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ABSTRACT
The ever increasing sizes of on-chip caches and the grow-
ing domination of wire delay necessitate significant changes
to cache hierarchy design methodologies. Many recent pro-
posals advocate splitting the cache into a large number of
banks and employing a network-on-chip (NoC) to allow fast
access to nearby banks (referred to as Non-Uniform Cache
Architectures – NUCA). Most studies on NUCA organiza-
tions have assumed a generic NoC and focused on logical
policies for cache block placement, movement, and search.
Since wire/router delay and power are major limiting fac-
tors in modern processors, this work focuses on interconnect
design and its influence on NUCA performance and power.
We extend the widely-used CACTI cache modeling tool to
take network design parameters into account. With these
overheads appropriately accounted for, the optimal cache
organization is typically very different from that assumed
in prior NUCA studies. To alleviate the interconnect delay
bottleneck, we propose novel cache access optimizations that
introduce heterogeneity within the inter-bank network. The
careful consideration of interconnect choices for a large cache
results in a 51% performance improvement over a baseline
generic NoC and the introduction of heterogeneity within
the network yields an additional 11-15% performance im-
provement.

Categories and Subject Descriptors
C.1.2 [Multiple Data Stream Architectures (Multi-
processors)]: [Interconnection architectures (e.g., common
bus, multiport memory, crossbar switch)]; B.3.2 [Design
Styles]: [Cache memories]; B.4.3 [Interconnections (Sub-
systems)]: [Topology (e.g., bus, point-to-point)]

General Terms
Design, performance.
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1. INTRODUCTION
The shrinking of process technologies enables many cores

and large caches to be incorporated into future chips. The
Intel Montecito processor accommodates two Itanium cores
and two private 12 MB L3 caches [27]. Thus, more than 1.2
billion of the Montecito’s 1.7 billion transistors are dedicated
for cache hierarchies. Every new generation of processors
will likely increase the number of cores and the sizes of the
on-chip cache space. If 3D technologies become a reality,
entire dies may be dedicated for the implementation of a
large cache [24].

Large multi-megabyte on-chip caches require global wires
carrying signals across many milli-meters. It is well known
that while arithmetic computation continues to consume
fewer pico-seconds and die area with every generation, the
cost of on-chip communication continues to increase [26].
Electrical interconnects are viewed as a major limiting fac-
tor, with regard to latency, bandwidth, and power. The
ITRS roadmap projects that global wire speeds will degrade
substantially at smaller technologies and a signal on a global
wire can consume over 12 ns (60 cycles at a 5 GHz frequency)
to traverse 20 mm at 32 nm technology [32]. In some Intel
chips, half the total dynamic power is attributed to inter-
connects [25].

To understand the impact of L2 cache access times on
overall performance, Figure 1 shows IPC improvements for
SPEC2k programs when the L2 access time is reduced from
30 to 15 cycles (simulation methodologies are discussed in
Section 4). Substantial IPC improvements (17% on aver-
age) are possible in many programs if we can reduce L2
cache access time by 15 cycles. Since L2 cache access time
is dominated by interconnect delay, this paper focuses on
efficient interconnect design for the L2 cache.

Caches are typically partitioned into many banks and in a
uniform-cache-architecture (UCA) model, the cache access
latency is determined by the latency for the furthest cache
bank. This is not a scalable model as cache sizes and the
latency differences between the nearest and furthest cache
banks grow. To address this problem, non-uniform cache
architectures (NUCA) have been proposed [21]. In a NUCA
cache, the banks are connected with an interconnect fabric
and the access time for a block is a function of the delays ex-
perienced in traversing the network path from the cache con-
troller to the bank that contains the block. Figure 2 shows
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Increase in IPC due to reduction in L2 access time

Figure 1: Improvement in IPC due to reduction in
L2 access time from 30 cycles to 15 cycles on an
aggressive out-of-order processor model.

an example of such a NUCA cache from a recent paper that
partitions the L2 cache into 64 banks [18]. Recent studies
have explored policies for data placement, data movement,
and data search in NUCA caches [6, 11, 12, 18, 21].

For the past several years, academic researchers have re-
lied on CACTI [34], a cache access modeling tool, to find the
optimal design points for on-chip caches. CACTI is an ana-
lytical tool that takes a set of cache parameters as input and
estimates the access time, layout, and power consumption of
on-chip caches. While CACTI is powerful enough to model
moderately sized UCA designs, it does not have support for
NUCA designs. Most studies on NUCA caches model the
inter-bank network as a grid with single-cycle hops. This is
a reasonable baseline when evaluating logical cache policies.
However, we make the case that interconnect parameters
can have a dramatic influence on the performance and power
characteristics of large NUCA caches. We extend CACTI to
model interconnect properties for a NUCA cache and show
that a combined design space exploration over cache and
network parameters yields performance- and power-optimal
cache organizations that are quite different from those as-
sumed in prior studies. In the second half of the paper,
we show that the incorporation of heterogeneity within the
inter-bank network enables a number of optimizations to
accelerate cache access. These optimizations can hide a sig-
nificant fraction of network delay, resulting in an additional
performance improvement of 15%.

Section 2 describes the CACTI cache access model and
our extensions to it. Section 3 describes techniques to take
advantage of heterogeneous interconnect properties and im-
prove performance. Quantitative results are presented in
Section 4. Related work is discussed in Section 5 and con-
clusions are drawn in Section 6.

2. INTERCONNECT MODELS FOR THE
INTER-BANK NETWORK

2.1 The CACTI Model
Figure 3(a) shows the basic logical structure of a UCA

cache. The address is provided as input to the decoder,
which then activates a wordline in the data array and tag
array. The contents of an entire row (referred to as a set) are
placed on the bitlines, which are then sensed. The multiple

tags thus read out of the tag array are compared against
the input address to detect if one of the ways of the set does
contain the requested data. This comparator logic drives
the multiplexor that finally forwards at most one of the ways
read out of the data array back to the requesting processor.
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Figure 2: 16-way CMP with a 64-bank NUCA L2
cache, based on the organization in [18].

