. Monte Carlo simulations are next run for each
library gate under different capacitive loading and input slew
rate conditions. Once the distributions are found for library
gates, depending on the layout, the delay distributions for each
individual gate can be updated. TCRT can now be appropriately
set to compute the DDPM entries.

Next we analyze the signal transitions that arise on each
net of the circuit for each pattern-pair. If we assume that there

Paper 28.3 INTERNATIONAL TEST CONFERENCE 3

Fig. 2. Propagation of signal-transition probabilities.

are only two possible logic values for a net, i.e., LOW (L) and
HIGH (H), the possible signal transitions are L → L, L → H ,
H → L, and H → H . Each of these transitions has a corre-
sponding probability, called signal-transition probability (STP),
denoted by PL→L, PL→H , PH→L, and PH→H , respectively:
< PL→L, PL→H , PH→L, PH→H > . Note that a L → L or
H → H implies that no transition occurs.

The propagation of STPs starts from the test-application
points. The nets that are directly connected to the test-application
points are called initialization nets (INs). These nets have one of
the signal-transition probabilities, corresponding to the applied
transition test pattern, equal to 1. All the other signal-transition
probabilities for INs are set to 0. When signals are propagated
through several levels of gates, the signal-transition probabilities
can be computed using the DDPM of the gates.

The propagation of STPs is guided by several rules as
presented in [3]. These rules allow us to compute deviations for
all the nets in the circuit (and finally, the observable primary
outputs-either scan latches or combinational outputs) in an
efficient, one-pass, feed-forward manner. The output deviation
for a pattern-pair at an observable output z is given by the
appropriate entry in the STP vector for net z. For example, if a
rising transition is expected at z, the output deviation is simply
the PL→L entry in the STP vector for z. Therefore, the output
deviation is a probability measure, whose value lies between 0
and 1. A key premise of this approach is that output deviations
can be used to compare path lengths, without the need for
explicit path enumeration. Note that path enumeration (adopted
in previous work such as [11], [16], [19], [26]) is a complex
and time-consuming procedure. As in the case of path delays,
the deviations for nets also increase as the signal propagates
through a sensitized path [3].

Note that the pattern-selection results are sensitive to the
choice of TCRT . If TCRT is set to a small value, many
observation points will have an output deviation close to 1.0,
which will in turn make it difficult to distinguish between
paths of different lengths. If TCRT is set to a large value, the
delay contributions of many gate instances will unfortunately be
neglected during deviation computation. We therefore set TCRT

to be the nominal delay of the gate instance that has the shortest
instance delay.

Example: Fig. 2 shows signal-transition probabilities and
their propagation for a simple circuit without considering inter-
connect delays and their associated variations. The test stimuli
and the expected fault-free transitions on each net are shown

TABLE II
EXAMPLE DDPM FOR THE BASIC LOGIC GATES USED IN FOR FIG. 2

Initial Input State
AND prob 00 01 10 11

Inputs IN0 0.2 0.3 0 0.2
IN1 0 0.2 0.3

XOR prob 00 01 10 11

Inputs IN0 0.3 0.4 0.1 0.2
IN1 0.3 0.4 0.2 0.4

INV prob 0 1
Inpus IN0 0.2 0.2

(a) Different wires for net ξ.

Initial Input State
prob 0 1
Net ξ 0.2 0.3
(b) Example DDPM for net ξ.

Fig. 3. An example of wire-delay DDPM

in dark boxes. The calculated signal-transition probabilities are
shown in angled brackets (〈...〉). The DDPMs of the gates used
in this circuit are given in Tables II and I. The entries in Tables
II and I are chosen arbitrarily. A depth-first procedure was used
to compute signal-transition probabilities for large circuits. If the
number of test patterns is k and the number of nets in the circuit
is N , the worst-case time-complexity of the algorithm is O(kN).
However, since the calculation for each pattern is independent of
other patterns, the algorithm can easily be made multi-threaded.
In this case, if the number of threads is T , the complexity of the
algorithm is reduced to O(kN/T). A pattern-selection method
was implemented in [3] to rank test patterns based on deviation
and select the best patterns for SDDs.

IV. INTERCONNECT-AWARE OUTPUT DEVIATIONS FOR

MODELING WIRE-DELAY VARIATIONS

In this section, we show how to generalize the output devia-
tions metric to include wire-delay variations.

The wire delay variations and corresponding DDPs can be
taken into consideration by assigning DDPMs to all wires. In this
case, all wires can have a buffer-like DDPM. Various sources of
wire-delay variations can be considered using the wire DDPM.

