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Abstract— We consider the problem of (asymptotic) stabi-
lization of mechanical systems with underactuation degree
one. A state–feedback design is derived applying the Inter-
connection and Damping Assignment Passivity-Based Control
methodology. Its application relies on the possibility of solving
a set of partial differential equations that identify the energy
functions that can be assigned to the closed–loop. The following
results are established: 1) identification—in terms of some
algebraic inequalities—of a subclass of these systems for which
the partial differential equations are trivially solved; 2) char-
acterization of all systems which are feedback–equivalent to
this subclass; and 3) introduction of a suitable parametrization
of the assignable energy functions that provides the designer
with a handle to address transient performance and robustness
issues. An additional feature of our developments is that the
open–loop system need not be described by a port–controlled
Hamiltonian (or Lagrangian) model, a situation that arises
often in applications due to model reductions or preliminary
feedbacks that destroy the structure. The new result is applied
to obtain an (almost) globally stabilizing controller for the
inertia wheel pendulum, a controller for the chariot with
pendulum system that can swing–up the pendulum from any
position in the upper half plane and stop the chariot at any
desired location, and an (almost) globally stabilizing scheme
for the vertical takeoff and landing aircraft with strong input
coupling. In all cases we obtain very simple and intuitive
solutions that do not rely on, rather unnatural and technique–
driven, linearization or decoupling procedures but instead
endows the closed–loop system with a Hamiltonian structure
with desired potential and kinetic energy functions.

I. I NTRODUCTION

In [1] we introduced a controller design technique,
called Interconnection and Damping Assignment Passivity–
Based Control (IDA–PBC), that achieves stabilization for
underactuated mechanical systems invoking the physically
motivated principle ofenergy shaping. IDA–PBC endows
the closed–loop system with a Port–Controlled Hamiltonian
(PCH) structure where the kinetic and potential energy func-
tions have some desirable features, a minimal requirement
being to have a minimum at the desired operating point to
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ensure its stability. Similar techniques have been reported
for general PCH and Lagrangian systems in [2], [3] and
[4], [5], respectively. The success of these methods relies
on the possibility of solving a set of partial differential
equations (PDEs) that identify the energy functions that can
be assigned to the closed–loop. In spite of many interesting
developments, e.g. [6], [7], [4], [8], the need to solve
the PDEs remains the main stumbling block for a wider
applicability of these methods.

In this paper we show that for a class of mechanical
systems withunderactuation degree oneit is possible to
trivially solve the PDEs of the IDA-PBC design method,
we provide a characterization of those systems which are
feedback equivalent to systems in the considered class, and
we show that the set of assignable energy functions can be
simply parameterized.

For illustration we present an (almost) globally stabilizing
scheme for the inertia wheel pendulum, an (almost) globally
stabilizing scheme for the vertical takeoff and landing
aircraft with strong input coupling, and a controller for the
chariot with the pendulum that can swing–up the pendulum
from any position in the (open) upper half plane and stop
the chariot at any desired location.

This is an abridged version of the full paper which is
available, upon request, from the authors.

II. T HE PDES FOR A CLASS OF MECHANICAL SYSTEMS

WITH UNDERACTUATION DEGREE ONE

The class of systems that we consider is given by

q̇ = M−1(qr)p
ṗ = s(qr) + G(qr)u, (1)

where qr, with r an integer taking values in the set
{1, . . . , n}, is a distinguished element ofq ∈ Rn, p ∈ Rn,
u ∈ Rn−1 are the control inputs, the matrixM(qr) is
symmetric positive definite and bounded, ands(qr), G(qr)
are analytic functions ofqr, and we assume thatG(qr) is
full column rank. Notice that the system has underactuation
degree one.

The control objective is to stabilize an equilibrium(q∗, 0).
In IDA–PBC of mechanical systems [1] this is achieved
assigning to the closed–loop the total energy

Hd(q, p) =
1
2

p>M−1
d (qr) p + Vd(q) (2)

with Md(qr) = M>
d (qr) > 0 and Vd(q), with q∗ =

arg min Vd(q), the (to be defined) closed–loop inertia matrix



and potential energy function, respectively. For, we endow
the system with a PCH structure of the form
[

q̇
ṗ

]
=

[
0 M−1Md

−MdM
−1 J2 −GKvG>

] [ ∇qHd

∇pHd

]
(3)

where Kv = K>
v > 0, J2(qr, p) = −J>2 (qr, p) are free

matrices.
As shown in [1] the assignable energy functions are

characterized by a set of PDEs. We now show that for the
considered class of systems the PDEs take a special and
simple form, and can be trivially solved. This paves the
way for a constructive state feedback stabilization result.