The CACTI-3.2 cache access model [34] takes in the fol-
lowing major parameters as input: cache capacity, cache
block size (also known as cache line size), cache associativ-
ity, technology generation, number of ports, and number of
independent banks (not sharing address and data lines). As
output, it produces the cache configuration that minimizes
delay (with a few exceptions), along with its power and
area characteristics. CACTI models the delay/power/area
of eight major cache components: decoder, wordline, bit-
line, senseamp, comparator, multiplexor, output driver, and
inter-bank wires. The wordline and bitline delays are two
of the most significant components of the access time. The
wordline and bitline delays are quadratic functions of the
width and height of each array, respectively. In practice, the
tag and data arrays are large enough that it is inefficient to
implement them as single large structures. Hence, CACTI
partitions each storage array (in the horizontal and vertical
dimensions) to produce smaller banks and reduce wordline
and bitline delays. Each bank has its own decoder and some
central pre-decoding is now required to route the request to
the correct bank. The most recent version of CACTI em-
ploys a model for semi-global (intermediate) wires and an H-
tree network to compute the delay between the pre-decode
circuit and the furthest cache bank. CACTI carries out an
exhaustive search across different bank counts and bank as-
pect ratios to compute the cache organization with optimal
total delay. Typically, the cache is organized into a handful
of banks. An example of the cache’s physical structure is
shown in Figure 3(b).

2.2 Models for Wires and Routers
In a NUCA cache (such as the one shown in Figure 2), the

size of the bank determines the number of routers and the
length of the links between routers. Hence, before we extend
CACTI to model a NUCA cache, we derive basic analytical
models for the delay and power of wires and routers.

Wire Models

This sub-section describes the wire model employed for
the on-chip network. We begin with a quick review of fac-
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Figure 3: Logical and physical organization of the cache (from CACTI-3.0 [33] ).

tors that influence wire properties. It is well-known that the
delay of a wire is a function of its RC time constant (R is
resistance and C is capacitance). Resistance per unit length
is (approximately) inversely proportional to the width of
the wire [16]. Likewise, a fraction of the capacitance per
unit length is inversely proportional to the spacing between
wires, and a fraction is directly proportional to wire width.
These wire properties provide an opportunity to design wires
that trade off bandwidth and latency. By allocating more
metal area per wire and increasing wire width and spacing,
the net effect is a reduction in the RC time constant. This
leads to a wire design that has favorable latency proper-
ties, but poor bandwidth properties (as fewer wires can be
accommodated in a fixed metal area). Further, researchers
are actively pursuing transmission line implementations that
enable extremely low communication latencies [9, 14]. How-
ever, transmission lines also entail significant metal area
overheads in addition to logic overheads for sending and re-
ceiving [5, 9]. If transmission line implementations become
cost-effective at future technologies, they represent another
attractive wire design point that can trade off bandwidth
for low latency.

Similar trade-offs can be made between latency and power
consumed by wires. Global wires are usually composed of
multiple smaller segments that are connected with repeaters
[1]. The size and spacing of repeaters influences wire delay
and power consumed by the wire. When smaller and fewer
repeaters are employed, wire delay increases, but power con-
sumption is reduced. The repeater configuration that mini-
mizes delay is typically very different from the repeater con-
figuration that minimizes power consumption.

Thus, by varying properties such as wire width/spacing
and repeater size/spacing, we can implement wires with dif-
ferent latency, bandwidth, and power properties. In this
paper, we will primarily focus on three types of wires:

• 4X-B-Wires: These are minimum-width wires on the
4X metal plane. These wires have high bandwidth and
relatively high latency characteristics and are often
also referred to as semi-global or intermediate wires.

• 8X-B-Wires: These are minimum-width wires on the
8X metal plane. They are wider wires and hence have
relatively low latency and low bandwidth (also referred
to as global wires).

• L-Wires: These are fat wires on the 8X metal plane
that consume eight times as much area as an 8X-B-
wire. They offer low latency and low bandwidth.

Table 1 summarizes the relative and absolute latency and
area characteristics of these wires. The calculations are
based on equations in [3, 16] and ITRS roadmap param-
eters [32]. The use of power-optimized wires is left as future
work.

Router Models

The ubiquitous adoption of the system-on-chip (SoC) par-
adigm and the need for high bandwidth communication links
between different modules have led to a number of interest-
ing proposals targeting high-speed network switches/routers
[13, 28, 29, 30, 31]. This section provides a brief overview of
router complexity and different pipelining options available.
It ends with a summary of the delay and power assump-
tions we make for our NUCA CACTI model. For all of our
evaluations, we assume virtual channel flow control because
of its high throughput and ability to avoid deadlock in the
network [13].

Figure 4(a) shows a typical virtual channel router archi-
tecture and Figure 4(b) shows the different steps involved in
routing a message to the appropriate destination [15]. A flit
is the smallest unit of flow control and is usually the number
of bits transmitted on a link in a single cycle. The size of
the message sent through the network is measured in terms
of flits. Every network message consists of a head flit that
carries details about the destination of the message and a
tail flit indicating the end of the message. If the message size
is very small, the head flit can also serve the tail flit’s func-
tionality. The highlighted blocks in Figure 4(b) correspond
to stages that are specific to head flits. Whenever a head flit
of a new message arrives at an input port, the router stores
the message in the input buffer and the input controller de-
codes the message to find the destination. After the decode
process, it is then fed to a virtual channel (VC) allocator.
The VC allocator consists of a set of arbiters and control
logic that takes in requests from messages in all the input
ports and allocates appropriate output virtual channels at
the destination. If two head flits compete for the same chan-
nel, then depending on the priority set in the arbiter, one of
the flits gains control of the VC. Upon successful allocation
of the VC, the head flit proceeds to the switch allocator.



