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Abstract

To obtain a greater performance, many processors are allowed to cooperate to 

solve a single problem. These processors communicate via an interconnection net

work or a bus. Parallel machines are classified as either message passing machines 

where processors have their own memory or shared memory machines where several 

processors share the same memory. In this dissertation, we focus on the former. The 

most essential function of the underlying interconnection network is the efficient inter

changing of messages between processes in different processors. The potential com

munication bottleneck has been the main drive in the design of interconnection net

works. Parallel machines based on the hypercube topology have gained a great 

respect in parallel computation because of its many attractive properties. Many ver

sions of the hypercube have been introduced by many researchers mainly to enhance 

communications. The twisted hypercube is one of the most attractive versions of the 

hypercube. It preserves the important features of the hypercube and reduces its diame

ter by a factor of two. This dissertation investigates relations and transformations 

between various interconnection networks and the twisted hypercube and explore its 

efficiency in parallel computation. The capability of the twisted hypercube to simulate 

complete binary trees, complete quad trees, and rings is demonstrated and compared 

with the hypercube. Finally, the fault-tolerance of the twisted hypercube is investi

gated. We present optimal algorithms to simulate rings in a faulty twisted hypercube 

environment and compare that with the hypercube.



CHAPTER 1

Introduction

The need for faster computers has not ceased since the beginning of the computer 

era. New applications seem to push existing computers to their limit. The computer 

industry shows a continuous effort to increase the computational speed of computers. 

In the last four decades, dramatic increases in computing speed were achieved. Most 

of these were largely due to the use of faster electronic components by computer man

ufacturers. As we went from vacuum cubes to transistors and from small to very large 

scale integration, we witnessed the growth in size and range of the computational 

problems that we could solve. The state-of-the-art in VLSI technology can’t satisfy 

the growing computational demands in many scientific and engineering applications. 

Without high performance computers, many of these challenges can’t be solved within 

a reasonable time period.

In the last decade, as progress in VLSI has led to small size, low cost, and high 

performance processors, it has become practical to build parallel computers containing 

a very large number of processors. In parallel computation, a collection of processors 

cooperate to solve a problem by working simultaneously on different parts of the prob

lem. The two major components of a parallel machine are the processors and the 

interconnection network that ties them together. A main concern in the development

l



of such a system with this many processors is fault-tolerance. Since the probability of 

one or more processors or links becoming fault in such complex systems is significant, 

it is desirable to build some fault-tolerance features into the architecture.

Although parallel processing is not a new concept, its deviation from the tradi

tional Von Neumann computational model has introduced many new problems. The 

extra complexity required for data communication among the processors can degrade 

system performance and make programming on a parallel processing system much 

harder than on a uniprocessor system. If each of the processors works autonomously, 

the synchronization among different processes will further increase the complexity of 

the system. Unless we have a clear understanding of these problems and the efficient 

tools to solve them, the full power of parallel processing cannot be achieved.

This dissertation adds to the growing body of work that addresses highly parallel 

computing for models of parallel machines. We specifically investigate relations and 

transformations between various interconnection networks and explore their efficiency 

in parallel computation. Both faulty and fault-free parallel architectures are consid

ered.

1.1 Flynn’s Taxonomy

Parallel machines can be categorized by their interconnection network topolo

gies. Also, we classify parallel machines as either shared memory or message passing 

machines. Within each of these categories, we further divide them into vector versus 

MIMD within the shared memory category and static versus dynamic within the
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message passing category. Message passing designs offer higher levels of parallelism 

through the interconnection of thousands of processors via an interconnection net

work. In such systems, there is no global memory or program space. The design of 

message passing parallel machines places great demand on communication speed, data 

partitioning, and routing.

The most widely accepted classification of parallel computation models is the 

one proposed by Flynn [F], who viewed the Von Neumann model as a single stream of 

instructions controlling a single stream of data (SISD). Flynn viewed parallelism as a 

single stream of instructions controlling a multiple stream of data (SIMD) or a multi

ple stream of instructions controlling a multiple stream of data (MIMD). Figure 1.1 

shows SIMD and MIMD paradigms. Traleaven [T] classified MIMD machines fur

ther. The data mechanism was divided into shared-memory and message-passing 

approaches. The terms multicomputer and multiprocessor, respectively, are usually 

used to distinguish these two approaches.

In SIMD machines, all processors operate under the control of a single instruc

tion stream issued by a central control processor. All processors do the same instruc

tion, or nothing, each on a different datum. SIMD is the most useful paradigm for 

massively parallel scientific computing. Many scientific applications naturally fall 

into the SIMD paradigm such as image processing and particle simulation. In SIMD 

machines, a single instruction stream is acted upon by many processors in a lock step 

fashion. Only one instruction counter is used to sequence through a single copy of the 

program. The data that is processed by each processing element differs from one
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processor to another. Therefore, a single program and a single control unit simultane

ously act on many different collections of data by controlling a collection of homoge

neous processors. SIMD is the basic paradigm of synchronous data parallel comput

ing. The classic example of parallel SIMD computers is the ILLIAC-IV, with 64 iden

tical processing elements each receiving the same stream of instructions to be exe

cuted on its own data item.

In MIMD machines, processors operate under the control of their own stream of 

instructions which allows great flexibility. Each processor is fully programmable and 

capable of executing its own program. MIMD is the most general model of paral

lelism. Synchronization is achieved explicitly and locally rather than through a global 

synchronization mechanism. This provides a lot of flexibility, but it also means that 

the software that is needed to program the machine is more complex and much harder 

to implement. MIMD is useful when the problem allows multiple heterogeneous tasks 

to be performed at the same time. This is most likely to occur when the number of 

tasks to be performed is not known and the tasks perform different operations from 

one another.

MIMD is general enough to contain SIMD, because we can emulate SIMD 

behavior by restricting MIMD through careful programming. However, there may be 

severe performance penalties inherent in simulation of one form on a machine of dif

ferent form.
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1.2 A Taxonomy of Topologies

Interconnection networks and their combinatorial properties have been the topic 

of many recent research in the area of parallel processing ([AJ], [AK], [CLe], [FS], 

[Gou], [II], [K], [Lei], [LE], [Si], [Sn]). An efficient interconnection structure should 

have a low number of links per node, a small intemode distance, and a large number 

of alternate paths between a pair of nodes for fault-tolerance. In a parallel machine, 

the average intemode distance, message traffic density, and fault-tolerance are very 

much dependent on the diameter and the degree of the network. There is a tradeoff 

between the diameter and the degree of a network. A network with a low degree has a 

large diameter and a network with a low diameter usually has a large degree. A ring 

structure and a completely connected structure represent the two extremes. The diam

eter multiplied by the degree is usually a good criterion to measure the efficiency of an 

interconnection structure [AJ].

Most of the communication problems in parallel processing systems come from 

the fundamental different approaches adopted by uniprocessor systems and parallel 

processing systems to support interprocess communications. In a uniprocessor sys

tem, all processes reside in a single processor and all interprocess communications are 

supported by main memory references. As a result, any process can easily send a mes

sage to any other process with a uniform delay determined principally by the main 

memory clock cycle. On the other hand, in a parallel processing system, different pro

cesses usually reside in different processors. Interprocess communications are sup

ported by an interconnection network. The delay incurred in an interconnection



network is much greater than that in a uniprocessor. The delay time depends on the 

number of processors and the communication pattern. We call the extra interprocess 

communication time in a parallel processing system the communication delay.

The two main sources of the extra communication overhead in parallel process

ing are the time for the messages to go through one or more intermediate processors, 

in the absence of a direct link between the two processors communicating, and the 

contention for a single link by more than one message at the same time. These delays 

result from the mismatch of the communication characteristics of the parallel pro

grams and those of the parallel processing system.

An interconnection topology of a set of processors is a mapping from the set of 

processors onto the same set of processors. The mapping describes how to connect 

processors to other processors, with each processor usually connected to a small num

ber of processors in a regular pattern. For example, a ring topology is a mapping that 

connects a processor with label i to processors with labels i -  1 and i + 1. A complete 

binary tree topology, is a mapping that associates processors to the nodes of a com

plete binary tree where the root processor is connected to two other processors, inte

rior processors are connected to three other processors, and leave processors are con

nected to only one processor. Most parallel machines are distinguished by their inter

connection topologies. While the speed and capacity of parallel machines may vary, 

the most significant difference between them is their interconnection topologies.

Interconnection networks that provide communication between the processors 

have ranged from the simple to the complex, representing the trade off between speed



and cost. At one extreme is the ring network, in which each processor is linked to 

only two other processors. Messages are passed along the network from one processor 

to another by hopping through intermediate processors. At the other extreme in con

nectivity is the all-to-all network, in which each processor has its own private link to 

every other processor in the network. Between these two extremes, there is a number 

of other networks with intermediate numbers of neighbors. Figure 1.2 shows some 

popular interconnection networks.

Interconnection networks can be classified into dynamic and static networks. 

Dynamic networks create links between processors as the program executes. Static 

networks are fixed by design and can’t be changed after the machine is built. Parallel 

machines based on the hypercube static interconnection structure are one of the most 

popular- because they possess many attractive properties that are needed in parallel 

processing.

1.3 Data Routing

In a parallel processing system, if more than one message must be sent from a 

source to a destination at the same time, some links can be contended by more than 

one message. Since each link can support the communication of only one message at 

any instant, this contention introduces extra communication delay into the system. A 

good data routing algorithm should support parallel communication in the system with 

minimum delay.



x^x
Ring Tree
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Figure 1.2: Some popular interconnection networks.
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Circuit switching and packet switching are the two principal kinds of data routing 

mechanisms. In circuit switching, a physical path is established between the source 

and the destination. In packet switching, data are put in packets and routed through 

the interconnection network without establishing a physical connection path. Circuit 

switching is generally much more suitable for bulk data transmission, while packet 

switching is more efficient for many short messages.

In parallel processing systems for image processing, computer graphics, robot 

vision, and scientific computation, communications are heavy and message sizes are 

small. For these reasons, packet switching is usually preferred. There are two kinds 

of control strategies for packet switching, centralized and distributed. In centralized 

control, the decision to route packets is based on global information. In distributed 

control, each processor decides how to route the data based on its local information.

1.4 Overview

The Parallel Random Access Machine (PRAM) is used as a standard theoretical 

model for parallel computation. A PRAM is a synchronized machine with an 

unbounded number of identical processors and a global memory which allows simul

taneous reads and writes from and into the same memory location ([AG], [Q], [U]). 

Algorithms will run faster on this model than on real machines. Actual machines can’t 

be built without a significant delay in access time. The best that one can hope for is 

that access time is proportional to log N , where N  is the number of processors [AG]. 

This led many institutions to design parallel machines based on the message passing



MIMD approach. The classic example of such an architecture is the MARK-II Cos

mic Cube.

Based on Kung’s sorting algorithm for meshes [TK] and Batcher’s merge sort for 

cube connected machines, Nassimi and Sahni [NS] proved that a Random Access 

Read (RAR) can be accomplished with complexity 0 (q 2n) on a q dimensional nq 

mesh machine and Oilog2 AO on an TV cube connected or perfect shuffle machine. 

Also, they proved that a Read Access Write (RAW) can be accomplished with com

plexity 0 (q 2n + dqn) on a q dimensional mesh machine and 0(log2N  + dlog N) on 

an N  cube connected or perfect shuffle machine, where d  is the maximum number of 

data items written into any processor.

Many researchers have concentrated on tiding efficient ways to simulate PRAM 

on other parallel machines. The first reasonable deterministic simulation of a PRAM 

was proposed by Upfal and Wigderson [UW], Their simulation achieved 

Oilog2 N  log log N) time to simulate one step of a PRAM algorithm on an N  proces

sor network. Alt et al. [AHMP] subsequently improved the time complexity to

/ - \ / i  _ _ 2  » r \v \ io g  /v

Valiant [V] reported a probabilistic routing algorithm that can perform any per

mutation on a hypercube machine of size N  in 0(log N ) steps. The algorithm consists 

of two consecutive phases. In the first phase, it sends each packet p  to a randomly 

chosen node v. For each packet p, every node has the same probability of being cho

sen , which is The choices for the different packets are independent of each other.