Consider the example in Fig. 3(a), which shows different
metal layers and vias. Assume that M1 and M2 are local wires,
and M3 and M4 are global wires. Assume that the net connecting
port Q of CELL-1 to the input ports of CELL-2, CELL-3, and
CELL-4 is called net ξ. We can model the wire delays in several
different ways:

1) Lumped-delay model for a net: In this model, we can
assign a single DDPM to each net. An example is given
in Fig. IV. Assume that a signal with a signal-transition

Paper 28.3 INTERNATIONAL TEST CONFERENCE 4

probability vector (STPV) of 〈0.1, 0.9, 0, 0〉 is propagated
through net ξ and does a L → H transition. Net ξ has a
DDP of 0.2 for the corresponding signal transition, so we
update the STPV as follows:
STPVNEW = 0.1 · 〈1, 0, 0, 0〉 + 0.9 · 〈0.2, 0.8, 0, 0〉 =
〈0.28, 0.72, 0, 0〉.
After updating the STPV, all the fanout gates use the
updated probability values. This lumped model will have
smaller impact on run-time compared to more detailed
wire delay models. However, there is clearly a potential
for incorrect output-deviation calculation. Consider the
example in Fig. 3(a). CELL-1/Q to CELL-3/B has a single
Metal-1 layer connection and expected to have a small
delay variation in absolute terms. On the other hand, the
path connecting CELL-1/Q to CELL-4/A includes global
wires (M3, M4) and several vias. This path will clearly
have a larger absolute delay variation compared to the path
from CELL-1/Q to CELL-3/B. Thus, a more detailed delay
model is required for higher accuracy.

2) Lumped delay model for a port-to-port path: In this
model, we assign a single DDPM for each port to port
path. An example is given in Table III. Similar to the
previous case, assume that a signal with a STPV of
〈0.1, 0.9, 0, 0〉 is propagated through net ξ and does a
L → H transition. STPVs for each path should be updated
separately using the DDP values given in Table III:

• STPVCELL−2/A = 0.1 · 〈1, 0, 0, 0〉 + 0.9 ·
〈0.08, 0.92, 0, 0〉 = 〈0.172, 0.828, 0, 0〉.

• STPVCELL−3/B = 0.1 · 〈1, 0, 0, 0〉 + 0.9 ·
〈0.01, 0.99, 0, 0〉 = 〈0.109, 0.891, 0, 0〉.

• STPVCELL−4/A = 0.1 · 〈1, 0, 0, 0〉 + 0.9 ·
〈0.16, 0.84, 0, 0〉 = 〈0.244, 0.756, 0, 0〉.

As seen, the updated STPVs for the fanout ports have
changed significantly for some of the ports.

3) Distributed delay models: In order to model the delay
effects such as crosstalk on wires more accurately, we
can use a distributed delay model and more than a single
DDPM for each port to port path. For instance, in Fig. 3(a),
assume that there is considerable delay variation between
nodes n1 and n2 on M1, e.g., due to crosstalk. In this
case, the path from CELL-1/Q to CELL-4/A will not be
affected by the variation, but the other two paths will be
impacted. We split the paths into smaller parts to account
for this effect and create the DDPMs shown in Table IV.
The new STPV values on fanout ports can be calculated
as follows:

TABLE III
EXAMPLE DDPM FOR EACH PORT-TO-PORT PATH ON NET ξ OF FIG. 3(A)

Initial Input State
prob 0 1

CELL-1/Q → CELL-2/A 0.08 0.10
CELL-1/Q → CELL-3/B 0.01 0.01
CELL-1/Q → CELL-4/A 0.16 0.25

TABLE IV
EXAMPLE DDPM FOR DISTRIBUTED DELAY MODEL ON NET ξ OF FIG. 3(A)

Initial Input State
(prob) 0 1

CELL-1/Q → n1 0.01 0.01
n1 → n2 0.12 0.05

n1 → CELL-4/A 0.15 0.24
n2 → CELL-2/A 0.07 0.09
n2 → CELL-3/B 0.01 0.01

• STPVn1 = 0.1 · 〈1, 0, 0, 0〉+ 0.9 · 〈0.01, 0.99, 0, 0〉 =
〈0.109, 0.891, 0, 0〉.

• STPVn2 = 0.109 · 〈1, 0, 0, 0〉 + 0.891 ·
〈0.12, 0.88, 0, 0〉 = 〈0.216, 0.784, 0, 0〉.

• STPVCELL−2/A = 0.216 · 〈1, 0, 0, 0〉 + 0.784 ·
〈0.07, 0.93, 0, 0〉 = 〈0.271, 0.729, 0, 0〉.