Proposition 1: For the system (1) with desired energy
function (2) the PDE from the IDA-PBC method takes the
form

G⊥Md(qr)M−1(qr)erM
′
d(qr) = −2JA>(qr) (4)

G⊥
[
s(qr) + Md(qr)M−1(qr)∇qVd(q)

]
= 0 (5)

whereJ (qr) ∈ Rn×no , no , n
2 (n − 1), is a free matrix,

er ∈ Rn is ther–th vector of the standard Euclidian basis,
and

A(qr) ,
[
W>

1

(
G⊥(qr)

)>
, . . . ,W>

no

(
G⊥(qr)

)>]
∈ Rn×no

(6)
where Wi ∈ Rn×n, i = 1, . . . , no, are some constant,
skew–symmetric matrices which can be explicitely con-
structed.

Remark 1:An n × n skew–symmetric matrix con-
tains at most no non–zero different terms. Hence, the
proposedJ2(qr, p̃) contains all skew–symmetric matrices
which are linear inp̃, that is, all matrices of the form∑n

i=1 Ωi(qr)p̃i, Ωi(qr) = −Ω>i (qr), and the parametriza-
tion is done without loss of generality.

All assignable energy functions of the form (2) are
characterized by the solutions of (4) and (5). Typically in
IDA–PBC we start with (4), which is a set ofnonlinear
ODEs in the unknown matrixMd(qr), with J (qr) a free
matrix to be chosen by the designer. Then, plugging in
Md(qr) in (5), we solve the PDE forVd(q). It is important
to recall that, to comply with the stability requirements, we
also have to satisfy the additional constraints of positivity
of Md(qr) and the minimum conditionq∗ = arg min Vd(q).

Even though we have full freedom in the selection of
J (qr) finding a solution of (4) is nontrivial because the
matrixA(qr) is not full rank—in particular we have that

G⊥(qr)A(qr) = 0. (7)

III. M AIN RESULT

There are no systematic methods for the solution of
nonlinear ODEs. In spite of this it is possible to show that
with a suitable parametrization of the desired inertia matrix,
the PDE (4) is obviated; with the additional advantage that
(5) becomes a trivial linear PDE that we can explicitly

solved. This result is used to give stabilization conditions in
terms of a set ofalgebraic inequalities. Thus, for the class
(1) considered, the complete solution of the PDE and the
IDA-PBC controller are given in an explicit formula.

Proposition 2: Consider the system (1). Assume there
exists matricesΨ(qr) andM0

d = (M0
d )> > 0 andG⊥(qr),

with G⊥(qr)G(qr) = 0, such that
Assumption A.1

ρ , G⊥(qr∗)Md(qr∗)M−1(qr∗)er 6= 0,

whereer is ther–th vector of the Euclidean basis and

Md(qr) =
∫ qr

qr∗
G(µ)Ψ(µ)G>(µ)dµ + M0

d . (8)

Assumption A.2

−1
ρ

(
d

dqr
{G⊥s}

)
(qr∗) > 0.

Under these conditions:

• The IDA–PBC takes the form

u = A1(q)PS(q − q∗) +




p>A2(qr)p
...

p>An(qr)p


 +

+ An+1(qr)−KvG>(qr)M−1
d (qr)p (9)

whereP = P> > 0 andS ∈ R(n−1)×n is obtained re-
moving ther–th row from then–dimensional identity
matrix.

• The total energy function (2) is defined with (8) and

Vd(q) = −1
ρ

∫ qr

0

G⊥(µ)s(µ)dµ +

+
1
2

[z(q)− z(q∗)]
>

P [z(q)− z(q∗)](10)

where z(q), is an n − 1 dimensional vector with
elements

zi , qi − 1
ρ

∫

0

qr

G⊥(µ)Md(µ)M−1(µ)eidµ (11)

• (q∗, 0) is a stableequilibrium with Lyapunov function
Hd(q, p).

The equilibrium(q∗, 0) is asymptoticallystable if further-
more

Assumption A.3 There exists at least one column of
the matrix G(qr) = {Gij} such that the following two
conditionscannot happen simultaneously: (i) Grj ≡ 0; and
(ii) there exists constantsci such that

∑n
i=1,i6=r Gijci ≡ 0.