In the second phase, it routes each packet p  from the intermediate node v to its desti

nation node. At each instant, there is exactly one copy of each packet A packet 

might be transmitted along an edge, waiting in a queue associated with an edge, or 

stored as a loose packet in an intermediate node. For simplicity, the algorithm is 

described in a synchronized fashion. It alternates between a transmitting mode and a 

bookkeeping mode. In the transmitting mode, the packet at the head of each queue is 

transmitted along the edge associated with it and stored as a loose packet at the recipi

ent node. In the bookkeeping mode, each loose packet is assigned to the queue of one 

of the outgoing edges according to some random choice, unless it has nowhere further 

to go in the current phase.

Valiant proved that this distributed randomized algorithm can route packets to 

their destination in a hypercube machine without two packets passing through the 

same communication link at the same time in 0(log N) with high probability. Each 

packet carries with it O(log N ) bits of information and no other communication 

among the nodes is needed. This result implies that a hypercube machine can simulate 

a PRAM with an increase in the execution time for each step. Each PRAM step can 

be simulated in approximately 0(log N ) steps on a network of size N. Therefore, we 

can develop algorithms for the PRAM since we know how to translate them into algo

rithms for actual machines.
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1.5 Preliminaries and Terminology

Several Structures have been proposed in the literature for interconnecting a large 

network of processors. Many parallel machines that are based on these structures are 

now commercially available. The Cosmic Cube [Se] is the first completed experimen

tal parallel machine based on the hypercube structure. It becomes the archetype of 

early operative parallel machines. Since the Cosmic Cube, many machines based on 

the hypercube structure have been built and made commercially available such as 

Amet S/14, NCUBE/10, Intel BPSC, and the Connection Machine [H].

Parallel machines based on the hypercube topology have gained a great interest 

in parallel computing because of their flexibility and suitability for general purpose 

applications. Many of the properties of the hypercube that make it a desirable parallel 

machine are a direct consequence of the graph theoretic properties of the hypercube 

topology. The hypercube offers a rich interconnection topology with large bandwidth, 

logarithmic diameter, simple routing and broadcasting of data, recursive structure that 

is suited to divide and conquer applications, homogeneous and symmetric structure, 

and the ability to simulate other interconnection networks with minimum overhead. 

Also, it has a high fault-tolerance structure. Fault-tolerance and related issues are 

becoming an important topic in the design and analysis of parallel machines.

The hypercube has been the topic of many recent research. Various researchers 

have done extensive work in showing the parallel computational power of the hyper

cube machine in many directions. In one direction, many researchers have shown the 

capability of the hypercube machine to simulate other networks such as rings, trees,
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grids, and other interconnection networks with minimum overhead ([BCGS], [BCLR], 

[BMS], [BSu], [MS], [SS], [Lei]). In another direction, researchers have shown the 

power of the hypercube in solving many computational problems in parallel such as 

sorting, merging, matrix multiplication, and parallel prefix ([A], [HB], [LE], [Lei], [P], 

[Q], [QD], [St]). In a third direction, researchers have shown the robustness and fault- 

tolerance of the hypercube, focusing on the hypercube’s ability to simulate, compute, 

route, and reconfigure itself in the presence of faults ([AGr], [BS], [HLNa], [HLNb], 

[WCM], [CL]).

Finally, many researchers have proposed modifications on the hypercube struc

ture to improve its computational power ([BH], [EBSS], [ENS], [EL], [PV], [YN]). 

Bhuyan and Agrewal [BA] proposed a generalized hypercube structure. Preparata and 

Vuillemin [PV] introduced the cube-connected cycles in which the degree of the diam

eter was reduced to 3. Latifi and El-Amaway [EL] proposed the folded hypercube to 

reduce the diameter and the traffic congestion with little hardware overhead. Youssef 

and Narahari [YN] proposed the Banyan-hypercube network which combines the 

advantageous features and properties of Banyans and hypercubes and thus reduce the 

communication overhead.

A hypercube of dimension n, denoted by Qn, is an undirected graph consisting of 

2" vertices, each vertex corresponds to an n-bit binary string, labeled from 0 to 2" -  1 

and such that there is an edge between any two vertices if and only if the binary repre

sentation of their labels differ in exactly one bit position. Each vertex is incident to n 

other vertices, one for each bit position. The edges of the hypercube can be naturally
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partitioned according to the dimensions that they traverse. An edge is called a dimen

sion i edge if it links two vertices that differ in the ith bit position.

Another version of the hypercube, called the twisted hypercube, was introduced 

by Efe et. al. [EBSS]. Twisted hypercubes proved to contain the attractive properties 

of the hypercube and a better communication capabilities. In parallel machines, the 

communication cost dominates the computation cost. The overall performance of the 

parallel machine depends heavily on the underlying interconnection network. In 

twisted hypercubes, the diameter is reduced by a factor of two over that of the hyper

cube. Many of the hypercube’s attractive features such sa partitioning, routing, and 

embedding are incorporated into the twisted hypercube and new gains are achieved in 

diameter, average distance, and embedding efficiency ([ABc], [E], [Z]).

Two binary strings x  = and y  = y iy0» each of length two, are pair-related if 

and only if ( x ,y) e  {(00,00),(10,10),(01,11),(11,01)}. Let G be any undirected 

labeled graph, then Gb is obtained from G by prefixing every vertex label with b. We 

define a twisted hypercube as follows.

A twisted hypercube of dimension n, denoted TQn, is an undirected graph consisting 

of 2" vertices labeled from 0 to 2” -  1 and defined recursively as follows [EBSS].

(i) TQi is the complete graph of two vertices with labels 0 and 1.

(ii) For n > 1, TQn consists of two copies of TQn_x one prefixed by 0, TQ°n_x, and 

the other by 1, TQln_v  Two vertices u = 0un_2...uo e  TQ°n_x and v = lv„_2...v0 e 

TQl„-i are adjacent if and only if
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1. m„_2 = v„_2, if n is even, and

2. for 0 < i < L ( «  -  l)/2j, u2i+\uzi and v2l+1v2(- are pair-related.

Such an edge (u, v) is referred to as a dimension n edge, for all n > 1.

There exist a dilation two and expansion one embedding of the twisted hyper

cube into the hypercube and vice virsa [E]. Figure 1.3 shows hypercubes and twisted 

hypercubes for n = 1,2, and 3. It is more convenient to view both the hypercube and 

the twisted hypercube in this way, where the upper part consists of all nodes with even 

labels and the lower part consists of all nodes with odd labels. An upper node is a 

node that lies in the upper part of the structure, i.e., its least significant bit is a 0. A 

lower node is a node that lies in the lower part of the structure, i.e., its least significant 

bit is a 1. An upper link is a link that connects two upper nodes and a lower link is a 

link that connects two lower nodes.

Trees are special kind of graphs which have a wide variety of applications in the 

field of computer science. A k-ary tree of height n -  1 is an undirected graph that has 

Ckn - 1 )
—-— — vertices and consists of a root of degree k with no parent and k children,

interior nodes of degree k  +1 with one parent and k  children, and leaves of degree one 

with one parent and no children. Spanning trees are very important in the context of 

efficient communications and in the determination of distances between nodes in a 

network. Binary trees are important tools in the evaluation of formulas and in the 

study of branching of processes.
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Figure 1.3: Hypercubes and twisted hypercubes for n = 1,2, and 3.

The importance of complete binary trees comes from the fact that this class of 

structures is useful in the solution of banded and sparse systems by direct elimination 

and capture the essence of divide and conquer algorithms ([BI], [Gor], [HS]). A com

plete binary tree of height n -  1, denoted by CBn, is an undirected graph consisting of 

2" -  1 vertices, such that every vertex of depth less than n -  1 has exactly two children 

and every vertex of depth n -  1 is a leaf.

Quad trees are becoming an important representation technique in the domains of 

image processing, computer graphics, and robotics [Sa]. This representation is based
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on the principle of recursive decomposition. A complete quad tree of height n -  1,

(4” - 1 )
denoted CQn, is an undirected graph consisting of — -—  vertices, such that every

vertex of depth less than n -  1 has exactly four children and every vertex of depth 

n - 1  is a leaf.

Rings are another special kind of graphs that has many real world applications 

and are used in the solution of many computer science problems such as the passing 

token problem and the Hamiltonian circuit problem [I]. A ring of size n, denoted R„, 

is an undirected graph consisting of n vertices labeled from vj to v„ such that node v, 

is a neighbor to node v(M)mod „, 1 < i < n .

1.6 Graph Embedding

In this dissertation, we use undirected graphs to model interconnection networks. 

Each vertex represents a processor and each edge a communication link between pro

cessors. The embedding of a guest graph G = (VG, E G) into a host graph H  = 

(Vh , E h ) is an injective mapping /  from VG to VH, where VG, E G and VH, E H are the 

vertex and edge sets of G and H,  respectively.

Many computational problems in parallel processing can be formulated as graph 

embedding problems. Embedding one interconnection network into another is very 

useful in the area of parallel computing for portability of algorithms across various 

architectures, layout of circuits in VLSI, and mapping logical data structures into com

puter memories ([BMS], [Len]). Also, the problem of organizing computations on a
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network of processors can be formulated as a graph embedding problem [KS]. When 

a process can be naturally decomposed into a collection of subprocesses that can be 

executed simultaneously with occasional communication between them, a task graph 

can be constructed by denoting each subprocess by a node and each communication 

between two subprocesses during the computation by an edge.

The problem of simulating one interconnection network by another is a natural 

graph embedding problem. Usually, it is assumed that the host network can grow arbi

trarily large. This assumption is not realistic and does not correspond to actual parallel 

machines. In the real world, a parallel machine has a fixed number of processors. 

Thus, the problem of efficiently simulating a large network is an important issue. This 

type of embedding is called many-to-one, where more than one node in the guest 

graph are mapped to a single node in the host graph. If the embedding maps a single 

node in the guest graph to more than one node in the host graph, then the embedding is 

one-to-many. In this dissertation the word embedding refers to one-to-one embedding, 

where a single node in the guest graph is mapped to exactly one single node in the 

host graph. Many variations of embeddings in interconnection networks have been 

studied in the literature ([AR], [BCGS], [BCLR], [BI], [BLD], [BMS], [BSu], [DS], 

[JLD], [Lei], [LEI], [MS]). These variations differ principally in the optimization 

measures used in the embeddings.
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1.7 Cost Functions

The quality of an embedding is often guided by some constraints which may dif

fer from one application to another. The most common measures are dilation, expan

sion, edge congestion, and load factor [HMR]. If u and v are two adjacent nodes in G, 

denoted u -  v, then the distance from u to v, d = (u , v), is the length of the shortest 

path from u to v. The dilation D  is the maximum distance in H  between the images of 

adjacent vertices of G

D  = max {d (f(u ) ,  /(v )), where « - v e £ c )

The expansion E  is the ratio of the cardinality of the host vertex set to the cardinality 

of the guest vertex set

Minimizing each of these measurements has a direct implication on the quality of 

the simulation of the guest network by the the corresponding host network. The dila

tion of an embedding measures how far apart neighboring guest processors are placed 

in the host network. Clearly if adjacent guest processors are placed far apart in the 

host network, then there will be a significant degradation in simulation due to the long 

length of the communication path between them. The expansion of an embedding 

measures how much larger is the host network than the guest network during the
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simulation. We want to minimize expansion, as we want to use the smallest possible 

host network that has at least as many processors as in the guest network.

In reality, we usually have a fixed size host network and we may have to con

sider many-to-one embedding for larger guest networks. When the size of the guest 

network is not equal to the size of the host network in terms of the number of proces

sors, then we try to find the smallest host network that has at least as many processors 

as the guest network. Such a host network is referred to as the optimal host network. 