Wire Type Relative Latency Relative Area Latency (ns/mm) Wiring Pitch (nm)
8X-B-Wire 1x 1x 0.122 210
4X-B-Wire 2.0x 0.5x 0.244 105

L-Wire 0.25x 8x 0.03 1680

Table 1: Delay and area characteristics of different wire implementations at 65 nm technology.

VC1

VC1

Switch

Router VC allocator

Switch allocator

Input channel 2

Input channel 1 Output channel 1

Output channel 2

(a) Architecture of a router.

(b) Router pipeline.

Figure 4: Router architecture [15]

Once the decoding and VC allocation of the head flit are
completed, the remaining flits perform nothing in the first
two stages. The switch allocator reserves the crossbar so
the flits can be forwarded to the appropriate output port.
Finally, after the entire message is handled, the tail flit de-
allocates the VC. Thus, a typical router pipeline consists of
four different stages with the first two stages playing a role
only for head flits.

Peh et al. [30] propose a speculative router model to re-
duce the pipeline depth of virtual channel routers. In their
pipeline, switch allocation happens speculatively, in parallel
with VC allocation. If the VC allocation is not success-
ful, the message is prevented from entering the final stage,
thereby wasting the reserved crossbar time slot. To avoid
performance penalty due to mis-speculation, the switch arbi-
tration gives priority to non-speculative requests over spec-
ulative ones. This new model implements the router as a
three-stage pipeline.

The bulk of the delay in router pipeline stages comes from
arbitration and other control overheads. Mullins et al. [29]
remove the arbitration overhead from the critical path by
pre-computing the grant signals. The arbitration logic pre-
computes the grant signal based on requests in previous cy-
cles. If there are no requests present in the previous cycle,
one viable option is to speculatively grant permission to all
the requests. If two conflicting requests get access to the
same channel, one of the operations is aborted. While suc-
cessful speculations result in a single-stage router pipeline,
mis-speculations are expensive in terms of delay and power.

Single stage router pipelines are not yet a commercial re-
ality. At the other end of the spectrum is the high speed 1.2
GHz router in the Alpha 21364 [28]. The router has eight in-
put ports and seven output ports that includes four external
ports to connect off-chip components. The router is deeply
pipelined with eight pipeline stages (including special stages
for wire delay and ECC) to allow the router to run at the
same speed as the main core.

Essentially, innovations in router microarchitectures are
on-going. The pipeline depth ranges from a single cycle
speculative model [29] to an eight stage model in the Al-
pha 21364 [28]. For the purpose of our study, we adopt
the moderately aggressive implementation with a 3-stage

Component Address Router Data Router
Energy (J) Energy (J)

Arbiter 1.7626e-13 2.1904e-13
Crossbar 9.17791e-12 1.19788e-10
Buffer 3.77034e-12 1.48893e-11

Total static energy 3.57168e-12 1.38513e-11

Table 2: Energy consumed (max) by arbiters,
buffers, and crossbars for a 32-byte transfer.

pipeline [30]. Our power model is also derived from a cor-
responding analysis by some of the same authors [36]. As a
sensitivity analysis, our results also show the effect of em-
ploying router microarchitectures with different pipeline la-
tencies.

The major contributors to router power are the crossbars,
buffers, and arbiters. Our router power calculation is based
on the analytical models derived by Wang et al. [36, 37]. For
updating CACTI with network power values, we assume a
separate network for address and data transfer. Each router
has five input and five output ports and each physical chan-
nel has four virtual channels. Table 2 shows the energy
consumed by each router at 65 nm for a 5 GHz clock fre-
quency.

2.3 Extensions to CACTI
For an arbitrary NUCA cache organization, the delay for a

cache request is determined by the number of links that must
be traversed, the delay for each link, the number of routers
that are traversed, the delay for each router, the access time
within each bank, and the contention cycles experienced at
the routers. For now, we will assume that the contention
cycles contribute marginally and these will not be modeled
analytically (they are modeled in detail in our architectural
simulations in Section 4).

For a given total cache size, we partition the cache into
2N cache banks (N varies from 1 to 12) and for each N, we
organize the banks in a grid with 2M rows (M varies from
0 to N). For each of these cache organizations, we compute
the average access time for a cache request as follows. The
cache bank size is first fed to unmodified CACTI-3.2 to de-
rive the delay-optimal UCA organization for that cache size.
CACTI-3.2 also provides the corresponding dimensions for
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that cache size. The cache bank dimensions enable the cal-
culation of wire lengths between successive routers. Based
on delays for B-wires (Table 1) and a latch overhead of 2
FO4 [17], we compute the delay for a link (and round up
to the next cycle for a 5 GHz clock). The (uncontended)
latency per router is assumed to be three cycles. The delay
for a request is a function of the bank that services the re-
quest and if we assume a random distribution of accesses,
the average latency can be computed by simply iterating
over every bank, computing the latency for access to that
bank, and taking the average. During this design space ex-
ploration over NUCA organizations, we keep track of the
cache organization that minimizes a given metric (in this
study, either average latency or average power per access).
These preliminary extensions to CACTI are referred to as
CACTI-L2. We can extend the design space exploration
to also include different wire types, topologies, and router
configurations, and include parameters such as metal/silicon
area and bandwidth in our objective function. For now, we
simply show results for performance- and power-optimal or-
ganizations with various wire and router microarchitecture
assumptions.

2.4 CACTI-L2 Results
For a given total cache size, if the number of cache banks

increases, the delay within a bank and the latency per hop
on the network reduce, but the average number of network
hops for a request increases (assuming a grid network). Fig-
ure 5 shows the effect of bank count on total average (uncon-
tended) access time for a 32 MB NUCA cache and breaks
this access time into delay within a bank and delay within
the inter-bank network. We assume a grid network for inter-
bank communication, global 8X-B wires for all communica-
tion, and a 3-cycle router pipeline. For each point on the
curve, the bank access time is computed by feeding the cor-
responding bank size to the unmodified version of CACTI.
The (uncontended) network delay is computed by taking the
average of link and router delay to access every cache bank.