• STPVCELL−3/B = 0.216 · 〈1, 0, 0, 0〉 + 0.784 ·
〈0.01, 0.99, 0, 0〉 = 〈0.224, 0.776, 0, 0〉.

• STPVCELL−4/A = 0.109 · 〈1, 0, 0, 0〉 + 0.891 ·
〈0.15, 0.85, 0, 0〉 = 〈0.243, 0.757, 0, 0〉.

As expected, the delay variation between nodes n1 and n2

did not change the STPV of CELL-4/A appreciably, but it
changed the STPV of other ports considerably. Distributed
delay models can be made even more detailed by creating
a new DDPM for each piece of metal and via. However,
the more details added, the longer will be the run-time.
As a result, the distributed delay model is useful for SDD
detection only if it makes a considerable difference to the
STPV values.

To incorporate crosstalk effects in the DDPM entries, we need
to consider more details, since the delay induced by crosstalk
depends on the direction and timing of signal-transitions on both
the aggressor and victim wires. A DDPM lists the DDPs that
depend on signal transition of only the corresponding circuit
element, e.g., gate or wire. In the case of crosstalk, a wire-
DDPM depends to a large extent on a neighboring wire’s signal-
transition characteristics. This problem can be solved by adding
conditional DDP entries in wire-DDPMs for each victim wire.
In this paper, we focus on process variations on wires (the two
lumped delay models) and leave the study of crosstalk effects
(distributed delay model) as future work.

V. PATTERN SELECTION

In this section, we describe how to use output deviations to
select high-quality patterns from a base (n–detect or random)
transition-fault patterns. We decrease the pattern sorting run-
time overhead and increase the quality of selected patterns by
removing the small-output-deviation patterns from the pattern
list during pattern ordering. For example, during real-time (i.e.,
dynamic or “on-the-fly”) pattern ordering, we drop any pattern
with an output deviation of less than 50% of the instantaneous
highest output deviation (Note that we cannot know the overall
maximum output deviation value before going through all pat-
terns.) The pattern-selection procedure can be summarized as
follows:

• Determine the number of patterns to be selected. This can
be a user input, e.g., S. The parameter S can be set to

Paper 28.3 INTERNATIONAL TEST CONFERENCE 5

the number of 1-detect transition delay-fault patterns, the
number of timing-aware patterns, or any value that fits the
user’s test-time budget.

• Update the instantaneous highest output deviation after
checking each pattern.

• Skip any pattern with an output deviation of less than 50%
of the instantaneous highest output deviation. Note that
50% value is selected arbitrarily and the user can adjust
this value as needed.

• Until the selected pattern number reaches S, select the
largest-deviation patterns for each observation point one by
one in the order of scan cells.

• After selection, sort the patterns by the maximum deviation
they create at an observation point (pattern reordering).

• Fault simulate the selected patterns for TDFs.
• If the fault coverage is less than the target fault coverage,

use top-off ATPG.

We can further improve the quality of the selected patterns by
ordering the observation points according to the maximum devia-
tion that they have. Reordering of observation points changes the
pattern-selection order. Although the quality of selected patterns
may increase in this method, the overall run-time also increases
due to an extra ordering step.

VI. EXPERIMENTAL RESULTS

In this section, we present experimental results obtained for
the IWLS 2005 benchmark circuits. We do not consider the
ISCAS benchmarks because these circuits are small and it is
easier for an ATPG tool to excite all long paths with a small
number of patterns. We first provide details of the experimental
set-up. After that, we present the simulation results.

A. Experimental Set-up

All experiments were performed on a pool of state-of-the-art
servers with at least eight processors available at all times, 16GB
of memory, and running Linux. The program to compute output
deviations was implemented using C++. Perl scripts were used to
generate the simulation input files. A commercial tool was used
to perform Verilog netlist synthesis and scan insertion for the
IWLS benchmark circuits, which are available in Verilog RTL
format [4]. Benchmark statistics are shown in Table V. We used
a commercial ATPG tool to generate n-detect TDF test patterns
and timing-aware TDF patterns for these circuits. The ATPG
tool was forced to generate Launch-on-capture (LOC) transition
fault patterns. The primary input change during capture cycles
and the observation of primary outputs was prevented in order
to simulate realistic test environments. Commercial tools were
used for layout synthesis. Detailed wire-length data is extracted
from the layout Design Exchange Format (DEF) files using an
in-house Perl script. The path delays were calculated using an
in-house dynamic path-timing simulator. All simulations were
run in parallel on 8 processors.

TABLE V
BENCHMARK STATISTICS

I/O # logic cells # flip-flops # transition
delay-faults

tv80 45 8529 359 40022
ac97 ctrl 104 27713 2289 98702
aes core 387 20691 554 106054

pci bridge 367 47189 3677 168844

(a) MC results for OR gates.