There is a trade off between dilation, which measures the communication delay, and 

expansion, which measures processor utilization, such that one can achieve lower 

expansion at a cost of greater dilation and vice versa.

Another cost measure is the congestion which is the maximum number of edges 

of the guest graph routed through a single edge of the host graph. Edge congestion is 

a measurement of possible degradation due to communication delay. If a particular 

link in the the host network is needed for several different communication messages, 

then the messages will suffer some delay time since the link can’t pass more than one 

message at a time. This will add extra time to the communication cost between pro

cessors.

In embeddings that are many-to-one maps, an important measure is load factor 

which is the maximum number of guest processors to be simulated by a single proces

sor in the host interconnection network. This has been considered by many 

researchers, for instance ([BL], [DS]). Clearly, it is very important to minimize the 

load factor in the simulation of one network by another, as the distinct processors in
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the guest network assigned to the same processor in the host network will be running 

sequentially. An unbalanced processor load will degrade the simulation time as lightly 

used processors must wait for heavily used processors to finish their tasks. Thus, the 

amount of time needed to simulate one step of the guest network is proportional to the 

maximum number of processors assigned to the same host network.

1.8 Fault-Tolerance

One of the most important issues related to parallel machines is fault-tolerance. 

As the number of processors in parallel machines becomes larger, models without 

faults are becoming increasingly unrealistic. A fault is a processor or a link that fails. 

We use a strong fault model where a faulty node can neither compute nor communi

cate with its neighbors. A node fault will completely distroy the node and all links 

incident to it. We model a faulty link by making one of the nodes incident to the link 

faulty. An interconnection network containing faulty components is called a faulty 

network and a one without faulty components is called a fault-free network.

Fault-tolerant network architectures have emerged as an important area of study 

in parallel processing ([AGr], [BS], [CL], [HLNa], [HLNb], [LBT], [PM], [WCM]). 

The fault-tolerance o f a network is the capability of the network to compute, route, 

simulate other networks, and reconfigure itself in the presence of faults. Clearly, if all 

the immediate neighbors of a nonfaulty node become faulty, the network will become 

disconnected. Many researchers studied the implementation of algorithms that are 

designed for fault-free machines on faulty machines. The efficiency of the
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implementation is usually measured by its slowdown. The slowdown S is the ratio 

between the algorithm’s time requirements on the faulty machine and the algorithm’s 

time requirements on the fault-free machine

c _  Time o f  algorithm on a faulty machine
*3 11 1

Time o f  algoritm on a fault — free machine

A significant difference between multiprocessor machines and other parallel 

machines is that these machines use message passing instead of shared memory for 

communication between processors. Each processor has a private local memory. This 

type of architecture can be scaled up to a very large number of processors compared to 

multicomputer designs based on globally shared memory. This model has some desir

able characteristics with respect to fault-tolerance and error confinement as well. A 

faulty processor can be prevented from corrupting data in other processors if the faults 

are detected quickly. Contrast this to a shared memory multiprocessor where a faulty 

processor can potentially write into any location in memory and thereby corrupt an 

entire system within a very short time.

One issue that is usually addressed in the design of fault-tolerance is the mecha

nism for detecting faulty processors. Many researchers suggested the use of off-line 

testing of each processor, assuming there is a set of functional tests that can be run by 

one processor on another. But it is very difficult to validate the completeness of the 

functional testing strategies. Also, off-line testing can only detect permanent faults. 

Intermediate and partial faults occur more frequently than permanent faults in parallel
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machines. In order to detect these faults, it is necessary to have some kind of concur

rent fault detection features [AG]. This dissertation is not addressing the detection of 

faults. Therefore, the faults are assumed to be known in advance.

Massively parallel message passing machines are receiving increasing attention 

to meet the demand for high speed reliable computing. Hypercube interconnection 

networks have emerged as one of the most effective and popular network architectures 

for fault-free and faulty environments. The hypercube structure is highly fault-tolerant 

and can handle a reasonable amount of interprocessor message traffic. When one or 

more processors fail, the relatively large number of links often enables the nonfaulty 

processors to continue communicating with one another. The ability of hypercube 

machines to simulate, route, and reconfigure themselves in the presence of faults has 

been addressed by many researchers ([BS], [CL], [HLNa], [PM], [WCM]).

1.9 Outline of the Dissertation

The capabilities of the twisted hypercube as a parallel machine is demonstrated in 

Chapter 2. We show the capabilities of the twisted hypercube to provide efficient 

broadcasting and routing and to perform basic parallel computations. The communi

cation time of several computations is reduced by a factor of two over that of the 

hypercube. These include sorting, matrix multiplication, and associative computa

tions. Finally, an implementation of the parallel prefix operation on the twisted hyper

cube is presented.
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In Chapter 3, we present dilation two and expansion one embeddings of complete 

binary trees and complete quad trees into twisted hypercubes. We introduce two dif

ferent schemes to embed a complete binary tree into a twisted hypercube of approxi

mately the same size. The first scheme uses a recursive technique to embed the com

plete binary tree CBn into the twisted hypercube TQn based on the embedding of 

CBn_x into TQn_]. The second scheme uses the inorder labeling of the complete binary 

tree to embed it into the twisted hypercube. Finally, a recursive scheme to embed a 

complete quad tree into its optimal twisted hypercube is presented.

In Chapter 4, we present optimal algorithms for embedding a ring into a twisted 

hypercube with fault-free nodes, single faulty node, and multiple faults. We show that 

a twisted hypercube TQn with 2” nodes can simulate a ring with 2" -  /  nodes in 

the presence of /  twisted hypercube faults. We use divide and conquer techniques and 

a new data structure called a cube to achieve our results.

Chapter 5 presents new techniques to embed a ring of size 2" -  2 /  into a hyper

cube of dimension n despite the presence of /  < 2"~3 faults. The basic idea behind our 

technique is to partition the whole structure into cubes, avoid the faults within the 

cubes by using unused links, and construct the whole ring by connecting adjacent 

cubes. Finally, we conclude with discussion and open problems in Chapter 6.



CHAPTER 2

Parallel Computation 
on the Twisted Hypercube

This chapter addresses data communication and basic parallel computations on 

the twisted hypercube. This chapter is organized as follows. Section 1 reviews some 

of the work that has been done to show the capability of the twisted hypercube to per

form efficient broadcasting and routing of data. Section 2 addresses some of the basic 

parallel operations on the twisted hypercube. Section 3 concludes the chapter.

2.1 Data Communication

One of the most important components of an interconnection network is its com

munication mechanism. In a parallel machine, communications become a bottleneck 

due to a great amount of time that is spent in interchanging information between dif

ferent processors. It is very important to get the right data to the right place within a 

reasonable time.

Broadcasting is the most essential communication operation in an interconnec

tion network. The height of the broadcast tree of a network is at most its diameter. 

Since the twisted hypercube reduces the diameter by a factor of two, the height of its 

broadcast tree is also reduced by a factor of two. The broadcast tree of any network
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can be easily found by running a breadth first algorithm. The breadth first spanning 

tree constructed by the breadth first algorithm represents the broadcast tree of the net

work [Lei]. Efe [E] and Zheng [Z] independently introduced broadcasting and routing 

algorithms for the twisted hypercube. Figure 2.1 shows the broadcast tree of a twisted 

hypercube for n = 3.

2.2 Basic Operations

This section demonstrates the ability of the twisted hypercube to perform many 

of the basic operations that are needed in designing parallel algorithms. These opera

tions usually appear as subproblems in solving other major problems. Sorting is the 

most common subtask activity performed on parallel computers. It is the heart of 

many other computations. Many problems involve a sort so that later access of

000

,001010

110 101 Oil 111

Figure 2.1: Broadcasting in a twisted hypercube.
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information can be done efficiently. In [E], the author shows that the twisted hyper

cube can reduce the communication steps for the rank sort by a factor of two. The 

rank sort is considered to be the fastest sorting algorithm implemented on the hyper

cube machine. Like sorting, matrix multiplication is a fundamental operation that 

appears in many numerical computations. Efe [E] shows that the twisted hypercube 

can reduce the communication time of the matrix multiplication algorithm by a factor 

of two.

2.2.1 Associative Computations

Associative operations are used frequently and appear as subproblems in solving 

other problems. They include addition, multiplication, finding the smallest, finding the 

largest, and others. Let + be the addition operation on some domain X. For a given 

tuple {*0 , * i, —, *k- \ } e  X, the addition operation is to compute the summation y0 = 

x0 + x x + ... + x k_lt

We assume that each processor Ph 0 < i < 2" - 1 ,  contains the value The 

computation is considered to be complete when the final summation y0 is at processor 

0. The symbol <=' denotes a data transfer from a processor to an adjacent processor 

by a link through dimension j .  The function BIT(y') returns the j ,h bit of the node’s 

label. The addition operation is performed by the following algorithm.
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ADDITION (X ) 
begin

for all Ph 0 < / < 2" -  1, do 
yt <- Xi 

for j n to 1 do
for all P,, 0 < i < 2j  -  1, do 

if  BYT(j) = 1
then tempk W  y,, where Pk is a neighbor through dimension /. 
if BIT(y) = 0 
then yi <— y, + tempi 

end for 
end for

end

Figure 2.2 shows the addition operation on a twisted hypercube of dimension 3. 

The initial value jc, and the current sum y, of each node are given for each phase. 

Algorithm ADDITION takes n communication steps which is the same time that takes 

to run the same procedure in a hypercube machine. But since the height of the broad

cast tree of the twisted hypercube is reduced by a factor of two, then the number of 

communication steps of the addition operation is also reduced by a factor of two ([E], 

[Z]). Since some of the nodes in the broadcast tree might have up to n children, the 

binary adders must be replaced by (n + l)-adders. Figure 2.3 shows the implementa

tion of the addition operation via the paths of the broadcast tree. The number of steps 

is reduced from 3 to 2 communication steps.
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Figure 2.2: The addition operation on a twisted hypercube of dimension 3.
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Figure 2.3: The addition operation via the broadcast tree.
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2.2.2 Parallel Prefix

In this section, we implement the parallel prefix operation on a twisted hyper

cube. The prefix operation is a very important operation that appears frequently in 

designing parallel algorithms. It was first introduced by Ladner and Fischer [LF] to 

solve the carry look-ahead problem for binary addition. The prefix operation was used 

by many researchers to solve a variety of problems in the field of computer science. In 

[Lei], the prefix operation was used to solve recurrence equations, to find convex hulls 

of images, to route packets in interconnection networks, and to solve the problem of 

computing carries. In [A], the prefix sum was used to solve the job sequencing prob

lem with deadlines and the knapsack problem. Plaxton [P] used the prefix operation to 

implement a fast sorting algorithm called smooth sort, which was designed to run on 

the hypercube.

Let ® be a binary associative operation on some domain X. For a given tuple 

{ jc0, x lt ..., x k_ i} e X , the prefix problem is to compute each of the partial sums, 

assuming © is addition, yf = x0 © Xi © ... © xh 0 < i < k  -  1. We assume that each 

processor Ph 0 < i < 2" -  1, contains the value x h The computation is considered to 

be complete when the partial sum y, = x0 © x x © ... © x { has been completed at pro

cessor i, 0 < / < 2” -  1. The local variables y, and f, accumulate the partial and total 

sums, respectively. The symbol <=7 denotes a data transfer from a processor to an 

adjacent processor by a link through dimension j .  The function BITO') returns the j ,h 

bit of the node’s label.
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PREFIX (X ) 
begin

for all Pi, 0 < / < 2" -  1, do 
y* <- Xi 
t i  < -  Xi

end for
for j <- 1 to n do

for all Pit 0 < i < 2” -  1, do
tempk <=j t{, where Pk is a neighbor through dimension j .
ti <— t{ ©  tempi
if BTT(j) = 1 
then yi <— y, © tempi 

end for 
end for

end

It is obvious that the algorithm runs in n time steps, where n is the dimension of 

the twisted hypercube. During the j th step, each node sends its current total sum to its 

adjacent node through dimension j r .  The partial and total sums of each node are 

updated based on the value of the j th bit of its label. Figure 2.4 shows the prefix com

putation on a twisted hypercube of dimension 3. The initial value jc,, the current par

tial sum y, , and the current total sum of each node are given for each phase.