Remark 2:Assumption A.1 is needed to trivialize the
solution of the PDEs. Although this (pointwise) assumption
is generically satisfied, the computation of the controller
involves a division byG⊥(qr)Md(qr)M−1(qr)er. From



(10) we see that Assumption A.2 ensures that the potential
energy attains its minimum at the desired point.1

Remark 3:The set ofassignable energy functionsof the
form (2) that lead to a stabilizing controller is parameterized
by all triplets {Ψ,M0

d , ρ} that satisfy the conditions of
Proposition 2. Moreover, it can be shown that the second
term in (10) can be any differentiable functionΦ : Rn−1 →
R with z(q∗) = arg min Φ(z).

IV. CHARACTERIZATION OF THE CLASS

A natural question that arises at this point is what is the
class of underactuation degree one mechanical systems that
can be transformed, via canonical change of coordinates and
state feedback, into the form (1).2 We say then that the me-
chanical system is feedback–equivalent to (1). A complete
answer to this question is provided in the proposition below.
For brevity we present only the case whereM(qr) = I, the
general case is discussed in Remark 4.

Proposition 3: Consider the classical underactuation de-
gree one (simple) mechanical system

D̃ÿ + ˙̃Dẏ − 1
2
∇y

(
ẏ>D̃ẏ

)
+∇yV (y) =

[
In−1

0 · · · 0
]

w̃

wherey ∈ Rn are the generalized coordinates,w̃ ∈ Rn−1

the controls, D̃(y) = D̃>(y) > 0 the inertia matrix
(the argument is omitted) andV (y) the potential energy
function. The system isglobally feedback equivalentto (1)
with M(qr) = I if and only if there exists a function
ψ : Rn → Rn, which is a global diffeomorphism, solution
of the set of second order homogeneous PDE’s3

n−1∑

i=1

di(ψ)∇2
qψi +∇2

qψn +∇>q ψF1(ψ)∇qψ = 0 (12)

such that the algebraic equations
[
d1(ψ) · · · dn(ψ) 1

]∇qψG(qr) = 0[
d1(ψ) · · · dn(ψ) 1

]∇qψs(qr) = −F0(ψ) (13)

are satisfied for some integerr ∈ {1, · · · , n}, and
some functionss(qr), G(qr), where the scalar functions
di(ψ(q)), F0(ψ(q)) and the matrixF1(ψ(q)) are determined
by D̃(y), V (y).

Remark 4:For the more general case whereM(qr) 6= I,
the algebraic constraints remain unaltered. However, the
matrix M(qr) provides a new degree of freedom that
appears in the PDE (12) in the form of afree termwhich
is linear in∇qψ.

1Assumption A.2 is sufficient for injectivity ofG⊥(qr)s(qr) which,
from Brockett’s condition, isnecessaryfor stabilization.

2A change of coordinates for a mechanical systems is canonical if it
maps positions into positions.

3The argument ofψ(q) is omitted for compactness.

V. EXAMPLES

A. The inertia wheel pendulum

The dynamic equations can be written in the simplified
description

q̇ = p

ṗ =
[

m3 sin(q1)
0

]
+

[ −1
1

]
u

where q, p ∈ R2, u ∈ R, and I1, I2 are the respective
angles and moments of inertia of the pendulum disk, where
m3 , mgl with m the pendulum mass,l its length,g the
gravity constant, and for simplicity, we have takenI1 =
I2 = 1. The equilibrium to be stabilized is the upward
position with the inertia disk aligned, which corresponds to
q1∗ = q2∗ = 0.

Assumption A.3 is obviously verified. We will select now
the terms of the triplet{Ψ,M0

d , ρ} that satisfy Assumptions
A.1–A.2. In this simple case we can take the desired inertia
matrix to be constant, henceforth we set the first parameter
Ψ = 0 to yield

Md = M0
d =

[
m0

11 m0
12

m0
12 m0

22

]
.