Not surprisingly, bank access time is proportional to bank
size (or inversely proportional to bank count). For bank
sizes smaller than 64 KB (that corresponds to a bank count
of 512), the bank access time is dominated by logic delays in
each stage and does not vary much. The average network de-
lay is roughly constant for small values of bank count (some
noise is introduced because of discretization and from irreg-
ularities in aspect ratios). When the bank count is quadru-

pled, the average number of hops to reach a bank roughly
doubles. But, correspondingly, the hop latency does not de-
crease by a factor of two because of the constant area over-
heads (decoders, routers, etc.) associated with each bank.
Hence, for sufficiently large bank counts, the average net-
work delay keeps increasing. The graph shows that the se-
lection of an appropriate bank count value is important in
optimizing average access time. For the 32 MB cache, the
optimal organization has 16 banks, with each 2 MB bank
requiring 17 cycles for the bank access time. We note that
prior studies [6, 18] have sized the banks (64 KB) so that
each hop on the network is a single cycle. According to our
models, partitioning the 32 MB cache into 512 64 KB banks
would result in an average access time that is more than
twice the optimal access time. However, increased bank
count can provide more bandwidth for a given cache size.
The incorporation of contention models into CACTI-L2 is
left as future work. The above analysis highlights the im-
portance of the proposed network design space exploration
in determining the optimal NUCA cache configuration. As a
sensitivity analysis, we show the corresponding access time
graphs for various router delays and increased cache size in
Figure 6.

Similar to the analysis above, we chart the average energy
consumption per access as a function of the bank count in
Figure 7. A large bank causes an increase in dynamic energy
when accessing the bank, but reduces the number of routers
and energy dissipated in the network. We evaluate different
points on this trade-off curve and select the configuration
that minimizes energy. The bank access dynamic energy is
based on the output of CACTI. The total leakage energy for
all banks is assumed to be a constant for the entire design
space exploration as the total cache size is a constant. Wire
power is calculated based on ITRS data and found to be
2.892*af+0.6621 (W/m), af being the activity factor and
0.6621 is the leakage power in the repeaters. We compute
the average number of routers and links traversed for a cache
request and use the data in Tables 1 and 2 to compute the
network dynamic energy.

3. LEVERAGING INTERCONNECT
CHOICES FOR PERFORMANCE
OPTIMIZATIONS

The previous section describes our modifications to CACTI
and the different wire implementations possible in a network.
Wires can be optimized for either high bandwidth, low la-
tency, or low power and these choices can be leveraged to
customize the L2 cache inter-bank network. Delays within
the router are also a major component of cache access time,
but this paper does not attempt any changes to the mi-
croarchitecture of a router (one of our proposals attempts
to reduce the number of routers).

Consistent with most modern implementations, it is as-
sumed that each cache bank stores the tag and data ar-
rays and that all the ways of a set are stored in a sin-
gle cache bank. For most of this discussion, we will as-
sume that there is enough metal area to support a base-
line inter-bank network that accommodates 256 data wires
and 64 address wires, all implemented as minimum-width
wires on the 8X metal plane (the 8X-B-wires in Table 1). A
higher bandwidth inter-bank network does not significantly
improve IPC, so we believe this is a reasonable baseline.



0

200

400

600

800

1000

1200

2 4 8 16 32 64 128 256 512 1024 2048 4096

Bank Count

Cy
cl

es
Average Cache Access Latency (Router overhead 6)
Average Cache Access Latency (Router overhead 1)
Bank Access Time

(a) Impact of router delay on optimum bank count (32 MB
cache).

0

100

200

300

400

500

600

700

2 4 8 16 32 64 128 256 512 1024 2048 4096
Bank Count

C
yc

le
s

Average Cache Access Latency (Global wires)
Average Network Delay
Bank Access Time

Delay optimal point

(b) Optimum bank count value for 64MB cache.

Figure 6: Effect of router overhead and cache size on access latency.

0.E+00

1.E-08

2.E-08

3.E-08

4.E-08

5.E-08

6.E-08

7.E-08

2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

Bank Count

E
ne

rg
y 

J

Total Energy
Network Energy
Bank Energy

Power Optimal Point

Figure 7: Average energy for a 32 MB cache.

Next, we will consider optimizations that incorporate differ-
ent types of wires, without exceeding the above metal area
budget.

3.1 Early Look-Up
L-wires can be leveraged for low latency, but they con-

sume eight times the area of a B-wire on the 8X metal plane.
The implementation of a 16-bit L-network will require that
128 B-wires be eliminated to maintain constant metal area.
Consider the following heterogeneous network that has the
same metal area as the baseline: 128 B-wires for the data
network, 64 B-wires for the address network, and 16 addi-
tional L-wires.

In a typical cache implementation, the cache controller
sends the complete address as a single message to the cache
bank. After the message reaches the cache bank, it starts
the look-up and selects the appropriate set. The tags of
each block in the set are compared against the requested
address to identify the single block that is returned to the
cache controller. We observe that the least significant bits of
the address (LSB) are on the critical path because they are
required to index into the cache bank and select candidate
blocks. The most significant bits (MSB) are less critical
since they are required only at the tag comparison stage that
happens later. We can exploit this opportunity to break the
traditional sequential access. A partial address consisting
of LSB can be transmitted on the low bandwidth L-network
and cache access can be initiated as soon as these bits arrive

at the destination cache bank. In parallel with the bank
access, the entire address of the block is transmitted on the
slower address network composed of B-wires (we refer to
this design choice as option-A). When the entire address
arrives at the bank and when the set has been read out of
the cache, the MSB is used to select at most a single cache
block among the candidate blocks. The data block is then
returned to the cache controller on the 128-bit wide data
network. The proposed optimization is targeted only for
cache reads. Cache writes are not done speculatively and
wait for the complete address to update the cache line.