2.3 Summary

This chapter demonstrated the capabilities of the twisted hypercube as a parallel 

machine to provide efficient broadcasting and routing and to perform basic parallel 

computations. The communication time of several computations is reduced by a fac

tor of two over that of the hypercube. These include sorting, matrix multiplication, 

and associative computations. Finally, an implementation of the parallel prefix
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Figure 2.4: The prefix operation on a twisted hypercube of dimension 3.
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operation on the twisted hypercube is presented. At the end of the computation, each 

processor will have its initial value, the partial sum, and the total sum.



C H A P T E R  3

Embedding Trees 
into Twisted Hypercubes

3.1 Introduction

Embedding trees into other interconnection networks attracted the attention of 

many researchers: in [BCLR], [BI], and [MS] embeddings trees into hypercubes were 

considered; in [BLD] the authors have considered embedding complete binary trees 

into hypercubes; in [LEI] the authors have considered embedding binary trees into 3-D 

mesh arrays; [DS] considered simulation of binary trees and X-trees on pyramid net

works; [HJ] addressed embedding quad trees into hypercubes; and [KHI] considered a 

reconfigurable embedding of a complete quad tree into a faulty hypercube environ

ment.

It is well known that the complete binary tree CBn with 2" -  1 nodes is not a sub

graph of the hypercube Qn with 2” nodes. This means that a unit dilation and unit 

expansion embedding from CBn into Qn is not possible. The proof is straightforward 

by the use of bipartite graphs. Both complete binary trees and hypercubes are bipartite 

graphs, their nodes can be assigned two colors so that adjacent nodes are not assigned 

the same color. Coloring Qn produces equal number of nodes in each color class, 

where coloring of CBn gives unequal number of nodes in each color class. Therefore,

36
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CB„ can’t be a subgraph of Q„ since it has more nodes in one color class than the 

number of nodes of Qn in the same color class, i.e., 2"-1 + 2"~3 + • • • > 2"-1.

The complete binary tree CBn can be embedded into Qn such that exactly one of 

its edges is assigned to a path of length two in the hypercube and all other edges are 

assigned to paths of length one in the hypercube. So, CBn can be embedded into Qn 

with dilation two and expansion one ([BCLR], [BI], [Lei], [W]). Bhatt and Ispen [BI], 

Barasch et. al. [BLD], and Wu [W] gave recursive dilation two and expansion one 

embeddings of complete binary trees into hypercubes based on a structure called two- 

rooted complete binary tree.

It is an open problem whether all binary trees can be embedded into their optimal 

hypercube with dilation two or into their next to optimal hypercube with dilation one. 

Bhatt et. al. [BCLR] showed that arbitrary binary trees can be embedded into hyper

cubes with constant expansion and dilation 10. The constants were subsequently 

reduced by Monien and Sudborough [MS], giving a dilation 5 and expansion one 

embedding and a dilation 3 and constant expansion embedding.

T » i  t i l  1 c  o n t a r  u r a  r o V i a r M n o  m t v t K n r l  / - » / - > r  + •* /-» /* r*X ll U U i9 v u a p u / l  WV- t n u  U U U V C  U li.J.l/11 /U L  O V U U llL d  i d  U l l U L U  e U t n p i t / l L  U liia i y  U & g d

and complete quad trees into twisted hypercubes ([ABa], [ABe]). The remainder of 

this chapter is organized as follows. Section 2 describes two different schemes to 

embed a complete binary tree into a twisted hypercube of the same size. Section 3 

introduces a recursive technique to embed a quad tree into its optimal twisted hyper

cube. Section 4 concludes the chapter.
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3.2 Embedding Complete Binary Trees into Twisted Hypercubes

This section describes our schemes to embed a complete binary tree CBn into a 

twisted hypercube TQn with dilation two and unit expansion. In the first scheme, we 

use a recursive algorithm to embed CB„ into TQn based on the embedding of CB„_i 

into TQn-\. In the second scheme, we use the inorder labeling to embed CBn into 

T Q n -

3.2.1 The Recursive Embedding

The complete binary trees CBX, CB2, CB3, and CB4 can be embedded with dila

tion one into TQX, TQ2, TQ3, and TQ4, respectively, as shown in Figure 3.1. The com

plete binary tree CB5 can be embedded with dilation two into TQ5 as shown in Figure

3.2. For n > 5, we use a recursive algorithm to embed CB„ into TQn based on the 

embedding of CBn_x into TQn_x. The base of the recursive algorithm is CB5.

We proceed in four steps. In the first step, CBn is partitioned to a left complete 

binary subtree LCBn_x with root Ir, a right complete binary subtree RCBn-X with root 

rr, and a root r. In the second step, TQ„ is partitioned to two subcubes, TQ°n_x and 

TQX„~i- In the third step, LCBn_x is embedded into TQ°„_X, RCBn_x is embedded into 

TQxn_j ,  and r is embedded into the extra unused node in TQxn_x. In the fourth step, 

we construct CBn by joining LCBn_x, r, and RCBn_x. This is done by finding the paths 

r~lr and r~rr, each of length two. Our embedding is such that all edges in the lowest 

four levels in the complete binary tree CBn are mapped to paths of length one in the
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Figure 3.1: Embedding CB into TQ for n = 1, 2, 3, and 4.
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Figure 3.2: Embedding CB into TQ for n - 5 .
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twisted hypercube TQn and all other edges in higher levels are mapped to paths of 

length two as shown in Figure 3.3. Now we present a formal description of the recur

sive algorithm described above.

Algorithm  3.1

Let be the binary string of length n with a 1 in position i and 0 in all other positions, 

0k be the binary string of length k  with 0 in all positions, and © be the XOR operator.

For n = 1, 2, 3, and 4, a dilation one embedding is shown in Figure 3.1. For n = 5, a 

dilation two embedding is shown in Figure 3.2. For n > 5, the algorithm is as follows.

Step 1: Partition CBn to LCBn_x, RCBn_j, and r.

Step 2: Partition TQn to TQ°„_X and TQln_x.

Step 3: (i) Embed LCBn_x and RCB„_X into TQ°n_x and TQln_x, respectively. Ir and 

rr  will appear at addresses O110„_51O and 1110„_51O, respectively.

(ii) Translate the embedding inTQ }n_x by complementing the (n -  l) th bit 

of each node. Formally, if a tree node was embedded at address x  then 

after the translation it will appear at address x® 5n_x. The root rr  will 

appear at address rr®8n_x, i.e., rr  will appear at address 1O10„_51O. The 

extra unused node u will appear at address u®8n_x,i.e., u will appear at 

address 11O0„_51O.

(iii) Embed the root r  into the unused node 11O0„_51O in TQln_x.
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Figure 3.3: The recursive embedding of CB into TQ.
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Step 4: Construct CBn from LCBn_x, r, and RCBn_x by finding the shortest two paths 

r~lr and r~rr, each of length two. Let x  and y  be the extra nodes that r~lr 

and r~rr go through, respectively, x  will appear at address r®8n and y  will 

appear at address r®Sn_2- The shortest paths from r  to Ir and from r to rr are 

1 1 O0 „_5 1 O -O 1 O0 „_5 1 O - O110„_51O and 11O0„_51O - 1110„_51O - 1O10„_51O, 

respectively.

Theorem  3.1. For all n, Algorithm 3.1 embeds the complete binary tree CBn within 

the twisted hypercube TQn with dilation two.

Proof: For n < 4, the existence of an embedding with dilation one is shown in Figure

3.1. For n = 5, the existence of an embedding with dilation two is shown in Figure

3.2. For n >  5, we prove this by induction on the height of the binary tree. Our induc

tion basis is CB5. Assume the theorem is true for an embedding of CBn_x in TQn_x. 

We now prove that the theorem is true for the embedding of CBn into TQn. In TQn, 

consider the two subcubes TQ°n_x and TQxn_x. By induction hypothesis, there exist a 

dilation two embedding of CBn_x into TQ°n_x and TQln_x. We assume that the two 

embeddings are isomorphic, one is obtained from the other by complementing the 

(n -  I)'* bit. Since the number of nodes in CBn_x is less than the number of nodes in 

TQn-x by one, then TQ°n_x and TQ1̂ , contain two extra unused nodes located at 

addresses 0000,,_510 and 11O0„_51O, respectively. Now we can use the extra unused 

node in TQxn_x, the CBn_x of TQ°n_lf and the CBn_x of TQxn_x to construct the com

plete binary tree CBn.



Next we prove that the dilation of this embedding is two. We use the routing 

algorithm of [EBSS] to show that the length of the shortest path from the root of CBn 

to any of its children is of length two. Let r~lr be the shortest path from the root r of 

CBn to the root lr of the left complete binary subtree LCBn_x and r~rr be the shortest 

path from the root r  of CBn to the root rr of the right complete binary subtree RCB„_X. 

r will appear at address 11O0„_51O, lr at address O110„_51O, and rr at address 

1O10„_51O. Notice that if we group the addresses of r, lr, and rr into pairs of bits, 

from right to left, then they are pair-related except for the left most three bits. By 

using the routing algorithm of [EBSS], the shortest paths from 11O0„_51O to 011^„_510 

and from 11O0„_51O to 1O10„_51O are 11O^„_51O-O1O0„_51O - O110„_51O and 

11O0„_51O - 1110„_51O - 1O10„_51O, respectively. So, the dilation of this embedding 

is two. □

It can be proved easily that the edge congestion of this embedding is two. It is 

obvious that the edge congestion of the lowest four levels of the complete binary tree 

is one, since the dilation of the embedding is one. In the next higher level, only two 

hypercube edges are used twice as shown in Figure 3.2. In all higher levels, each edge 

from a parent to any of its children is mapped to a path of length two. Consider the 

shortest paths r~lr and r~rr. The shortest path from the root 11O0„_51O to the left root 

0116»„_510 is 1 1 0 <9 „_5 10 -  010<9„_510 -  011#„_510 and from the root 11O0„_51O to the 

right root 1O10„_51O is 11O£;)_510 - 111 6»„_510 -  1O10„_51O. Notice that the path r~lr 

uses an edge through dimension n from the root r to an intermediate node x  and an 

edge through dimension (n-3) from x  to the left root r, while the path r~rr uses an
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edge through dimension (n-3) from the root r to an intermediate node y  and an edge 

through dimension (n-1) from y  to the right root rr. Therefore, the maximum number 

of times a hypercube edge is used is two. So, the edge congestion of this embedding 

is two.

3.2.2 The Inorder Embedding

Another way to embed the complete binary tree CBn into the twisted hypercube 

TQ„ is the inorder labeling of the complete binary tree as shown in Figure 3.4. The 

nodes of the complete binary tree are numbered inorder, each node of the complete

o

oo ,110

Figure 3.4: The inorder embedding of CB into TQ for n = 1, 2, and 3.
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binary tree is mapped to the node in the twisted hypercube with the corresponding 

address.

As illustrated in Figure 3.5, in the lowest level, each edge from a left child to its 

parent is mapped to the corresponding twisted hypercube edge between the images of 

the two nodes, while the edge between a right child to its parent is mapped to a path of 

length two, from the right child to the left child and from the left child to the parent. 

In the next level, each edge from a left child, or a right child, to its parent is mapped to 

the corresponding twisted hypercube edge between the images of the two nodes. In all 

higher levels, each edge from a left child, or a right child, to its parent is mapped to a 

path of length two. Notice that the inorder embedding is simpler, but it is less efficient 

in terms of the number of edges in the complete binary tree that are mapped to paths of 

length two in the twisted hypercube.

Theorem  3.2. For all n, the inorder labeling of the complete binary tree CBn embeds 

CBn within the twisted hypercube TQn with dilation two.