(b) MC results for AND gates

Fig. 4. Change in DDPM values as a function of the number of MC simulations,
relative to the base case of 50 MC simulations.

B. Generating DDPMs for Gate Instances and Interconnects

DDPM of gate instances were generated by running 200
Monte Carlo (MC) simulations on each gate type, for all possible
input signal transitions, and for a range of input and output
capacitances. We verified that 200 MC simulations are sufficient
for generating DDPMs. Fig. 4 shows the relative change in
DDPM entries for OR and AND gates as the number of MC
simulations increase. The numbers are normalized by the values
obtained from 50 MC simulations. As seen, there is very little
change in the DDPM entries well before we reach 200 MC
simulations. Therefore, we conclude that running more MC
simulations will not lead to any significant difference in the
DDPM entries. Similar results were obtained for library cells.

180nm process technology parameters are used for HSpice
simulations to match 180nm technology physical-design li-
braries. MC simulations were run using the following realistic
process-variation parameters for a Gaussian distribution:

• Transistor gate length L : 3σ = 10%
• Threshold voltage VTH : 3σ = 30%
• Gate-oxide thickness tOX : 3σ = 3%
For layout generation, we used a physical design library

with 6 metal layers. Considering the library parameters, we
assumed that M5 and M6 are global routing layers and all
other metal layers are used for local routing. We used a delay
variation of 30% on local wires and 10% on global wires, which
increases with wire length as predicted in [7]. The effect of delay

Paper 28.3 INTERNATIONAL TEST CONFERENCE 6

Fig. 5. The comparison of CPU run-time for the proposed method and timing-
aware ATPG, using various values of n on IWLS benchmarks.

variations on vias is ignored and crosstalk effects are left as a
future work.

C. Results

In this subsection, we present the pattern-selection results
using the number of excited distinct long paths as an evaluation
metric.

An initial set of n-detect transition-fault patterns and a set
of timing-aware transition-fault patterns were generated. For all
values of n, we implemented our method on the benchmarks
to calculate output deviations. Then, we applied the pattern
selection algorithm described in Section V. For each case, in
order to perform a fair comparison, we set the maximum number
of patterns S to be selected to the number of patterns in the
timing-aware transition-fault pattern set (max S = # timing-
aware ATPG patterns). Fig. 9 shows the normalized total CPU
run-time for our method (sum of the CPU times needed for
n-detect pattern generation, deviation simulation, and pattern
selection) and the timing-aware ATPG. All CPU times are
reported relative to the run-time of timing-aware ATPG.

We find that even for large values of n, the total CPU time
of the proposed method is considerably less than the CPU time
of timing-aware ATPG for the three biggest benchmarks. For
instance, the CPU time of aes core benchmark is 503.8 s for
timing-aware ATPG , but only 142.13 s for the proposed method
with n=10. For tv80, there are a large number of hard-to-control
paths and a large number of fanouts. These factors reduces the
efficiency of the n-detect pattern generation procedure, hence
there is an increase in the overall run-time of the proposed
method.

Fig. 6 shows the distribution of the run-time of the pro-
posed method in different steps, i.e., n-detect pattern generation,
deviation simulation, and pattern selection and reordering. As
seen, n-detect pattern generation takes longer time compared to
deviation simulation, constituting the majority of the CPU run-
time. Pattern selection and reordering has negligible impact on
the overall run-time; the CPU time for this step is close to zero
in all case, hence we do not show it in Fig. 6. As n increases,
the ATPG step takes a larger portion of the total CPU time.

Fig.7 shows the normalized number of excited distinct long
paths for selected patterns and the timing-aware ATPG patterns.
We assume that two paths are distinct if there is at least one
non-shared gate instance. We also assume that any path with

Fig. 6. The distribution of the run-time over different steps of the proposed
method, for n=3 and n=10.

a nominal delay of larger than 70% of the clock period is a
long path. We ran an in-house dynamic path-timing simulator
on the benchmarks to determine the excited distinct long paths.
All numbers are normalized by the number of long paths excited
by timing-aware ATPG. Fig. 7 shows that the (unoptimized, aca-
demic implementation) output-deviation-based selection method
finds patterns that excite a larger number of long paths compared
to a commercial (and highly optimized) timing-aware ATPG
tool, and with less CPU time. For the benchmark pci bridge, the
patterns selected from a 10-detect timing-unaware test set excite
over 2.5x more long paths than timing-aware ATPG, where the
proposed method excited 1408 long paths and the timing-aware
ATPG excited only 536 long paths. For tv80, this ratio is 1.42
(921 vs. 650).