For a 512 KB cache bank with a block size of 64 bytes and
a set associativity of 8, only 10 index bits are required to read
a set out of the cache bank. Hence, the 16-bit L-network is
wide enough to accommodate the index bits and additional
control signals (such as destination bank). In terms of im-
plementation details, the co-ordination between the address
transfers on the L-network and the slower address network
can be achieved in the following manner. We allow only
a single early look-up to happen at a time and the corre-
sponding index bits are maintained in a register. If an early
look-up is initiated, the cache bank pipeline proceeds just as
in the base case until it arrives at the tag comparison stage.
At this point, the pipeline is stalled until the entire address
arrives on the slower address network. When this address
arrives, it checks to see if the index bits match the index bits
for the early look-up currently in progress. If the match is
successful, the pipeline proceeds with tag comparison. If the
match is unsuccessful, the early look-up is squashed and the
entire address that just arrived on the slow network is used
to start a new L2 access from scratch. Thus, an early look-
up is wasted if a different address request arrives at a cache
bank between the arrival of the LSB on the L-network and
the entire address on the slower address network. If another
early look-up request arrives while an early look-up is in
progress, the request is simply buffered (potentially at inter-
mediate routers). For our simulations, supporting multiple
simultaneous early look-ups was not worth the complexity.

The early look-up mechanism also introduces some redun-
dancy in the system. There is no problem if an early look-up
fails for whatever reason – the entire address can always be
used to look up the cache. Hence, the transmission on the
L-network does not require ECC or parity bits.



Apart from the network delay component, the major con-
tributors to the access latency of a cache are delay due to
decoders, wordlines, bitlines, comparators, and drivers. Of
the total access time of the cache, depending on the size of
the cache bank, around 60-80% of the time has elapsed by
the time the candidate sets are read out of the appropriate
cache bank. By breaking the sequential access as described
above, much of the latency for decoders, bitlines, wordlines,
etc., is hidden behind network latency. In fact, with this
optimization, it may even be possible to increase the size of
a cache bank without impacting overall access time. Such
an approach will help reduce the number of network routers
and their corresponding power/area overheads. In an al-
ternative approach, circuit/VLSI techniques can be used to
design banks that are slower and consume less power (for
example, the use of body-biasing and high-threshold tran-
sistors). The exploration of these optimizations is left for
future work.

3.2 Aggressive Look-Up
While the previous proposal is effective in hiding a major

part of the cache access time, it still suffers from long net-
work delays in the transmission of the entire address over the
B-wire network. In an alternative implementation (referred
to as option-B), the 64-bit address network can be elimi-
nated and the entire address is sent in a pipelined manner
over the 16-bit L-network. Four flits are used to transmit
the address, with the first flit containing the index bits and
initiating the early look-up process. In Section 4, we show
that this approach increases contention in the address net-
work and yields little performance benefit.

To reduce the contention in the L-network, we introduce
an optimization that we refer to as Aggressive look-up (or
option-C). By eliminating the 64-bit address network, we
can increase the width of the L-network by eight bits with-
out exceeding the metal area budget. Thus, in a single flit
on the L-network, we can not only transmit the index bits
required for an early look-up, but also eight bits of the tag.
For cache reads, the rest of the tag is not transmitted on
the network. This sub-set of the tag is used to implement a
partial tag comparison at the cache bank. Cache writes still
require the complete address and the address is sent in mul-
tiple flits over the L-network. According to our simulations,
for 99% of all cache reads, the partial tag comparison yields
a single correct matching data block. In the remaining cases,
false positives are also flagged. All blocks that flag a par-
tial tag match must now be transmitted back to the CPU
cache controller (along with their tags) to implement a full
tag comparison and locate the required data. Thus, we are
reducing the bandwidth demands on the address network at
the cost of higher bandwidth demands on the data network.
As we show in the results, this is a worthwhile trade-off.

With the early look-up optimization, multiple early look-
ups at a bank are dis-allowed to simplify the task of co-
ordinating the transmissions on the L and B networks. The
aggressive look-up optimization does not require this co-
ordination, so multiple aggressive look-ups can proceed si-
multaneously at a bank. On the other hand, ECC or parity
bits are now required for the L-network because there is no
B-network transmission to fall back upon in case of error.
The L-network need not accommodate the MSHR-id as the
returned data block is accompanied with the full tag. In a
CMP, the L-network must also include a few bits to indicate

L2
Controller

Core

Shared bus

Router

Shared bus

Shared bus

Figure 8: Hybrid network topology for a uniproces-
sor.

where the block must be sent to. Partial tag comparisons
exhibit good accuracy even if only five tag bits are used, so
the entire address request may still fit in a single flit. The
probability of false matches can be further reduced by per-
forming tag transformation and carefully picking the partial
tag bits [20].

In a CMP model that maintains coherence among L1
caches, depending on the directory implementation, aggres-
sive look-up will attempt to update the directory state spec-
ulatively. If the directory state is maintained at cache banks,
aggressive look-up may eagerly update the directory state
on a partial tag match. Such a directory does not compro-
mise correctness, but causes some unnecessary invalidation
traffic due to false positives. If the directory is maintained
at a centralized cache controller, it can be updated non-
speculatively after performing the full tag-match.

Clearly, depending on the bandwidth needs of the appli-
cation and the available metal area, any one of the three
discussed design options may perform best. The point here
is that the choice of interconnect can have a major impact
on cache access times and is an important consideration in
determining an optimal cache organization. Given our set
of assumptions, our results in the next section show that
option-C performs best, followed by option-A, followed by
option-B.