Proof: Let fik be the binary string of length k with 1 in all positions. For n < 3, the 

inorder embedding is shown in Figure 3.4. For n > 3, we prove the theorem by induc

tion on the height of the binary tree. Our induction basis is CB3, a dilation two 

embedding of CB3 into TQ3 is shown in Figure 3.4. Assume the theorem is true for an 

embedding of CBn_x in TQn_x. We now prove that the theorem is true for the embed

ding of CBn in TQn. In TQn, consider the two subcubes TQ°n_x and TQxn_x. By 

induction hypothesis, we can embed CBn_x into TQ°„_X and TQxn_x, with dilation two.
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Figure 3.5: The inorder embedding of CB into TQ.
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Since the number of nodes in CBn_x is less than the number of nodes in TQ„_y by one, 

then r 0 o„_i and TQX n_x contain two extra unused nodes located at addresses 01 p n_2 

and 11 Pn-2 , respectively. Now we can use the extra unused node in TQ°n_x, the C£„_i 

of TQ°n_i, and the CBn_x of TQln_x to construct the complete binary tree CBn with 

2" - 1  nodes.

Next we prove that the dilation of this embedding is two. We again use the rout

ing algorithm of [EBSS] to show that the length of the shortest path from the root of 

CBn to any of its children is of length two. Let r~lr be the shortest path from the root 

r  of CBn to the root lr of the left complete binary subtree LCBn_x and r~rr be the 

shortest path from the root r of CBn to the root rr of the right complete binary subtree 

RCB„_X. r will appear at address 01 p n_2, lr at address 00/?„_2, and rr at address 

lOy0„_2. Notice that r, lr, and r r  are identical except for the left most two bits. By 

using the routing algorithm of [EBSS], the shortest paths from 01/?„_2 to 00/?„_2 and 

from 01 Pn-2  t0 10/?„_2 are of length two. So, the dilation of this embedding is two. □

It is obvious that the edge congestion of this embedding is two. In the lowest

Ipypl pnr-h prjffo from  o nafPUt i*c Ipft ohilH ic mcinnoH to thp rnirpcnnnHinn tw/ietpiitv f VI) \J A tL m  U jpUiW'lit fcV M. VO ivi. i. WAAA.AV* 111 kV U1V W ll VÛ /VI1UU1̂

hypercube edge between the images of the two nodes, while the edge from a parent to 

its right child is mapped to a path of length two, from the parent to the left child and 

from the left child to the right child. This means that the only edge in this level that is 

used twice is the edge from a parent to its left child. In the next higher level, each 

edge from a child to its parent is mapped to the corresponding twisted hypercube edge 

between the images of the nodes, i.e., each edge is used exactly once. In all higher
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levels, each edge from a child to its parent is mapped to a path of length two. Con

sider the shortest paths r~lr and r~rr. Without loss of generality, consider the case 

when n is even. The shortest path r~lr from the root 01/?„_2 to the left root 00/?„_2 is

n -2

01 # ,- 2 -0 0 (0 1) 2 -00/?„_2 and the shortest path r~rr from the root 01/?„_2 to the right

n-2 n -2

child 10yf?„_2 is 0 ip n_2- \ l ( $ \ ) ~ -10/?„_2, where ( 0 1 ) ~  means the repetition of the 01 

. n — 2
pair -- - ■ times. Notice that the path r~lr uses an edge through dimension (n-1) from

the root r  to an intermediate node x  and an edge through dimension (n-1) from x  to 

the left root r, while the path r~rr uses an edge through dimension n from the root r 

to an intermediate node y  and an edge through dimension (n-1) from y  to the right root 

rr. Therefore, the maximum number of times a hypercube edge is used is two. So, 

the edge congestion of this embedding is two.

3.3 Embedding Complete Quad Trees into Twisted Hypercubes

This section describes our scheme to embed a complete quad tree CQn into its 

optimal twisted hypercube TQ2n_x with dilation two and expansion one. We proceed 

in four steps. In the first step, CQ„ is partitioned into a left left complete quad tree 

LLCQn_x with root llr, a left complete quad tree LCQn_x with root lr, a right complete 

quad tree RCQ„_X with root rr, a right right complete quad tree RRCQn with root rrr, 

and a root r  as shown in Figure 3.6. In the second step, TQ2n_x is partitioned into four 

subcubes TQ°°2n_3, TQ012n_3, TQu 2n_3, and TQl02n_3. In the third step, LLCQn_x is 

embedded into TQ°°2n_3, LCQn_x is embedded into TQ012n_3, RCQn_x is embedded
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r

nr

Figure 3.6: Partitioning CQ.

into TQn 2n-3> RRCQn_x is embedded into TQl02n-^, and the root r is embedded into 

one of the unused nodes in TQ00̂ -!-  In the fourth step, we construct CQn by finding 

the paths r~llr, r~lr, r~rr, and r~rrr, each of at most length two. The resulting 

embedding is such that only 37.5% of the edges in the lowest level of the complete 

quad tree and 50% of the edges in higher levels are mapped to paths of length two in 

the twisted hypercube. The rest of the edges of the complete quad tree are mapped to 

paths of length one in the twisted hypercube as shown in Figure 3.7. Now we present 

a formal description of the recursive algorithm described above.
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Figure 3.7: The recursive embedding of CQ into TQ.
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(a) Standard (b) Alternate

Figure 3.8: Embedding CQ into TQ for n - 2 .

Algorithm  3.2

Let Si be the binary string of length n with a 1 in position i and 0 in all other positions, 

0k be the binary string of length k  with 0 in all positions, and ® be the XOR operator.

For n = 1, CQi consists of exactly one node and can be embedded into TQX with two 

nodes. For n = 2, a dilation two embedding is shown in Figure 3.8. For n > 2, the 

algorithm is as follows.

Step 1: Partition CQn to LLCQn_x, LCQn_x, RCQ„_X, RRCQn_u  and r.
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Step 2: Partition TQ2n_x to 7 £ ° V 3, ^ 112, - 3 . and TQ10̂ .

Step 3: (i) Embed LLCQn„x into TQ°°2n_3, LCQn_x into TQ01̂ ,--}, RCQn_x into 

TQu 2n-3 , and RRCQn_x into TQ102n_3. Hr, lr, rr, and rrr will appear at 

addresses 0 0 0 #2„_4 , 0 1 0 #2n_4 , 1 1 0 ^ - 4 , and lOO0 2„-4 , respectively.

(ii) Translate the embeddings in TQ00̂ ^  and TQl02n_3 by complementing 

the (2n -  3)lh bit of each node. Formally if a tree node was embedded at 

address x  then after the translation it will appear at address x® S2n_3. 

After the translation the left left root llr and the right right root rrr will 

appear at addresses OO102„_3 and 1O102„_4, respectively. Therefore, the 

final position of llr, lr, rr, and rrr are OOIO^^, 0106^,^, 11O02„_4, and 

1 0 1 ^ _ 4 , respectively.

(iii) Embed the root r into the node with label 0 in TQqo2ji_3.

Step 4: Construct CQ„ from LLCQ„_X, LCQn_x, RCQn_x, RRCQn_x, and r  by finding 

the four paths r~llr, r~lr, r~rr, and r~rrr. The edges r — llr and r — lr of 

CQ„ are mapped to paths of length one in TQ2n_x, while the edges r - r r  and 

r  -  rrr are mapped to paths of length two. The shortest paths from r  to rr 

and from r  to rrr are OOO0 2„_ 4  -O1O02„_4 -  11O02„_4 and 000d2n̂ -  

100/92m_4 -  lO1 0 2n_4 , respectively.

Theorem  3.3: For all n, Algorithm 3.2 embeds the complete quad tree CQn within

the twisted hypercube with dilation two.



Figure 3.9: Embedding CQ into TQ for n = 3.
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Proof: For n = 1, CQX can be easily embedded into TQ\. For n = 2, the existence of 

an embedding with dilation two is shown in Figure 3.8. For n > 2, we prove this by 

induction on the height of the complete quad tree CQn. Our induction basis is CQ3, a 

dilation two embedding of CQ3 into TQ5 is shown in Figure 3.9. Assume the theorem 

is true for an embedding of C<2„-i in TQ2n_3. We now prove that the theorem is true 

for the embedding of CQn in TQln_l . In TQ2n-\, consider the four subcubes 7B002b_3, 

TQ012„_3, TQn 2n_3 > and TQw2n_3. By induction hypothesis, there exist a dilation two 

embedding from C£>„-i to TQ°°2n_3, TQ012^-3 . TQu 2n_3, and TQ102n_3. Since the num

ber of nodes in CQ„^ is less than the number of nodes in TQ ^,^, then TQ°°2n_3, 

TQ012n-3, TQn 2 n -3 ’ and TQ102n_3 contain extra unused nodes. Now we can use the 

unused node with label 0 in TQ°°2n-3 > the CQn. x of TQ00̂ ^ ,  the Cj2„-i of TQ012n_3, 

the Cj2„-i of 7 2 112,1-3 , and the CQn_x of TQ102n_3 to construct the complete quad tree 

CQn.

Next we prove that the dilation of this embedding is two. Thus, we need to show 

that the length of the shortest path from the root r to any of its four children is at most 

two. Clearly, the length of the paths r~llr and r~lr is one since they are mapped to 

edges in the twisted hypercube. Let r~rr be the shortest path from the root r  of CQn 

to the root rrr of the right complete quad subtree RCQ„_i and r - r r r  be the shortest 

path from the root r of CQ„ to the root rrr of the right right complete quad subtree 

RRCQ„_j.  r  will appear at address 0 0 0 ^ - 4 , rr will appear at address 11 0 6 >2„^4, and 

rrr will appear at address 1 O1 0 2/i-4 - Notice that if we group the addresses of r, rr,
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and rrr into pairs of bits, from right to left, then they are pair-related except for the left 

most three bits. By using the routing algorithm of [EBSS], the shortest path from 

000f?2«-4 to 110#2*-4 is OOO02„-4 ~ 01002/1-4 “  1106>2„-4 and from OOO02n-4 to lO102/>-4 

is 0 0 0 $2/i—4 -  lO O ^ ^  -  1 0 1 ^2n-4 - So, the length of the paths r~rr and r~rrr are two. 

Therefore, the dilation of this embedding is two. □

It can be proved easily that the edge congestion of this embedding is two. It is 

obvious that the edge congestion of the lowest level of the complete quad tree is two, 

since one of the hypercube edges has to be used twice as shown in Figure 3.8. In all 

higher levels, each edge from a parent to any of its left children is mapped to a path of 

length one, while an edge from a parent to any of its right children is mapped to a path 

of length two. Clearly, the edge congestion of the paths r~llr and r~lr is one since 

their dilation is one. Now, consider the paths r~rr and r~rrr. The shortest path from 

the root OOO0 2« - 4  to the right root 1 1 0 6 > 2„ _ 4  is 0 0 0 0 ^ - 4  ~ OlO0 2n̂ t -  llO 0 2« - 4  and from 

the root OOO0 2n- 4  to the right right root lO102n-A is OOO0 2 n - 4  - 1 0 0 ^ - 4  -  1 0 1 #2„-4 - 

Notice that the path r~rr uses an edge through dimension (n-1) from the root r  to an 

intermediate node x  and an edge through dimension n from x  to the right root rr, 

while the path r~rrr uses an edge through dimension n from the root r  to an interme

diate node y  and an edge through dimension (n-3) from y  to the right right root rrr. 

Therefore, the maximum number of times a hypercube edge is used is two. So, the 

edge congestion of this embedding is two.
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3.4 Summary

In this chapter, two different schemes were used to embed the complete binary 

tree CBn into the twisted hypercube TQn. In the first scheme, we used a recursive 

algorithm to embed CB„ into TQ„ based on the embedding of CBn_x into TQn_x. The 

resulting embedding is such that all edges in the lowest four levels of the complete 

binary tree are mapped to paths of length one in the twisted hypercube and all other 

edges in higher levels of the complete binary tree are mapped to paths of length two in 

the twisted hypercube. In the second scheme, we used the inorder binary labeling of 

the complete binary tree CB„ to embed CB„ into the twisted hypercube TQ„. The 

inorder embedding is simpler and more natural than the recursive embedding, but it is 

less efficient in terms of the number of edges that are mapped to paths of length two.

