
Louisiana State University Louisiana State University

LSU Digital Commons LSU Digital Commons

LSU Historical Dissertations and Theses Graduate School

1993

Interconnection Networks Embeddings and Efficient Parallel Interconnection Networks Embeddings and Efficient Parallel

Computations. Computations.

Emadeddin Mohamed Abuelrub
Louisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses

Recommended Citation Recommended Citation

Abuelrub, Emadeddin Mohamed, "Interconnection Networks Embeddings and Efficient Parallel

Computations." (1993). LSU Historical Dissertations and Theses. 5554.

https://digitalcommons.lsu.edu/gradschool_disstheses/5554

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It
has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU
Digital Commons. For more information, please contact gradetd@lsu.edu.

https://digitalcommons.lsu.edu/
https://digitalcommons.lsu.edu/gradschool_disstheses
https://digitalcommons.lsu.edu/gradschool
https://digitalcommons.lsu.edu/gradschool_disstheses?utm_source=digitalcommons.lsu.edu%2Fgradschool_disstheses%2F5554&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_disstheses/5554?utm_source=digitalcommons.lsu.edu%2Fgradschool_disstheses%2F5554&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UM I
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality o f the
copy subm itted . B roken or indistinct print, colored or poo r quality
illustrations and photographs, print bleedthrough, substandard margins,
and im proper alignment can adversely affect reproduction.

In the unlikely event th a t the author did not send U M I a com plete
m anuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright m aterial had to be removed, a note will indicate
the deletion.

O versize m ateria ls (e.g., maps, drawings, charts) are rep roduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
o rig in a l is also p h o to g ra p h ed in one exposure and is in c lu d ed in
reduced form a t the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. H igher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UM I directly
to order.

University Microfilms International
A Bell & Howell Information C o m p a n y

3 0 0 North Z e e b R oad . Ann Arbor, Ml 4 8 1 0 6 - 1 3 4 6 USA
3 1 3 / 7 6 1 - 4 7 0 0 8 0 0 / 5 2 1 - 0 6 0 0

Order N um ber 9405380

Interconnection networks em beddings and efficient parallel
com putations

Abuelrub, Emadeddin Mohamed, Ph.D.

The Louisiana State University and Agricultural and Mechanical Col., 1993

U M I
300 N. Zeeb Rd.
Ann Arbor, MI 48106

INTERCONNECTION NETWORKS EMBEDDINGS

AND EFFICIENT PARALLEL COMPUTATIONS

A D isserta tio n

S u b m itted to th e G ra d u a te F acu lty o f th e
L o u isian a S ta te U niversity an d

A g ricu ltu ra l a n d M echan ica l College
in p a r tia l fu lfillm ent o f the

req u irem en ts fo r th e deg ree o f
D o cto r o f P h ilosophy

in

T h e D ep a rtm e n t o f C o m p u te r Science

by
E m ad e d d in A b u e lru b

BS in C o m p u te r E n g ineering , O k lah o m a S ta te U niversity , 1984
BS in C o m p u te r Science, O k lah o m a S ta te U niversity , 1985
M S in C o m p u te r Science, A lab am a A & M U niversity , 1987

A u g u st 1993

Acknowledgements

I would like to express my sincere appreciations to Prof. Said Bettayeb for all the

guidance and encouragement he has given me throughout my study. He has been a

good friend and a very supportive advisor.

I would like to thank my committee members, Prof. Ahmad El-Amaway, Prof.

Raymond Fabec, Prof. Sitharama Iyengar, Prof. Bush Jones, and Prof. Si-Qing Zheng,

for all their encouragement and support. Finally, I thank my brothers Ahmad and

Mohamed whose endless support served as the foundation for my achievements.

Table of Contents

A cknow ledgem ents... ii

List of F ig u re s .. v

A b s tra c t ... vii

CH APTER 1 Introduction .. 1
1.1 Flynn’s Taxonomy......................;... 2
1.2 A Taxonomy of Topologies ... 6
1.3 Data Routing .. 8
1.4 O verview 10
1.5 Preliminaries and Terminology... 13
1.6 Graph Em bedding 18
1.7 Cost Functions .. 20
1.8 Fault-Tolerance 22
1.9 Outline of the D issertation... 24

CHAPTER 2 Parallel Com putation on the Twisted H ypercube................... 26
2.1 Data Communication ... 26
2.2 Basic O perations... 27

2.2.1 Associative Computations.. 28
2.2.2 Parallel P refix ... 32

2.3 Sum m ary... 33

CHAPTER 3 Em bedding Trees into Twisted H ypercubes............................. 36
3.1 Introduction.. 36
3.2 Embedding Complete Binary Trees into Twisted H ypercubes 38