3.3 Hybrid Network
The optimal cache organization selected by CACTI-L2 is

based on the assumption that each link employs B-wires for
data and address transfers. The discussion in the previous
two sub-sections makes the case that different types of wires
in the address and data networks can improve performance.
If L-wires are employed for the address network, it often
takes less than a cycle to transmit a signal between routers.
Therefore, part of the cycle time is wasted and most of the
address network delay is attributed to router delay. Hence,
we propose an alternative topology for the address network.
By employing fewer routers, we take full advantage of the
low latency L-network and lower the overhead from rout-
ing delays. The corresponding penalty is that the network
supports a lower overall bandwidth.

Figure 8 shows the proposed hybrid topology to reduce
the routing overhead in the address network for uniprocessor
models. The address network is now a combination of point-



to-point and bus architectures. Each row of cache banks is
allocated a single router and these routers are connected to
the cache controllers with a point-to-point network, com-
posed of L-wires. The cache banks in a row share a bus
composed of L-wires. When a cache controller receives a
request from the CPU, the address is first transmitted on
the point-to-point network to the appropriate row and then
broadcast on the bus to all the cache banks in the row.
Each hop on the point-to-point network takes a single cycle
(for the 4x4-bank model) of link latency and three cycles of
router latency. The broadcast on the bus does not suffer
from router delays and is only a function of link latency (2
cycles for the 4x4 bank model). Since the bus has a single
master (the router on that row), there are no arbitration
delays involved. If the bus latency is more than a cycle, the
bus can be pipelined [22]. For the simulations in this study,
we assume that the address network is always 24 bits wide
(just as in option-C above) and the aggressive look-up policy
is adopted (blocks with partial tag matches are sent to the
CPU cache controller). As before, the data network contin-
ues to employ the grid-based topology and links composed
of B-wires (128-bit network, just as in option-C above).

A grid-based address network (especially one composed
of L-wires) suffers from huge metal area and router over-
heads. The use of a bus composed of L-wires helps elim-
inate the metal area and router overhead, but causes an
inordinate amount of contention for this shared resource.
The hybrid topology that employs multiple buses connected
with a point-to-point network strikes a good balance be-
tween latency and bandwidth as multiple addresses can si-
multaneously be serviced on different rows. Thus, in this
proposed hybrid model, we have introduced three forms of
heterogeneity: (i) different types of wires are being used in
data and address networks, (ii) different topologies are be-
ing used for data and address networks, (iii) the address
network uses different architectures (bus-based and point-
to-point) in different parts of the network.

4. RESULTS

4.1 Methodology
Our simulator is based on Simplescalar-3.0 [7] for the Al-

pha AXP ISA. Table 3 summarizes the configuration of the
simulated system. All our delay and power calculations are
for a 65 nm process technology and a clock frequency of 5
GHz. Contention for memory hierarchy resources (ports and
buffers) is modeled in detail. We assume a 32 MB on-chip
level-2 static-NUCA cache and employ a grid network for
communication between different L2 banks.

The network employs two unidirectional links between
neighboring routers and virtual channel flow control for packet
traversal. The router has five input and five output ports.
We assume four virtual channels for each physical channel
and each channel has four buffer entries (since the flit counts
of messages are small, four buffers are enough to store an
entire message). The network uses adaptive routing similar
to the Alpha 21364 network architecture [28]. If there is
no contention, a message attempts to reach the destination
by first traversing in the horizontal direction and then in
the vertical direction. If the message encounters a stall, in
the next cycle, the message attempts to change direction,
while still attempting to reduce the Manhattan distance to

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
od

el
 1

M
od

el
 2

M
od

el
 3

M
od

el
 4

M
od

el
 5

M
od

el
 6

M
od

el
 7

M
od

el
 8

N
or

m
al

iz
ed

 IP
C

All Benchmarks Latency Sensitive Benchmarks

Figure 9: Normalized IPCs of SPEC2000 bench-
marks for different L2 cache configurations (B-wires
implemented on the 8X metal plane).

its destination. To avoid deadlock due to adaptive routing,
of the four virtual channels associated with each vertical
physical link, the fourth virtual channel is used only if a
message destination is in that column. In other words, mes-
sages with unfinished horizontal hops are restricted to use
only the first three virtual channels. This restriction breaks
the circular dependency and provides a safe path for mes-
sages to drain via deadlock-free VC4. We evaluate all our
proposals for uniprocessor and CMP processor models. Our
CMP simulator is also based on Simplescalar and employs
eight out-of-order cores and a shared 32MB level-2 cache.
For most simulations, we assume the same network band-
width parameters outlined in Section 3 and reiterated in
Table 4. Since network bandwidth is a bottleneck in the
CMP, we also show CMP results with twice as much band-
width. As a workload, we employ SPEC2k programs exe-
cuted for 100 million instruction windows identified by the
Simpoint toolkit [33]. The composition of programs in our
multi-programmed CMP workload is described in the next
sub-section.

4.2 IPC Analysis
We begin by examining the behavior of processor mod-

els with eight different cache configurations (summarized in
Table 4). The first six models help demonstrate the im-
provements from our most promising novel designs, and the
last two models show results for other design options that
were also considered and serve as useful comparison points.