The proposed method achieves the excitation of more long
paths with fewer test patterns in some cases. Table VI shows the
number of selected patterns for each benchmark. Note that the
number of selected patterns may be less than the pattern count of
timing-aware because because we are dynamically dropping low-
deviation patterns during deviation computation. Recall from
Section V that we only retain the high-deviation patterns for
reordering at the next step. When the pattern count is less than
the expected value, we can run top-off ATPG to increase TDF
fault coverage or to increase long path sensitization. Table VII
shows the number of top-off ATPG patterns that need to be
added to the set of selected patterns. The required number
of top-off patterns is very small compared to the number of
selected patterns. Furthermore, for some cases, the proposed
method does not need any top-off patterns, resulting in the same
TDF coverage as timing-aware ATPG, but using less number of
patterns (ac97 ctrl, aes core, and pci bridge).

Next we explain why timing-aware ATPG missed some long
paths while the same ATPG tool when used without timing
information excited more long paths. There are two main reasons
for this apparent discrepancy. First, unspecified bits are randomly
filled by the ATPG tool for both timing-aware and n-detect
timing-unaware cases. Random fill may lead to the excitation
of different paths. Second, in the timing-aware case, the ATPG
tool attempts to activate a fault through a single long path,
whereas n-detect ATPG tries to activate the same fault multiple
times, through different paths. Unless it is forced with robustness
options, the timing-aware ATPG tool does not re-try activating

Paper 28.3 INTERNATIONAL TEST CONFERENCE 7

TABLE VI
NUMBER OF SELECTED PATTERNS S

n=3 n=5 n=8 n=10 timing-aware
tv80 2021 2021 2021 2021 2021
ac97 ctrl 934 1284 1284 1284 1284
aes core 2554 3657 5193 6156 7255
pci bridge 2700 4163 4163 4163 4163

Fig. 7. The normalized number of excited distinct long paths by selected
patterns using output-deviation-based method (relative to timing-aware ATPG
patterns).

faults through longer paths. This implies that the ATPG tool
dropped a fault as soon as it was activated through a long
path, possibly not the longest path. If the robustness options
are strictly used to force the tool to search for longest paths for
all faults, the CPU-time of the timing-aware ATPG increases
considerably.

TABLE VII
NUMBER OF TOP-OFF PATTERNS ADDED TO THE SELECTED PATTERNS TO

ACHIEVE THE SAME TDF COVERAGE AS TIMING-AWARE

n=3 n=5 n=8 n=10
tv80 169 263 263 263

ac97 ctrl 0 0 0 1
aes core 0 0 0 0

pci bridge 0 0 0 2

In order to further evaluate the relationship between output
deviations and sensitized path lengths, we ran correlation analy-
sis on the base n-detect patterns output deviations and their cor-
responding path delays. We used Matlab to compute Kendall’s
correlation coefficients [27] for each pattern set. Table VIII
shows the average correlation coefficients for the patterns in
a 10-detect test set of the IWLS’2005 benchmarks [4]. There
is a strong positive correlation between output deviations and
path lengths. It can be argued that a dynamic timing simulator
can be used to obtain high correlation to path lengths. However,
the method based on output deviations is flexible and general,
and it can be used to account for many physical defects during
pattern selection. Dynamic timing simulation can only provide
variability-unaware timing information. The correlation between
output deviations and path lengths is expected to be less as more
physical-defect data is integrated into deviation simulations. In
this case, the method of output deviations is expected to reveal
unique problematic paths that may be hidden from dynamic
timing analysis.

As described in Section II, the impact of local and global

TABLE VIII
KENDALL’S COEFFICIENTS FOR EVALUATING THE CORRELATION OF PATH

LENGTHS TO OUTPUT DEVIATIONS

Average Min Max
tv80 0.96 0.80 0.99

ac97 ctrl 0.90 0.73 0.96
aes core 0.97 0.94 0.99

pci bridge 0.90 0.88 0.99

TABLE IX
DISTRIBUTION OF LOCAL AND GLOBAL WIRES ON LONG PATHS

Local Routing Global Routing
tv80 99.93% 0.07%

ac97 ctrl 100.00% 0.00%
aes core 99.93% 0.07%

pci bridge 100.00% 0.00%

wires’ variations on circuit delay are different. In most designs,
the local wires dominate global wires. We have determined the
percentage of the local and global wires employed using our
extraction tool for the above five benchmarks. Table IX shows
the distribution of local and global wires on long paths for each
benchmark. It is evident that local routing layers dominate the
wiring of long paths. Global wires are significant on long paths
only when the circuit size gets larger. For larger circuits, there
are more global wires that are much longer than local wires,
hence the impact of variations is expected to be higher.