The (non–trivial) left annihilators ofG are given by
G⊥ = η[1, 1], with η 6= 0. To satisfy Assumption A.1
we impose

m0
11 + m0

12 6= 0. (14)

The positivity condition for the inertia matrix is clearly

m0
11 > 0, m0

11m
0
22 >

(
m0

12

)2
. (15)

We have that

η =
ρ

m0
11 + m0

12

,

for some numberρ. Now, asG⊥s(q1) = m3ρ
m0

11+m0
22

sin(q1),
we need to verify the inequality

m0
11 + m0

12 < 0, (16)

to assign the minimum toVd(q), becauseρ cancels. Finally,
we selectΦ(z(q)) = P

2 z2(q), where

z(q) = q2 − ρ
m0

12 + m0
22

m0
11 + m0

12

q1

is directly computed from (11), to obtain from (10)

Vd(q) =
m3

m0
11 + m0

12

cos q1 +
P

2

(
q2 − ρ

m0
12 + m0

22

m0
11 + m0

12

q1

)2

The conditions on them0
ij coefficients (14)–(16) exactly

coincide, forρ = 1, with those of [9] where the almost
globally stabilizing controller derived for this example re-
quires four pages of (painful) computations.



B. Pendulum on a cart

The dynamic equations can be put in the desired form

q̇ = p

ṗ = a sin q1e1 +
[ −b cos q1

1

]
u (17)

whereq, p ∈ R2, u ∈ R, a = g
l , b = 1

l , with l the length
of the pendulum. Notice thatG⊥(q1) = η(q1)[1, b cos q1],
whereη(q1) is a function to be defined. The equilibrium to
be stabilized is the upward position of the pendulum with
the cart placed inany desired location, corresponding to
q1∗ = 0 and arbitraryq2∗.

It is possible to show that, to satisfy the conditions
of Proposition 2,η(q1) cannot be a constant. Hence, we
computeMd(q1) from (8) to get

G⊥(q1) Md(q1)e1 = η(q1)
[
b2

( ∫ q1

q1?

Ψ(µ) cos2 µdµ

− cos q1

∫ q1

0

Ψ(µ) cos µdµ
)

+ m0
11 + m0

12b cos q1

]
.

We have to select a functionΨ(q1) so that the term in brack-
ets (evaluated at zero) is bounded away from zero (Assump-
tion A.1) and can be explicitly integrated. The first condition
allows to defineη(q1) such thatG⊥(q1)Md(q1)e1 = ρ,
while the second one is needed to compute the control
law. It is easy to see thatΨ(q1) = const is, unfortunately,
not adequate. We propose thenΨ(q1) = −k sin q1, with
k > 0 a parameter to be determined, and selectm0

11 = kb2

3 ,
m0

12 = −kb
2 . This leads to

Md =
[

kb2

3 cos3 q1 −kb
2 cos2 q1

−kb
2 cos2 q1 k(cos q1 − 1) + m0

22

]
(18)

This matrix is positive definite and bounded for allq1 ∈
(−π

2 , π
2 ), providedm0

22 > k. Also, we can take

η(q1) = − 6ρ

kb2 cos3 q1
.

Assumption A.2 is verified noting that

1
ρ
G⊥(q1)s(q1) = − 6a

kb2

sin q1

cos2 q1
.

Finally, Assumption A.3 is obviously satisfied.

Proposition 4: A set of energy functions of the form (2)
assignable via IDA–PBC to system (17) is characterized by
the locally positive definite and bounded inertia matrix (18),
with m0

22 > k, and the potential energy function

Vd(q) =
3a

kb2 cos2 q1
+

P

2
z2(q)

where

z(q) = q2 − q2∗ +
3
b

ln(sec q1 + tan q1) +
6m0

22

kb
tan q1.

The IDA–PBC’s with full state–feedback (9) ensureasymp-
totic stability of the desired equilibrium(0, q2∗, 0, 0), with
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Fig. 1. Trajectories with the pendulum starting near the horizontal
[q(0), p(0)] = [π/2− 0.2,−0.1, 0.1, 0], full state feedback.

a domain of attraction of the former containing the set
(−π

2 , π
2 )× R3.

Simulations were made witha = b = 1, Kv = 0.01,
m0

22 = k = 0.01 and P = 1. We tested a set of
“limiting” initial conditions with the pendulum starting near
the horizontal[q(0), p(0)] = [π/2−0.2,−0.1, 0.1, 0] and the
desired position for the cartq2∗ = 20. The result forfull
state–feedback(Fig. 1) shows an excellent performance.

C. Vertical takeoff and landing aircraft

The dynamics may be written as

q̇ = p

ṗ =
g

ε
sin q3e3 + G(q3)u (19)

whereq, p ∈ R3, u ∈ R2, and we defined the matrix

G(q3) ,




1 0
0 1

1
ε cos q3

1
ε sin q3


 .

The control requirement is the asymptotic stabilization of
all equilibria of the form(q1∗, q2∗, 0, 0, 0, 0).