The first model is based on methodologies in prior work [21],
where the bank size is calculated such that the link delay
across a bank is less than one cycle. All other models em-
ploy the proposed CACTI-L2 tool to calculate the optimum
bank count, bank access latency, and link latencies (verti-
cal and horizontal) for the grid network. Model two is the
baseline cache organization obtained with CACTI-L2 that
employs minimum-width wires on the 8X metal plane for the
address and data links. Model three and four augment the
baseline interconnect with an L-network to accelerate cache
access. Model three implements the early look-up proposal
(Section 3.1) and model four implements the aggressive look-
up proposal (Section 3.2). Model five simulates the hybrid
network (Section 3.3) that employs a combination of bus
and point-to-point network for address communication. As
discussed in Section 3, the bandwidths of the links in all



Fetch queue size 64 Branch predictor comb. of bimodal and 2-level
Bimodal predictor size 16K Level 1 predictor 16K entries, history 12

Level 2 predictor 16K entries BTB size 16K sets, 2-way
Branch mispredict penalty at least 12 cycles Fetch width 8 (across up to 2 basic blocks)
Dispatch and commit width 8 Issue queue size 60 (int and fp, each)

Register file size 100 (int and fp, each) Re-order Buffer size 80
L1 I-cache 32KB 2-way L1 D-cache 32KB 2-way set-associative,
L2 cache 32MB 8-way SNUCA 3 cycles, 4-way word-interleaved

L2 Block size 64B
I and D TLB 128 entries, 8KB page size Memory latency 300 cycles for the first chunk

Table 3: Simplescalar simulator parameters.

Model Link latency Bank access Bank Network link contents Description
(vert,horiz) time count

Model 1 1,1 3 512 B-wires (256D, 64A) Based on prior work
Model 2 4,3 17 16 B-wires (256D, 64A) Derived from CACTIL2
Model 3 4,3 17 16 B-wires (128D, 64A) & L-wires (16A) Implements early look-up
Model 4 4,3 17 16 B-wires (128D) & L-wires (24A) Implements aggressive look-up
Model 5 hybrid 17 16 L-wires (24A) & B-wires (128D) Latency-bandwidth tradeoff
Model 6 4,3 17 16 B-wires (256D), 1cycle Add Implements optimistic case
Model 7 1,1 17 16 L-wires (40A/D) Latency optimized
Model 8 4,3 17 16 B-wires (128D) & L-wires (24A) Address-L-wires & Data-B-wires

Table 4: Summary of different models simulated. Global 8X wires are assumed for the inter-bank links. “A”
and “D” denote the address and data networks, respectively.
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Figure 10: IPCs of SPEC2000 benchmarks for different L2 cache configurations (B-wires implemented on the
8X metal plane).

Bank Count Bank Access Time Average Cache Access Time Early Look-up Aggressive Fetch Optimistic Model
(32 MB Cache) (cycles) (cycles) (cycles) (cycles) (cycles)

2 77 159 137 137 132
4 62 151 127 127 118
8 26 97 78.5 77.5 66.5
16 17 84 70.5 69.5 54.5
32 9 87 78.7 73.5 50.5
64 6 104 98.1 88 57
128 5 126 121.2 114 67
256 4 148 144.6 140.5 77.5
512 3 226 223.3 211 116.5
1024 3 326 323 293 166.5
2048 3 419 416.2 403.5 212.5
4096 3 581 578 548.5 293

Table 5: Access latencies for different cache configurations. The operating frequency is 5GHz and the message
transfers are assumed to happen on 8x wires.



these simulated models are adjusted such that the net metal
area is constant. All of the above optimizations help speed
up the address network and do not attempt to improve the
data network. To get an idea of the best performance pos-
sible with such optimizations to the address network, we
simulate an optimisitic model (model six) where the request
carrying the address magically reaches the appropriate bank
in one cycle. The data transmission back to the cache con-
troller happens on B-wires just as in the other models.

Model seven employs a network composed of only L-wires
and both address and data transfers happen on the L-network.
Due to the equal metal area restriction, model seven offers
lower total bandwidth than the other models and each mes-
sage is correspondingly broken into more flits. Model eight
simulates the case where the address network is entirely com-
posed of L-wires and the data network is entirely composed
of B-wires. This is similar to model four, except that in-
stead of performing a partial tag match, this model sends
the complete address in multiple flits on the L-network and
performs a full tag match.

Figure 9 shows the IPCs (average across the SPEC2k
suite) for all eight processor models, normalized against
model one. It also shows the average across programs in
SPEC2k that are sensitive to L2 cache latency (based on
the data in Figure 1). Figure 10 shows the IPCs for models
one through six for each individual program (L2 sensitive
programs are highlighted in the figure). Table 5 quantifies
the average L2 access times with the proposed optimiza-
tions as a function of bank count. In spite of having the
least possible bank access latency (3 cycles as against 17
cycles for other models), model one has the poorest perfor-
mance due to high network overheads associated with each
L2 access. Model two, the performance-optimal cache or-
ganization derived from CACTI-L2, performs significantly
better, compared to model one. On an average, model two’s
performance is 73% better across all the benchmarks and
114% better for benchmarks that are sensitive to L2 latency.
This performance improvement is accompanied by reduced
power and area from using fewer routers (see Figure 7).

The early look-up optimization discussed in Section 3.1
improves upon the performance of model two. On an av-
erage, model three’s performance is 6% better, compared
to model two across all the benchmarks and 8% better for
L2-sensitive benchmarks. Model four further improves the
access time of the cache by performing the early look-up
and aggressively sending all the blocks that exhibit partial
tag matches. This mechanism has 7% higher performance,
compared to model two across all the benchmarks, and 9%
for L2-sensitive benchmarks. The low performance improve-
ment of model four is mainly due to the high router overhead
associated with each transfer. The increase in data network
traffic from partial tag matches is less than 1%. The aggres-
sive and early look-up mechanisms trade off data network
bandwidth for a low-latency address network. By halving
the data network’s bandwidth, the delay for the pipelined
transfer of a cache line increases by two cycles (since the
cache line takes up two flits in the baseline data network).
This enables a low-latency address network that can save
two cycles on every hop, resulting in a net win in terms
of overall cache access latency. The narrower data network
is also susceptible to more contention cycles, but this was
not a major factor for the evaluated processor models and
workloads.
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Figure 11: IPC improvement of different cache
configurations in an eight core CMP. Benchmark
compositions: “Mix” - ammp, applu, lucas, bzip2,
crafty, mgrid, equake, gcc; “All sensitive” - ammp,
apsi, art, bzip2, crafty, eon, equake, gcc; “Half L2
and Half Non-L2 sensntive” - ammp, applu, lucas,
bzip2, crafty, mgrid, mesa, gcc; “Memory intensive”
- applu, fma3d, art, swim, lucas, equake, gap, vpr.