We ran three different defect injection simulations to evaluate
the fault-detection performance of the proposed pattern-selection
method and the timing-aware ATPG. In the first defect injection
simulation, in order to simulate process variation induced delay
variations, we added Gaussian random delays on gates. We
used a delay distribution with a standard deviation of 6% of
the nominal delay of the corresponding gate. We obtained the
approximate delay variation on gates from the MC simula-
tions. In the second defect injection simulations, we also added
Gaussian random delays on all nets. The additional delay on
interconnects had a distribution with a standard deviation of
10% of the nominal delay of the corresponding interconnect.
This delay distribution is selected using the results presented
in [1], [6]. Note that majority of the added delay defects is
expected to be much less than the standard deviation values since
the distribution is Gaussian. Thus, no single wire or gate delay
variation is likely to create a visible delay defect on observation
points. However, it is expected that these small delay variations
may add up and cause visible delay defects on some of the paths.
We used a clock period with a 3% slack from the critical path.

For each benchmark, we created 1000 sample test cases, each
with different random delay faults. We ran an abort-on-first-
fail simulation on each sample using the selected patterns from
various n-detect pattern sets and timing-aware ATPG patterns.
Tables X(a) and X(b) show the number of failed samples for
the first and second defect injection simulations using selected
patterns and timing-aware ATPG patterns. For each entry, the
results for the first case is followed by the results of the second
case. As seen, the proposed method caught a considerably larger
number of delay faults for most benchmarks in both cases.

Paper 28.3 INTERNATIONAL TEST CONFERENCE 8

TABLE X
NUMBER OF DELAY FAULTS DETECTED USING SELECTED PATTERNS AND

TIMING-AWARE ATPG PATTERNS (A) WITH DELAY VARIATIONS ONLY ON

GATES (B) WITH DELAY VARIATIONS ON GATES AND INTERCONNECTS (C)
WITH RORS.

(a)

n=3 n=5 n=8 n=10 timing-aware
tv80 814 849 849 849 5

ac97 ctrl 450 450 450 450 450
pci bridge 1000 1000 1000 1000 1000

(b)

n=3 n=5 n=8 n=10 timing-aware
tv80 878 922 924 924 8

ac97 ctrl 482 482 482 482 482
aes core 1000 1000 1000 1000 1000

pci bridge 1000 1000 1000 1000 1000

(c)

n=3 n=5 n=8 n=10 timing-aware
tv80 26 48 48 48 36

ac97 ctrl 12 12 12 12 12
aes core 4 4 4 4 4

pci bridge 1000 1000 1000 1000 1000

When wire delay variations are not considered, for aes core
benchmark, the additional delay was below the 3% clock period
slack, therefore there are no detectable faults. However, injecting
wire delay variations caused all the samples of aes core to fail
for all pattern sets. For tv80, the proposed method provides much
better fault detection capability. Another key result obtained
from the above defect injection simulations is that the proposed
method has a much faster ramp-up in detecting faults: For tv80,
the proposed method detected 849 (924) delay faults using the
first 30 patterns, whereas timing-aware ATPG detected only 5
(8) delay faults after as many as 770 patterns.

We ran a third set of defect injection simulations to evaluate
these methods for resistive open and resistive short defects
(RORS) on interconnects. In order to simulate the larger delay
impact caused by RORS, we injected a single delay defect on a
randomly selected net. The injected defects have a normal delay
distribution with a standard deviation of 15% of the clock period.
Note that the injected faults are not guaranteed to cause a delay
fault since they can hit a short path. We created 1000 distinct
test cases for each benchmark. Table X(c) shows the number of
failed samples using selected patterns and timing-aware ATPG
patterns. As seen, the proposed method detected the same or
more number of delay faults. Furthermore, we observed a faster
ramp-up in delay fault detection for the proposed method. Fig. 8
shows how fast the delay faults are detected for tv80. As
seen, the proposed method detects 24 delay faults within 1000
patterns, whereas timing-aware ATPG detects 18 delay faults
after 2000 patterns.

Next, we selected patterns using the wire-delay-oblivious
deviation model as presented in [3]. The objective here was
to determine the extent of inaccuracy that results if interconnect
delay variations are ignored. Table XI shows the increase in the
number of long paths excited for the lumped wire delay model

Fig. 8. The number of detected delay faults for the proposed method and
timing-aware ATPG for benchmark tv80.