Proposition 5: A set of energy functions of the form (2)
assignable via IDA–PBC to system (19) is characterized by
the globally positive definite and bounded inertia matrix

Md =




k1ε cos2 q3 + k3 k1ε cos q3 sin q3 k1 cos q3

k1ε cos q3 sin q3 −k1ε cos2 q3 + k3 k1 sin q3

k1 cos q3 k1 sin q3 k2




with k1 > 0, k3 > 5k1ε, k1 > k2ε > k1
2 , and the potential

energy function

Vd(q) = − g

k1 − k2ε
cos q3 +

1
2
z>(q)Pz(q)
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Fig. 2. Badly tuned controller for VTOL. Initials conditions
[q(0), p(0)] = [−5, 0, 0.1,−0.1,−0.1, 0.1]. Referencesq1∗ = 5 and
q2∗ = q3∗ = 0.

where

z(q) =

[
q1 − q1∗ − k3

k1−k2ε sin q3

q2 − q2∗ + k3−k1ε
k1−k2ε (cos q3 − 1)

]
.

The full–state feedback IDA–PBC’s ensurealmost
global asymptotic stabilityof the desired equilibrium
(q1∗, q2∗, 0, 0, 0, 0).

Simulations were carried out with a twofold objective,
first to show how the energy shaping controller proposed
in this paper ensures a satisfactory response for strong
coupling coefficientsε > 0, and second to illustrate the
tuning flexibility provided by the design parameters. All
simulations are made with a strong value of couplingε = 1.
The damping injection matrix was fixed to

Kv =
[

10 5
5 10

]
.

The normal conditions of maneuvering for the VTOL
aircraft is to keep an accurate lateral motion near the
ground. This problem has been normally solved in two
steps (see for instance [10]): decoupling the altitude output
from the lateral motion and rolling moment by means of
a pre-feedback control law and then, designing a control
law for the new decoupled system; this procedure renders
satisfactory results for small enoughε. Now, with the
energy shaping controller independently of the value ofε
it is possible to “virtually decouple” the outputs using the
weighting matrixP in the potential energy (10). To illustrate
this point two simulations were made, first with a “bad”
potential energy takingP diagonal and the weights equal to
1 and1/10. This simulation for a lateral motion is shown
in Fig. 2. The same simulation was made for a “good”
potential energy taking theP again diagonal but with the
weights now1/2 and 1, with the response shown in Fig.

3—notice the different scales in the graphs. The posture
of the VTOL aircraft along the trajectory for both cases is
shown (at the same scale) in Fig. 4. It can be seen that,
for the first case, the altitude (q2 = y) makes very large
excursions to drive the VTOL to rest, while in the second
one a simple slow amplitude rocking motion achieves the
objective.

The simulations, depicted in Fig. 5 and Fig. 6, show the
time behavior an posture for the VTOL respectively, in an
aggressive maneuver, from a limit upside down position for
the roll angle (q3), and a great step on the lateral motion
(q1) and altitude (q2).

Remark 5: [Robustness] Recent results [11] show that
the full–state feedback IDA–PBC controller ensuresalmost
global asymptotic stabilityeven with dynamics friction in
the model (19). With a suitable selection of the controller
gainski, i = 1, 2, 3, the controller is able to dominate the
undesirable friction effects.

VI. CONCLUSIONS

In this paper we have identified a class of underactu-
ated mechanical systems for which the IDA–PBC design
methodology gives a complete solution to the full–state
feedback stabilization problem—without the need to solve
any PDE. The main assumptions made on the system are
that it has underactuation degree one and that, roughly
speaking, the dynamics are determined by only one gen-
eralized coordinate. A complete characterization of all
mechanical systems which are feedback equivalent to this
class is also given. This class contains several practically
interesting benchmark examples some of which are studied
in the paper. Besides ensuring asymptotic stability the
IDA–PBC methodology provides the designer with some
degrees of freedom to improve the transient performance
and the robustness. These degrees of freedom are given in
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Fig. 3. Well tuned controller for VTOL;q = (x, y, θ). Initials conditions
[q(0), p(0)] = [−5, 0, 0.1,−0.1,−0.1, 0.1]. Referencesq1∗ = 5 and
q2∗ = q3∗ = 0.
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Fig. 4. Posture of the VTOL along the trajectory;q = (x, y, θ). Badly
tuned controller (top) and well tuned controller (bottom).

terms of parameterized expressions of the assignable energy
functions.
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