The hybrid model overcomes the shortcomings of model
four by reducing the number of routers in the network. Ag-
gressive look-up implemented in a hybrid topology (model
five) performs the best and is within a few percent of the
optimistic model six. Compared to model two, the hybrid
model performs 15% better across all benchmarks and 20%
better for L2-sensitive benchmarks.

Model seven employs the L-network for transferring both
address and data messages. The performance of this model
can be better than the optimistic model (model six) that
uses B-wires for data transfers. But the limited bandwidth
of the links in model seven increases contention in the net-
work and limits the performance improvement to only a few
programs that have very low network traffic. On an average
the performance of model seven is 4% less that model two.
Model eight employs the L-network for sending the complete
address in a pipelined fashion. It performs comparably to
model four that implements aggressive look-up (4.4% better
than model two). But it incurs significantly higher con-
tention on the L-network, making it an unattractive choice
for CMPs.

Figure 11 shows the IPC improvement of different mod-
els in a CMP environment. We evaluate all our models for
four different sets of multi-programmed workloads. Set 1
is a mixture of benchmarks with different characteristics.
Set 2 consists of benchmarks that are sensitive to L2 hit
time. Half the programs in set 3 are L2-sensitive and the
other half are not. Set 4 consists of benchmarks that are
memory intensive. The individual programs in each set are
listed in Figure 11. For our results, we assume that the
network bandwidth is doubled (by assuming twice as much
metal area) to support the increased demands from eight
cores. Similar to our uniprocessor results, model one incurs
severe performance penalty due to very high network over-
head. Model two, derived from CACTI-L2, out-performs
model one by 51%. Models three, four, and five yield per-
formance improvements of 4.2% (early look-up), 4.5% (ag-
gressive look-up), and 10.8% (hybrid network), respectively
over model two. If the network bandwidth is the same as
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Figure 12: Performance for uniprocessor with 4X
wires.

in our uniprocessor simulations, these performance improve-
ments are 3.0%, 3.3%, and 6.2%, respectively.

As a sensitivity analysis, we report the overall IPC im-
provements for models two through six for the uniprocessor
model with 4X-B wires instead of 8X-B wires in Figure 12.
Since 4X wires are slower, the effect of optimizations are
more pronounced than in the 8X model. This is likely the
expected trend in future technologies where wires are slower,
relative to logic delays.

5. RELATED WORK
A number of recent proposals have dealt with the imple-

mentation of large NUCA caches [6, 11, 12, 18, 19, 21] and
focus on optimizing logical policies associated with a base-
line cache design. For example, many of these papers employ
some form of dynamic-NUCA (D-NUCA), where blocks are
allowed to migrate to reduce communication distances. D-
NUCA policies also apply to cache models that incorporate
the interconnect optimizations proposed in this paper.

To the best of our knowledge, only four other bodies of
work have attempted to exploit novel interconnects at the
microarchitecture level to accelerate cache access. Beck-
mann and Wood [5] employ transmission lines to speed up
access to large caches. Unlike regular RC-based wires, trans-
mission lines do not need repeaters and hence can be di-
rectly routed on top of other structures. This property is
exploited to implement transmission line links between each
cache bank and the central cache controller. The number of
banks is limited to the number of links that can be directly
connected to the controller. Low-latency fat RC-based wires
have been employed to speed up coherence signals in a CMP
environment [10] and L1 cache access in a clustered archi-
tecture [2]. A recent paper by Li et al. [23] proposes the
implementation of a NUCA cache in three dimensions. A
three-dimensional grid topology is employed and given the
low latency for inter-die communication, a dynamic time
division multiplexing bus is employed for signal broadcast
across dies. Jin et al. [19] suggest removing unnecessary
links in a grid topology to reduce the area and power over-
head of the network. They propose Halo network and a
multi-cast router architecture for the D-NUCA domain.

Kumar et al. [22] examine interconnect design issues asso-
ciated with chip multiprocessors. They detail the scalability
problem associated with a shared bus fabric and explore the

potential of a hierarchical bus structure.

6. CONCLUSIONS AND FUTURE WORK
Delays within wires and routers are major components of

L2 cache access time. By considering network parameters
in a preliminary tool (CACTI-L2), we derive cache orga-
nizations that differ significantly (in terms of performance
and power) from those assumed in prior work. Having thus
derived an optimal baseline cache organization, we propose
novel optimizations to the address network and bank access
pipeline that help hide network delays. These optimizations
leverage heterogeneity within the network and improve upon
the IPC of the baseline by 15% across the SPEC benchmark
suite.

This paper has focused on the design of a NUCA cache
shared by all cores on a chip. Private L2 cache organizations
are also being considered by industry and academia – each
core is associated with a large L2 cache and a request not
found in a local cache may be serviced by a remote cache [4,
8, 12, 27, 35, 38]. A remote L2 hit now has a non-uniform
access time depending on the remote cache where the block
is found and the network delays incurred in communication
with the directory and the remote cache. The interconnect
continues to play a major role in such cache organizations
and many of the interconnect design considerations for a
shared NUCA will also apply to private L2 caches.

Our discussions so far have only exploited low-latency L-
wires to improve performance. As described in Section 2,
wires can be designed to minimize power (while trading off
latency). As future work, we will consider techniques to
leverage power-efficient wires to reduce interconnect power
while handling prefetches, writebacks, block swaps, etc. La-
tency tolerant networks can also enable power optimizations
within cache banks (mentioned in Section 3.1). We will
also consider developing contention models to aid the de-
sign space exploration in CACTI-L2.
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