TABLE XI
THE PERCENTAGE INCREASE IN THE NUMBER OF LONG PATHS ACTIVATED

BY THE LUMPED-DELAY MODEL RELATIVE TO THE WIRE-DELAY-OBLIVIOUS

MODEL.

n=3 n=5 n=8 n=10
tv80 37.57% 38.70% 34.65% 27.74%

ac97 ctrl 0.00% 0.00% 0.00% 0.00%
aes core 0.00% 0.00% 0.00% 0.00%

pci bridge 15.09% 19.15% 20.26% 16.75%

(relative to the the wire-delay-oblivious model). We find that
the addition of the wire delays has a considerable impact on the
activation of long paths. For tv80, lumped-delay model excited
over 30% more long paths compared to the wire-delay-oblivious
model. The difference is around 20% for pci bridge.

We next ran the deviation computation and pattern selection
steps using the pin-to-pin lumped delay model. Fig. 9 shows the
total CPU run-time for the proposed method using the pin-to-pin
delay model (sum of the CPU times needed for n-detect pattern
generation, deviation simulation, and pattern selection), relative
to the time needed for timing-aware ATPG. As seen, the overall
run-time is still considerably less than the CPU time of timing-
aware ATPG for the four biggest benchmarks. However, the need
for additional computation increases the deviation calculation
time. For aes core and ac97 ctrl, the difference was negligible.
However, more than 40% increase in run-time is observed for
pci bridge. This is mainly caused by the large number of fanouts
on the internal nets of pci bridge. Other benchmarks showed a
15-20% increase in run-time.

Next, we ran timing simulations on the selected patterns to
determine the number of long paths excited using the pin-to-
pin wire delay model. The results were very close to what we
obtained for the lumped wire delay model, with a maximum

Fig. 9. The comparison of CPU run-time for the proposed method and timing-
aware ATPG, using various values of n on IWLS benchmarks, when the pin-
to-pin lumped wire delay model is used.

Paper 28.3 INTERNATIONAL TEST CONFERENCE 9

difference of 3% between the two sets of results. This shows
that, for the IWLS benchmarks, the additional computational
complexity of the pin-to-pin wire delay model is not accom-
panied by any significant benefits in long-path activation. This
might be because the fanout wires on nets are balanced in the
layout, resulting in very similar delays on all the fanouts of a
net.

Finally, in order to evaluate impact of interconnect delay
variations on new process technologies, we scaled the intercon-
nect delays as foreseen by ITRS [1] to model a 45nm process
technology. Table XII shows the percentage of patterns that are
selected for the 45nm technology, but not selected for the 180nm
technology. The difference in these sets of patterns is quite
small in all cases. However, when we examine the ordering of
patterns, we find that the ordering of the patterns (based on
deviations) are very different. A quantification of this difference
will be presented in the final version of this paper. These results
imply that although the transition to 45nm technology did not
change the long paths for a benchmark, it changed their relative
importance considerably, hence criticality these paths.

TABLE XII
THE PERCENTAGE OF DIFFERENT PATTERNS SELECTED AT 180NM AND

45NM PROCESS TECHNOLOGIES.

n=3 n=5 n=8 n=10
tv80 2.23% 4.16% 4.16% 4.16%

ac97 ctrl 0.00% 1.80% 2.96% 3.19%
aes core 0.00% 0.00% 0.00% 0.00%

pci bridge 0.00% 0.12% 2.57% 4.44%

VII. CONCLUSIONS

We have presented a layout-aware pattern-selection technique
for screening small-delay defects (SDDs) in nanometer inte-
grated circuits. We have defined the concept of output deviations
for interconnect-delay variations and pattern-pairs, and shown
that it can be used as an efficient surrogate metric to model
the effectiveness of transition delay-fault (TDF) patterns for
SDDs. Experimental results for the IWLS 2005 benchmark
circuits show that the proposed method selects an effective set
of patterns for SDD detection from an n-detect TDF pattern
set generated using a timing-unaware ATPG tool, and it excites
a larger number of long paths compared to a commercial and
highly-optimized timing-aware ATPG tool. The CPU time for the
proposed method is also much less than that for timing-aware
ATPG. The proposed method is computationally tractable, yet
more accurate than a previous deviations-based method [3] that
ignores chip layout and delay variations on interconnects.

ACKNOWLEDGEMENTS

We thank Jeremy Lee of University of Connecticut for pro-
viding layout synthesis guidelines. We thank Jeff Rearick, Jeff
Fitzgerald, and their colleagues at AMD for valuable discussions
and for providing us access to computing resources.

REFERENCES

[1] ITRS 2005, “http://www.itrs.net/links/2005itrs/home2005.htm.”
[2] E. Park, M. Mercer, and T. Williams, “Statistical delay fault coverage and

defect level for delay faults,” in Proc. of IEEE Int. Test Conference, 1988,
pp. 492–499.