For complete quad trees, we used a recursive algorithm that embeds CQ„ into 

TQn based on the embedding of C<2„_i into TQn_x. The resulting embedding is such 

that 37.5% of the edges in the lowest level and 50% of the edges in higher levels of the 

complete quad tree are mapped to paths of length two in the twisted hypercube and the 

rest of edges are mapped to paths of length one.



C H A P T E R  4

Embedding Rings 
into Faulty Twisted Hypercubes

4.1 Introduction

The ability of a network to simulate, compute, route, and reconfigure itself 

despite the presence of faults is an important issue in parallel processing. The twisted 

hypercube was proposed as an alternative to the hypercube. One of the important fea

tures of the hypercube is its ability to simulate other networks in the presence of faults. 

If the twisted hypercube is considered as an alternative, it is necessary to show that its 

performance in the presence of faults is at least as good as that of the hypercube.

Rosenberg and Snyder [RS] showed that given any ring and any connected graph 

of the same size, the ring can be embedded into the graph with dilation cost < 3. They 

also proved that this bound is optimal. It is well known that rings can be embedded 

into hypercubes with dilation one using cyclic Gray Codes. Saad and Schultz [SS] 

used Gray Codes to embed a ring of size / into a hypercube of size 2” with dilation 

one when I is even and 4 < / < 2". Latifi and Zheng [LZ] generalized the cyclic Gray 

Code method to embed rings into twisted hypercubes. They identified n\ distinct

n\
Hamiltonian paths and — + (n -2 ) !  distinct Hamiltonian circuits in a twisted hyper- 

cube.

58
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Embedding rings into hypercubes in the presence of faults have been addressed 

by many researchers. Provost and Melhem [PM] have given distributed algorithms 

despite single, double, and multiple faults wasting up to 50% of the processors in the 

worst case. Chan and Lee [CL] improved the previous result by wasting only one 

nonfaulty processor for every faulty processor with some restriction on the number of 

faults. In this chapter, we consider the problem of embedding rings into twisted 

hypercubes in the presence of single and multiple faulty processors [ABb].

The remainder of this chapter is organized as follows. In section 2, we describe 

our schemes to embed a ring of size 2" into a fault-free twisted hypercube of the same 

size. Section 3 addresses embeddings in the presence of faulty nodes. Our emphasis 

will be on the multiple fault case. Section 4 concludes the chapter.

4.2 Fault-Free Embeddings

Given a ring R2„ with 2" nodes, consider the problem of assigning the ring nodes 

to the nodes of the twisted hypercube such that adjacency is preserved. That is, given 

any two adjacent nodes in the ring, their images by this embedding should be neigh

bors in the twisted hypercube through some dimension i, where 1 < i < n. We can 

view such an embedding as a sequence of dimensions crossed by adjacent nodes. Let 

us call such a sequence the embedding sequence, denoted by ES = (d t , d 2, ..., d2n), 

where dt e  {1,..., n} for all 1 < i < 2".
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1 V5 V2

1 1

1 V6 VI

(a) Type A (b) Type B

Figure 4.1: The embedding sequence.

4.2.1 The Embedding Sequence

Figure 4.1 shows an embedding of the ring R 23 into the twisted hypercube TQ3. 

It is more convenient to view the embedded ring as well as the twisted hypercube in 

the way shown in Figure 4.1. All twisted hypercube nodes with even labels are in the 

upper level and all nodes with odd labels are in the lower level. The embedding 

sequence of R2i is ES = (1, 3 ,1 ,2 ,1 , 3 ,1 ,2 ). For example, in Figure 4.1.a, notice that 

nodes Vi and v2 are connected by a link through dimension 1, v2 and v3 are connected 

by a link through dimension 3, v3 and v4 are connected by a link through dimension 1, 

v4 and v5 are connected by a link through dimension 2, and so on. The embedding 

sequence ES can be generated using the following algorithm.
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Algorithm  4.1

Let n be the dimension of the twisted hypercube and let the vertical bar be the con

catenation operator.

Step 1: ES <— 1

Step 2: For i <- 3 to n do 

ES <— ES | i | ES

Step 3: ES ES 12 1 ES 12

The embedding sequence is generated by applying Algorithm 4.1 on n, where n 

is the dimension of the twisted hypercube. The number of nodes in the twisted hyper

cube is equal to the number of nodes in the embedded ring which is 2" nodes. Thus, 

the embedding sequence of the ring R#  is ES = (1 ,3 ,1 ,4 , 1 ,3 ,1 , 2 ,1 , 3 ,1 ,4 ,1 ,  3, 

1, 2).

Theorem  4.1: For every n, Algorithm 4.1 will generate the embedding sequence to 

construct a ring of size 2" in a fault-free twisted hypercube of dimension n.

Proof: We prove this by induction on the dimension of the twisted hypercube. Our 

induction basis is TQ2, a ring of size 4 can be easily constructed in TQ2 using the 

embedding sequence ES = (1, 2, 1,2). Assume the theorem is true for the construction 

of a ring of size 2”-1 in a twisted hypercube of dimension n-1. We now prove that the 

theorem is true for the construction of R2n in TQn. Consider the two twisted subcubes 

T<2°„_i and TQln_x. By induction hypothesis, we can construct a ring of size 2”_1 in
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both TQ°n_x and TQln_x. Let their embedding sequence be 

ES = 5„_1|2 |5„_1|2 

where Sn_x is a sequence of dimensions recursively defined as following 

S2 = l

Sn-1 = Sn-2 |n I Sn-2

Now we combine two rings, each of size 2"-1, to come up with a ring of size 2". This 

is done by replacing the first link that goes through dimension 2 of the first ring and 

the second link that goes through dimension 2 of the second ring by two links that go 

through dimension n. The embedding sequence of the new ring R2n is 

ES = | n | 12 1 Sn_i | n | S„_x 12

= Sm\ 2 \ S m\2

which is the same embedding sequence generated by Algorithm 4.1. □

Notice that the same embedding sequence may result in different embeddings of 

R2n into TQn depending on the twisted hypercube node that initiates the ring construc

tion. Among all different embeddings, we are interested in two kinds. The first 

embedding is when the node that initiates the ring construction in the twisted hyper

cube is the upper left most node, node with label 0. The second embedding is when 

the node that initiates the ring construction in the twisted hypercube is the lower left 

most node, node with label 1. Let us call the first embedding type A embedding and 

the second embedding type B embedding. Figure 4.2 shows both type A and type B 

embeddings for the ring R2* into the twisted hypercube TQ4.
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(b) Type B embedding 

Figure 4.2: Fault-free embedding.

4.2.2 Divide-Conquer Embeddings

This section introduces a data structure, that is fundamental to the embeddings 

given in this chapter called a cube. A cube is a twisted subcube of dimension 3 that 

consists of two adjacent blocks as shown in Figure 4.3.b. A block is a set of four 

nodes in a twisted hypercube that form a ring of size 4 that has the embedding 

sequence ES = (1, 2, 1, 2) as shown in Figure 4.3.a. Notice that cubes overlap while 

blocks do not and a twisted hypercube of dimension n, TQn, contains 2"-2 cubes and
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Figure 4.3: Blocks and cubes.

2"-2 blocks. A ring of size 8, R2i , can be embedded into a cube. In a cube, if we use 

the twisted lower links that go through dimension 3 to connect the two blocks, after 

removing the lower two links that go through dimension 2, then the embedding is of 

type A and if we use the upper links that go through dimension 3 to connect the two 

blocks, after removing the upper two links that go through dimension 2, then the 

embedding is of type B as shown in Figure 4.1. The cube is used in this section to 

introduce new techniques to embed a ring into a twisted hypercube. In the next sec

tion, this technique is generalized to embed a ring into a faulty twisted hypercube.
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Now, given a ring R2«, we can embed it into the twisted hypercube TQn by the follow

ing algorithm.

Algorithm  4.2

Step 1: Partition TQn into 2”-3 node disjoint cubes.

Step 2: Embed the ring R2i into each cube using type A, or type B, embedding.

Step 3: Connect the 2”-3 rings, each of size 8, through the upper links, or the twisted 

lower links, to come up with type A, or type B, embedding.

Theorem  4.2: For every n, Algorithm 4.2 will embed a ring of size 2" in a fault-free 

twisted hypercube of dimension n.

Proof: We consider only type A embedding. Type B embedding can be proved in a 

similar way. We prove this by induction on the dimension of the twisted hypercube. 

Our induction basis is TQ3, the embedding of a ring of size 23 into a twisted hyper

cube of dimension 3 is shown in Figure 4.1.a. Assume the theorem is true for the con

struction of a ring of size 2"-1 in a twisted hypercube of dimension n -1. We now 

prove that the theorem is true for the construction of R2n in TQn. Consider the two 

twisted subcubes TQ0, ^  and TQ ln_x. By assumption we can construct a ring of size 

2n_1 in both TQ°„_X and TQln_x. Now we combine two rings, each of size 2”-1, to 

come up with a ring of size 2". This is done by replacing the first link that goes 

through dimension 2 of the first ring and the second link that goes through dimension 

2 of the second ring by two upper links that go through dimension n. □
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In the next section, we will use the same concept with minor variations to embed 

a ring to a faulty twisted hypercube without wasting any nonfaulty nodes.

4.3 Fault-Tolerant Embeddings

One of the special significant features of the hypercube is its capability to simu

late other interconnection networks in the presence of faults. Accordingly, if the 

twisted hypercube is to be considered as an alternative, it is necessary to show that it is 

at least as good as the hypercube regarding fault-tolerance. In this section, we are 

interested in answering the following question. Given that some faults are present, 

does the twisted hypercube have the ability to simulate rings efficiently? Like the 

hypercube, the twisted hypercube is maximally fault-tolerant. While even one faulty 

processor in the twisted hypercube will degrade its overall performance, it is still capa

ble of simulating rings without wasting any nonfaulty nodes. In the hypercube, you 

have to waste a nonfaulty node for every faulty node [CL]. In the next section, we 

extend Algorithm 4.2 to handle a single faulty node.

4.3.1 Embedding in the Presence of a Single Fault

The idea behind our technique to embed a ring into a faulty twisted hypercube is 

to use some of the unused links to skip a faulty node. As mentioned in the previous 

section, Figure 4.1 shows two kinds of embeddings of a ring R 23 into a twisted hyper

cube TQ3. Notice that some of the links are not part of the embedding. As an
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illustration, in Figure 4 .l.a, the links between nodes Vj and v5 through dimension 3, v2 

and v7 through dimension 2, v3 and v6 through dimension 2, and v4 and v8 through 

dimension 3 are unused links. We can use these unused links to avoid a faulty node.

Therefore, if node v, in a twisted hypercube TQ„ is faulty, a ring can be 

constructed by using some of the unused links to skip the faulty node without disturb

ing the construction of the rest of the ring. A faulty node is either an upper node or a 

lower node.

The basic idea behind our technique is to identify the faulty node and the cube 

that contains it, then avoid the fault by using the unused links. Figure 4.4 shows all 

possible locations of a faulty node within a cube and the links that need to be used to 

avoid it in the process of constructing the ring. Part (a) shows how to handle an upper 

faulty node, while part (b) shows how to handle a lower faulty node. Notice that part

(a) simulates type B embedding within a cube since it does not disturb the construction 

of the rest of the ring, the twisted lower links can be used to connect it with adjacent 

rings when type B embedding is used. On the other hand, part (b) simulates type A 

embedding within a cube since it does not disturb the construction of rest of the the 

ring, the upper links can be used to connect it with adjacent rings when type A embed

ding is used. Figure 4.5.a shows how to handle an upper faulty node, while Figure 

4.5.b shows how to handle a lower faulty node. Notice that the upper faulty node is in 

the second cube, while the lower faulty node is in the first cube. The location of the 

cube that contains the faulty node might be the first, the last, or some where in 

between. Our technique works for all three cases by using the appropriate links. The
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(a) Upper faulty node

(b) Lower faulty node 

Figure 4.4: All possible locations of a faulty node.
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following algorithm embeds a ring R2n.x into a twisted hypercube TQn in the presence 

of a faulty node.