[3] M. Yilmaz, K. Chakrabarty, and M. Tehranipoor, “Test-pattern grading
and pattern selection for small-delay defects,” in Proc. of IEEE VLSI Test
Symp., 2008.

[4] IWLS 2005 Benchmarks, “http://iwls.org/iwls2005/benchmarks.html.”
[5] J. Davis et al., “Interconnect limits on gigascale integration (GSI) in the

21st century,” Proc. of IEEE, vol. 89.
[6] G. Lopez et al., “The impact of size effects and copper interconnect

process variations on the maximum critical path delay of single and
multi-core microprocessors,” in Proc. of IEEE Int. Interconnect Technology
Conference, Jun 2007, pp. 40 – 42.

[7] H. Kitada et al., “The influence of the size effect of copper interconnects
on rc delay variability beyond 45nm technology,” in Proc. of IEEE Int.
Interconnect Technology Conference, Jun 2007, pp. 10 – 12.

[8] L. Scheffer, “An overview of on-chip interconnect variation,” in ACM Int.
Workshop on System-Level Interconnect Prediction, 2006, pp. 27 – 28.

[9] F. Caignet et al., “The challenge of signal integrity in deep-submicrometer
CMOS technology,” Proc. of IEEE, vol. 89, no. 4, pp. 556 – 573, Apr
2001.

[10] J. Waicukauski et al., “Transition fault simulation,” IEEE Design and Test
of Computers, pp. 32–38, 1987.

[11] N. Ahmed, M. Tehranipoor, and V. Jayaram, “Timing-based delay test for
screening small delay defects,” in Proc. of IEEE Design Automation Conf.,
2006, pp. 320–325.

[12] R. Putman and R. Gawde, “Enhanced timing-based transition delay testing
for small delay defects,” in Proc. of IEEE VLSI Test Symp., 2006, pp.
336–342.

[13] P. Gupta and M. Hsiao, “ALAPTF: A new transition fault model and the
ATPG algorithm,” in Proc. of IEEE Int. Test Conference, 2004, pp. 1053–
1060.

[14] W. Qiu et al., “K longest paths per gate (KLPG) test generation for scan-
based sequential circuits,” in Proc. of IEEE Int. Test Conference, 2004, pp.
223–231.

[15] S. Gurumurthy et al., “Automatic generation of instructions to robustly test
delay defects in processors,” in Proc. of IEEE European Test Symp., 2007,
pp. 173–178.

[16] Y. Sato et al., “Invisible delay quality - SDQM model lights up what could
not be seen,” in Proc. of IEEE Int. Test Conference, 2005, p. 9.

[17] Cadence Inc., “Encounter test - test generation and simulation reference,”
product Version 3.0, 2005.

[18] Mentor Graphics, “Understanding how to run timing-aware ATPG,” appli-
cation Note, 2006.

[19] R. Kapur, J. Zejda, and T. Williams, “Fundamentals of timing information
for test: How simple can we get?” in Proc. of IEEE Int. Test Conference,
2007.

[20] B. Keller et al., “An economic analysis and ROI model for nanometer test,”
in Proc. of IEEE Int. Test Conference, 2004, pp. 518–524.

[21] X. Lin, J. Rajski, I. Pomeranz, and S. Reddy, “On static test compaction
and test pattern ordering for scan designs,” in Proc. of IEEE Int. Test
Conference, 2001, pp. 1088–1097.

[22] Y. Tian, M. Mercer, W. Shi, and M. Grimaila, “An optimal test pattern
selection method to improve the defect coverage,” in Proc. of IEEE Int.
Test Conference, 2005.

[23] Z. Wang and K. Chakrabarty, “Test-quality/cost optimization using output-
deviation-based reordering of test patterns,” IEEE Tran. on CAD of Int. Cir.
and Systems, vol. 27, pp. 352–365, Feb 2008.

[24] W.-Y. Chen, S. Gupta, and M. Breuer, “Test generation for crosstalk-
induced delay in integrated circuits,” in Proc. of IEEE Int. Test Conference,
Sep 1999, pp. 191 – 200.

[25] J. Lee and M. Tehranipoor, “Delay fault testing in presence of maximum
crosstalk,” in IEEE North Atlantic Test Workshop, 2007.

[26] X. Lin et al., “Timing-aware ATPG for high quality at-speed testing of
small delay defects,” in Proc. of IEEE Asian Test Symp., 2006, pp. 139–
146.

[27] B. J. Chalmers, Understanding Statistics. CRC Press, 1987.

Paper 28.3 INTERNATIONAL TEST CONFERENCE 10