A lgorithm  4.3

Step 1: Partition TQn into 2”"3 node disjoint cubes.

Step 2: Locate the cube that contains the faulty node and identify whether it is an 

upper or a lower node.

Step 3: (i) If it is an upper node then

a. Choose the appropriate embedding from Figure 4.4.a.

(a) Upper faulty node

(b) Lower faulty node 

Figure 4.5: Single fault embedding.
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b. Embed the ring R23 into each of the fault-free cubes using type B 

embedding.

c. Connect all the rings, one of size 7 and the rest of size 8, using the 

twisted lower links to come up with the ring R2n-\-

(ii) If it is a lower node then

a. Choose the appropriate embedding from Figure 4.4.b.

b. Embed the ring R23 into each of the fault-free cubes using type A 

embedding.

c. Connect all the rings, one of size 7 and the rest of size 8, using the 

upper links to come up with the ring /f2«-i -

Theorem  4.3: For every n, Algorithm 4.3 will embed a ring of size 2"-1 into a 

twisted hypercube of dimension n in the presence of a faulty node.

The theorem can be proved easily by extending the proof of theorem 4.2. In the 

next section, we will use the same concept with minor variations to embed a ring into 

a faulty twisted hypercube with multiple faults.

4.3.2 Embedding in The Presence of Multiple Faults

In this section, we describe our scheme to embed a ring 7?2"-/> where /  is the 

number of faults, into a twisted hypercube TQn in the presence of /  faults such that 

each cube has at most one faulty node. A cube might be an overlap cube as shown in
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Figure 4.3.b. The maximum number of faults that can be handled by our technique is 

/  = 2"~3. The idea is to generalize Algorithm 4.3 to handle multiple faults. The fol

lowing algorithm embeds a ring into a twisted hypercube TQn in the presence 

of /  faults.

Algorithm 4.4

Step 1: Partition TQ„ into 2"-2 blocks.

Step 2: Identify the blocks with faulty nodes.

Step 3: Group each faulty block with the adjacent unfaulty block to its left to form a 

faulty cube.

Step 4: Embed a ring of size 7 into each of the faulty cubes by choosing an appropri

ate embedding from Figure 4.4 and embed a ring of size 4 into each of the 

blocks.

Step 5: Construct a ring of size 2" -  /  by connecting the rings, either R-j or R4, using 

the appropriate links, either upper links or twisted lower links as shown in 

Figure 4.6.

Theorem  4.4: For every n, Algorithm 4.4 will embed a ring of size 2” -  /  into a 

twisted hypercube of dimension n in the presence of /  faulty nodes such that each 

cube has at most one faulty node.
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Figure 4.6: Multiple faults embedding.
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Proof: Without loss of generality, we assume that the left most block has no faulty 

node. The existence of an adjacent unfaulty block to the left of any faulty block fol

lows directly from our assumption that each cube has at most one faulty node. In the 

process of constructing the ring R2«-f, any two adjacent cubes with a fault are one of 

the following cases

Case 1: A cube with upper fault followed by a cube with upper fault.

Case 2: A cube with upper fault followed by a cube with lower fault.

Case 3: A cube with lower fault followed by a cube with lower fault.

Case 4: A cube with lower fault followed by a cube with upper fault.

Figure 4.7 shows all four cases in the process of constructing the ring. We use the 

twisted lower links with an upper faulty cube followed by either an upper or a lower 

faulty cube and the upper links with a lower faulty cube followed by either a lower or 

an upper faulty cube. The way we grouped the faulty blocks with unfaulty blocks to 

form cubes always guarantees the existence of such links. The other cases are an 

upper or a lower faulty cube followed by a block and a block followed by a block or a 

faulty cube. We use the twisted lower links with an upper faulty cube followed by a 

block and the upper links with a lower faulty cube followed by a block. For the case 

of a block followed by a block or a faulty cube, we use the appropriate links, either 

upper or twisted lower links, since both are available. □
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(a) Upper followed by upper

(b) Upper followed by lower

(c) Lower followed by lower

(d) Lower followed by upper 

Figure 4.7: All possible cases of two adjacent faulty cubes.
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4.4 Summary

In this chapter, we presented optimal algorithms for embedding a ring into a 

twisted hypercube with fault-free nodes, single faulty node, and multiple faults. We 

showed the capability of the twisted hypercube to simulate rings efficiently in the pres

ence of faults. While even one faulty processor will degrade its over all performance, 

like any other network, but it is still capable of constructing a Hamiltonian circuit 

within the nonfaulty processors.

A twisted hypercube TQn with 2" nodes can simulate a ring with 2" -  /  

nodes in the presence of /  twisted hypercube faulty nodes with some restrictions on 

the location of the faults. In the hypercube, the simulation of rings achieved by wast

ing a nonfaulty processor for every faulty processor. The simulation of rings by 

twisted hypercube is more efficient since it is achieved without wasting any nonfaulty 

processors.



CHAPTER 5

F ault-Tolerance Embedding 
of Rings into Hypercubes

5.1 Introduction

The hypercube has been the focus of many recent research activities. Extensive 

work has been done to show that the hypercube is a powerful architecture capable of 

simulating other interconnection networks such as rings, meshes, trees, stars, and oth

ers with minimum overhead ([BCGS], [BCLR], [BMS], [BSu], [MS], [SS], [Lei]). It 

has also been shown that the hypercube machine is robust and fault-tolerant and has 

the ability to simulate, route, and reconfigure itself despite the presence of either faulty 

links or nodes ([BS], [CL], [HLNa], [HLNb], [PM], [WCM]).

The problem of embedding rings into other interconnection networks has been 

addressed by many researchers. Rosenberg and Snyder [RS] addressed the problem of 

embedding rings into general graphs. They showed a dilation 3 embedding of a ring 

into a general graph of the same size. In [JLD] and [NSK], the authors considered 

embedding cycles, rings, and Hamiltonians into star networks. Saad and Schultz [SS] 

used Gray Codes to show the existence of a Hamiltonian circuit in a hypercube struc

ture. Chan and Shin [CS] used Gray Codes to identify n! distinct Hamiltonian paths in 

a hypercube network.
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Embedding rings into hypercubes despite the presence of faults have been 

addressed by many researchers. Provost and Melhem [PV] have given distributed 

algorithms in the presence of single, double, and multiple faults wasting up to 50% of 

the processors in the worst case. Chan and Lee [CL] improved the result by wasting

Tl | 1o n l y  o n e  n o n f a u l t y  p r o c e s s o r  f o r  e v e r y  f a u l t y  p r o c e s s o r  a n d  a l l o w i n g  u p  t o  L  J
2

faults. This chapter uses a new technique to embed a ring of size 2" -  2 /  into a hyper

cube of dimension n despite the presence of /  faults. It wastes only one nonfaulty 

processor for every faulty processor and allows up to 2”-3 faults with some restriction 

on the location of the faults [ABd].

The remainder of this chapter is organized as follows. In section 2, we describe 

our scheme to embed a ring of size 2” into a fault-free hypercube of the same size. 

Section 3 addresses embedding in the presence of faulty nodes. Our emphasis will be 

on the multiple fault case. Section 4 concludes the chapter.

5.2 Fault-Free Embeddings

Given a ring R2- with 2" nodes. Consider the problem of assigning the ring 

nodes to the nodes of the hypercube such that adjacency is preserved. In the hyper

cube, two nodes are adjacent if the binary representation of their labels differ in 

exactly one bit position, say in position i. We call the link that connects the two adja

cent nodes a link through dimension i. The least significant bit in the binary represen

tation of a label is referred to as position 1 and the most significant bit as position n.
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v l v8 v6v7

v2 v3 v5v4

Figure 5.1: The embedding sequence.

Now given any two adjacent nodes in the ring, their images by this embedding should 

be neighbors in the hypercube through some dimension i, where 1 < i < n. We can 

view such an embedding as a sequence of dimensions crossed by adjacent nodes. We 

call such a sequence the embedding sequence, denoted by ES = (dx, d2, ..., d2n), where 

di e  { 1 , n } for all 1 < i < 2".

Figure 5.1 shows an embedding of the ring Rp  into the hypercube Q$. It is more 

convenient to view the embedded ring as will as the hypercube in the way shown in 

Figure 5.1. We view the hypercube as two levels where all nodes with even labels are 

in the upper level and all nodes with odd labels are in the lower level. The embedding 

sequence of R2i is ES = (1, 2, 3, 2, 1, 2, 3, 2). For example, in Figure 5.1, notice that 

nodes v l and v2 are connected by a link through dimension 1, v2 and v3 are connected 

by a link through dimension 2, v3 and v4 are connected by a link through dimension 3, 

v4 and v5 are connected by a link through dimension 2, and so on. The embedding 

sequence ES can be generated using the following algorithm.
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Algorithm  5.1

Let n be the dimension of the hypercube and let the vertical bar be the concatenation 

operator.

Step 1: ES <- 2

Step 2: For i <- 3 to n do 

ES <— ES | i | ES

Step 3: ES <— 1 |E S | 1 |ES

The embedding sequence is generated by applying Algorithm 5.1 on n, where n 

is the dimension of the hypercube. The number of nodes in the hypercube is equal to 

the number of nodes in the embedded ring which is 2” nodes. Thus, the embedding 

sequence of the ring R2* is ES = (1, 2, 3, 2, 4, 2, 3, 2, 1, 2, 3, 2, 4, 2, 3, 2) and the 

embedding sequence of the ring R2s is ES = (1, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2 ,4 , 2, 3, 2, 

1, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2). Notice that the same embedding sequence 

may result in different embeddings of R2n into Qn depending on the hypercube node 

that initiates the ring construction. Among all different embeddings, we are interested 

in the embedding where the node that initiates the ring construction in the hypercube 

is node with label 0.

Theorem 5.1: For every n, Algorithm 5.1 will generate the embedding sequence to 

construct a ring of size 2" in a fault-free hypercube of dimension n.
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Proof: We prove this by induction on the dimension of the hypercube. Our induction 

basis is Q2, a ring of size 4 can be easily constructed in Q2 using the embedding 

sequence ES = (1, 2, 1, 2). Assume the theorem is true for the construction of a ring 

of size 2"_1 in a hypercube of dimension n -1. We now prove that the theorem is true 

for the construction of R 2n in Qn. Consider the two subcubes and Qln_ By 

induction hypothesis, we can construct a ring of size 2"-1 in both Q°„_j and Qln-i. Let 

their embedding sequence be 

ES = 1 1 S„_, 11 1 S„_, 

where Sn is a sequence of dimensions recursively defined as follows:

S2 = 2

*5n-1 = *5n-2 | n | *5/1-2

Now we combine two rings, each of size 2"_1, to come up with a ring of size 2". This 

is done by replacing the second link that goes through dimension 1 of the first ring and 

the first link that goes through dimension 1 of the second ring by two links that go 

through dimension n. The embedding sequence of the new ring R 2n is 

ES = 1 15„_i | n 15„_! 11 1 S„_i | n |

= 1 1*5„ 11 1<5„

which is the same embedding sequence generated by Algorithm 5.1. □

5.2.1 Divide-Conquer Embeddings

This section introduces a data structure, that is fundamental to the embeddings 

given in this chapter, called a cube. A cube is a subcube of dimension 3 that consists
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Figure 5.2: The cube.

of two adjacent blocks as shown in Figure 5.2. A block is a set of four nodes in a 

hypercube that form a ring of size 4 that has the embedding sequence ES = (1, 2 ,1 , 2). 

Notice that cubes overlap and a hypercube of dimension n, Qn, contains 2"-2 cubes. A 

ring of size 8, R23, can be embedded into a cube by the embedding sequence ES = (1, 

2, 3 ,2 , \ , 2, 3, 2). The cube is used to introduce new techniques to embed a ring into a 

twisted hypercube. These new techniques are generalized in later sections to embed a 

ring into a faulty twisted hypercube. The next algorithm uses a divide-conquer tech

nique to embed a ring R2« into a hypercube Qn.

Algorithm 5.2

Step 1: Partition Q„ into 2”-3 node disjoint cubes.

Step 2: Embed the ring R#  into each cube using the embedding sequence ES = (1, 2, 

3, 2 , 1, 2, 3, 2).
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Step 3: Connect the 2”-3 rings, each of size 8, through the upper, or lower, links to 

come up with a ring of size R2*.

Theorem  5.2: For every n, Algorithm 5.2 will embed a ring of size 2" in a fault-free 

hypercube of dimension n.

Proof: We prove this by induction on the dimension of the hypercube. Our induction 

basis is £?3, the embedding of a ring of size 23 into a hypercube of dimension 3 is 

shown in Figure 5.1. Assume the theorem is true for the construction of a ring of size 

2”_1 in a hypercube of dimension n-1. We now prove that the theorem is true for the

(a) Using upper links

(b) Using lower links 

Figure 5.3: Fault-free embedding.
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construction of R2« in Qn. Consider the two subcubes {2°„_i and Qxn_j. By assumption 

we can construct a ring of size 2"_1 in both Q°n_{ and Qxn_ N o w  we combine two 

rings, each of size 2"-1, to come up with a ring of size 2". This is done by replacing 

the first link that goes through dimension 2 in the upper part of the first ring and the 

last link that goes through dimension 2 in the upper part of the second ring by two 

upper links that go through dimension n, or by replacing the last link that goes through 

dimension 2 in the lower part of the first ring and the first link that goes through 

dimension 2 in the lower part of the second ring by two lower links that go through 

dimension n, as shown in Figure 5.3. □

5.3 Fault-Tolerance Embeddings

One of the special significant features of the hypercube is its ability to simulate 

other interconnection networks in the presence of faults. In this section, we are inter

ested in answering the following question. Given that some nodes of the hypercube are 

faulty, does the hypercube have the ability to simulate rings efficiently? The hyper

cube is maximally fault-tolerant. While even one faulty processor will degrade its 

overall performance, it is still capable of simulating rings by wasting only one non

faulty processor for every faulty processor.

5.3.1 Embedding in the Presence of a Single Fault
i

The idea behind our technique to embed a ring into a faulty hypercube is to use 

some of the unused links to skip a faulty node. As an illustration, in Figure 5.1, the



84

links between nodes vj and v6 through dimension 3, v2 and v5 through dimension 3, v3 

and v8 through dimension 1, and v4 and v7 through dimension 1 are unused links. We 

can use these unused links to avoid a faulty node. But since the hypercube does not 

contain odd cycles, we have to waste a nonfaulty processor for every faulty processor. 

Therefore, if node v, in a hypercube Qn is faulty, a ring /?2«_2 can be constructed by 

using some of the unused links to skip the faulty node without disturbing the construc

tion of the rest of the ring.

The basic idea behind our technique is to identify the faulty node and the cube 

that contains it, then avoid the fault by using the unused links. Figure 5.4 shows all 

possible locations of an upper faulty node within a cube and the links that need to be 

used to avoid it in the process of constructing the ring, while Figure 5.5 shows the case 

of a lower faulty node. Figure 5.6.a shows how to handle an upper faulty node, while 

Figure 5.6.b shows how to handle a lower faulty node. The location of the cube that 

contains the faulty node might be the first, the last, or some where in the middle. Our 

technique works for all three cases by using the appropriate links. The following algo

rithm embed a ring J?2«_2 into a hypercube Q„ in the presence of a faulty node.

Algorithm  5.3

Step 1: Partition Qn into 2”~3 node disjoint cubes.

Step 2: Locate the cube that contains the faulty node and identify whether it is an 

upper or a lower fault.
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(a) Standard (b) Alternate

Figure 5.4: All possible locations of an upper faulty node within a cube.
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Figure 5.5: All possible locations of a lower faulty node within a cube.



(a) Upper faulty node

(b) Lower faulty node

Figure 5.6: Single fault embedding.

Step 3: (i) If it is an upper fault then

a. Choose the appropriate embedding from Figure 5.4.a.

b. Embed the ring R 2 3 into each of the fault-free cubes using the embed

ding sequence ES = (1, 2, 3, 2 ,1 , 2, 3, 2).

c. Connect all the rings, one of size 6 and the rest of size 8, using the 

lower links to come up with the ring R2n-2.

(ii) If it is a lower fault then

a. Choose the appropriate embedding from Figure 5.5.a.
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b. Embed the ring /?23 into eac^ of the fault-free cubes using the embed

ding sequence ES = (1, 2, 3, 2, 1, 2, 3, 2).

c. Connect all the rings, one of size 6 and the rest of size 8, using the 

upper links to come up with the ring /?2«-i *

Theorem  5.3: For every n, Algorithm 5.3 will embed a ring of size 2” -  2 into a 

hypercube of dimension n in the presence of a faulty node.

The theorem can be proven easily by induction by extending the proof of theo

rem 5.2. In the next section, we will use the same concept with minor variations to 

embed a ring into a faulty hypercube with multiple faults.

5.3.2 Embedding in The Presence of Multiple Faults

In this section, we describe our scheme to embed a ring /? 2n_2 / , where /  is the 

number of faults, into a hypercube Q„ in the presence of /  faults such that each cube 

has at most one faulty node. The maximum number of faults that can be handled by 

our technique is /  = 2"-3. The idea is to generalize Algorithm 5.3 to handle multiple 

faults. The following algorithm embeds a ring /?2"-2/  into a hypercube Qn in the pres

ence of /  faults.
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Algorithm  5.4

Step 1: Partition Q„ into 2"~3 node disjoint cubes.

Step 2: Identify the cubes with faulty nodes.

Step 3: Embed a ring of size 6 into each of the faulty cubes by choosing an appropri

ate embedding from Figures 5.4 and 5.5 and a ring of size 8 into each of the 

unfaulty cubes.

Step 4: Construct a ring of size 2" - 2 /  by connecting the rings, either R6 or /?8, 

using the appropriate links, either upper or lower links as shown in Figure 

5.7.

Theorem  5.4: For every n, Algorithm 5.4 will embed a ring of size 2" -  2 /  into a

hypercube of dimension n in the presence of /  faulty nodes such that each cube has at

most one faulty node.

Proof: In the process of constructing the ring any two adjacent cubes with a

fault are one of the following cases

Case 1: A cube with upper fault followed by cube with upper fault.

Case 2: A cube with upper fault followed by cube with lower fault.

Case 3: A cube with lower fault followed by cube with lower fault.

Case 4: a cube with lower fault followed by cube with upper fault.
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Figure 5.7: Multiple faults embedding.



Figure 5.8 shows all four cases in the process of constructing the ring. Notice 

that the decision of whether to use a standard or alternate ring depends about the posi

tion of the faulty node within a cube, whether it is in the left or right block and 

whether it is an upper or a lower fault. Also, the position of the faults in adjacent 

cubes affect the type of ring to be used. We use the lower links with an upper fol

lowed by an upper, the upper links with a lower followed by a lower, and in the case 

of an upper followed by a lower or a lower followed by an upper we might use the 

upper or the lower links depending on the location of the faults. Since we are wasting 

one good processor for every faulty processor, the size of the embedded ring is 

2" - I f .  □

5.4 Summary

This chapter has presented new techniques to embed a ring of size 2” -  2 /  in a 

hypercube of dimension n despite the presence of /  < 2"-3 faults. The new divide- 

conquer technique uses a new data structure called cube. The basic idea behind the 

technique is to identify faulty nodes and the cubes that contains them, avoid the faults 

within the cube by using the unused links, and construct the ring connecting adjacent 

cubes. Our technique has some restrictions on the distribution of the faults. It allows 

up to 2"~3 faults such that each cube has at most one fault.
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(a) Upper followed by upper

(b) Upper followed by lower

(c) Lower followed by lower

(d) Lower followed by upper 

Figure 5.8: All possible cases of two adjacent faulty cubes.



CHAPTER 6

Concluding Remarks

One of the most important factors that govern the performance of a parallel 

machine is the underlying interconnection network. Many interconnection networks 

have been introduced in the literature. The most important features of these intercon

nection networks are the diameter and the node degree. Another important feature of a 

network is fault-tolerance. Hypercubes have gained wide spread acceptance due to 

their many attractive properties. The twisted hypercube preserves many of the proper

ties of the hypercube and reduces the diameter by a factor of two. This dissertation 

explored the efficiency and the fault-tolerance of the twisted hypercube in parallel 

computation and investigated relations and transformations between the twisted hyper

cube and various interconnection networks. These include complete binary trees, 

complete quad trees, fault-free rings, faulty rings, and hypercubes.

We have presented different schemes to embed complete binary trees and com

plete quad trees into the twisted hypercube. For complete binary trees, we have pre

sented two different schemes to embed a complete binary tree CBn into a twisted 

hypercube TQ„. In the first scheme, we used a recursive algorithm to embed CB„ into 

TQn based on the embedding of CBn_x into TQn_x. The resulting embedding is such 

that all edges in the lowest four levels of the complete binary tree are mapped to paths



of length one in the twisted hypercube and all other edges in higher levels of the com

plete binary tree are mapped to paths of length two in the twisted hypercube. In the 

second scheme, we used the inorder binary labeling of the complete binary tree CBn to 

embed CBn into the twisted hypercube TQn. The inorder embedding is simpler and 

more natural than the recursive embedding, but it is less efficient in terms of the num

ber of edges that are mapped to paths of length two. For complete quad trees, we have 

presented a recursive algorithm that embeds CQ„ into TQn based on the embedding of 

CQn-\ into TQn_x. The resulting embedding is such that 37.5% of the edges in the 

lowest level and 50% of the edges in higher levels of the complete quad tree are 

mapped to paths of length two in the twisted hypercube and the rest of edges are 

mapped to paths of length one.

Interesting results have been presented on the fault-tolerance of the twisted 

hypercube. We have presented optimal algorithms for embedding a ring into a twisted 

hypercube with fault-free nodes, single faulty node, and multiple faults. We have 

shown the capability of the twisted hypercube to simulate rings efficiently in the pres

ence of faults. While even one faulty processor will degrade its over all performance, 

like any other network, but a Hamiltonian circuit can be constructed on the nonfaulty 

processors. We have shown that a twisted hypercube TQ„ with 2” nodes can simulate 

a ring /?2n- /  with 2" -  /  nodes in the presence of /  twisted hypercube faults. In the 

hypercube, the simulation of rings achieved by wasting a nonfaulty processor for 

every faulty processor. The simulation of rings by twisted hypercube is more efficient 

since it is achieved without wasting any nonfaulty processors.



We have presented new techniques to embed a ring of size 2" -  2 /  in a hyper

cube of dimension n despite the presence of /  < 2"-3 faults. The new divide-conquer 

technique uses a new data structure called cube. Our algorithm for multiple faults 

allows up to 2"-3 faults such that each cube has at most one fault.

In future work, we intend to study the embedding of other parallel architectures 

into the twisted hypercube. It may also be possible to improve on some of our results 

such as embedding complete binary tress into twisted hypercubes. It has been conjec

tured that the complete binary tree CB„ is a subgraph of the twisted hypercube TQn. 

An interesting obvious problem left open is whether the number of faults that can be 

tolerated by the twisted hypercube can be improved further. Another interesting prob

lem will be to adapt our techniques of embedding rings into faulty twisted hypercubes 

on other parallel architectures.
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