3.2.1 The Recursive Em bedding... 38
3.2.2 The Inorder Embedding ... 45

3.3 Embedding Complete Quad Trees into Twisted Hypercubes 49
3.4 Sum m ary.. 57

CHAPTER 4 Em bedding Rings into Faulty Twisted H y p ercu b es 58
4.1 Introduction.. 58
4.2 Fault-Free Em beddings.. 59

iii

4.2.1 The Embedding Sequence.. 60
4.2.2 Divide-Conquer Embeddings.. 63

4.3 Fault-Tolerance Embeddings ... 66
4.3.1 Embedding in the Presence of a Single Fault 66
4.3.2 Embedding in the Presence of Multiple F au lts 70

4.4 Sum m ary.................... 75

CHAPTER 5 Fault-Tolerance Embedding of Rings into Hypercubes 76
5.1 Introduction... 76
5.2 Fault-Free Em beddings... 77

5.2.1 Divide-Conquer Embeddings.. 80
5.3 Fault-Tolerance Embeddings ... 83

5.3.1 Embedding in the Presence of a Single Fault 83
5.3.2 Embedding in the Presence of Multiple F au lts 88

5.4 Sum m ary... 91

CHAPTER 6 Concluding Remarks.. 93

Bibliography.. 96

V ita... 103

iv

List of Figures

Figure 1.1 SIMD and MIMD Paradigms .. 4

Figure 1.2 Some popular interconnection networks ... 9

Figure 1.3 Hypercubes and twisted hypercubes for n = 1,2, and 3 17

Figure 2.1 Broadcasting in a twisted hypercube... 27

Figure 2.2 The addition operation on a twisted hypercube of dimension 3 30

Figure 2.3 The addition operation via the broadcast t re e 31

Figure 2.4 The prefix operation on a twisted hypercube of dimension 3 34

Figure 3.1 Embedding CB into TQ for n = 1, 2, 3, and 4 39

Figure 3.2 Embedding CB into TQ for n = 5 .. 40

Figure 3.3 The recursive embedding of CB into TQ ... 42

Figure 3.4 The inorder embedding of CB into TQ for n = 1,2, and 3 45

Figure 3.5 The inorder embedding of CB into TQ ... 47

Figure 3.6 Partitioning C Q ... 50

Figure 3.7 The recursive embedding of CQ into T Q ... 51

Figure 3.8 Embedding CQ into TQ for n = 2 .. 52

Figure 3.9 Embedding CQ into TQ for n = 3 .. 54

V

Figure 4.1 The embedding sequence... 60

Figure 4.2 Fault-free em bedding... 63

Figure 4.3 Blocks and cubes .. 64

Figure 4.4 All possible locations of a faulty node .. 68

Figure 4.5 Single fault em bedding.. 69

Figure 4.6 Multiple faults em bedding.. 72

Figure 4.7 All possible cases of two adjacent faulty cubes 74

Figure 5.1 The embedding sequence.. 78

Figure 5.2 The cube .. 81

Figure 5.3 Fault-free em bedding... 82

Figure 5.4 All possible locations of an upper faulty node within a c u b e 85

Figure 5.5 All possible locations of a lower faulty node within a c u b e 86

Figure 5.6 Single fault em bedding... 87

Figure 5.7 Multiple faults em bedding.. 90

Figure 5.8 All possible cases of two adjacent faulty cubes 92

vi

Abstract

To obtain a greater performance, many processors are allowed to cooperate to

solve a single problem. These processors communicate via an interconnection net

work or a bus. Parallel machines are classified as either message passing machines

where processors have their own memory or shared memory machines where several

processors share the same memory. In this dissertation, we focus on the former. The

most essential function of the underlying interconnection network is the efficient inter

changing of messages between processes in different processors. The potential com

munication bottleneck has been the main drive in the design of interconnection net

works. Parallel machines based on the hypercube topology have gained a great

respect in parallel computation because of its many attractive properties. Many ver

sions of the hypercube have been introduced by many researchers mainly to enhance

communications. The twisted hypercube is one of the most attractive versions of the

hypercube. It preserves the important features of the hypercube and reduces its diame

ter by a factor of two. This dissertation investigates relations and transformations

between various interconnection networks and the twisted hypercube and explore its

efficiency in parallel computation. The capability of the twisted hypercube to simulate

complete binary trees, complete quad trees, and rings is demonstrated and compared

with the hypercube. Finally, the fault-tolerance of the twisted hypercube is investi

gated. We present optimal algorithms to simulate rings in a faulty twisted hypercube

environment and compare that with the hypercube.

CHAPTER 1

Introduction

The need for faster computers has not ceased since the beginning of the computer

era. New applications seem to push existing computers to their limit. The computer

industry shows a continuous effort to increase the computational speed of computers.

In the last four decades, dramatic increases in computing speed were achieved. Most

of these were largely due to the use of faster electronic components by computer man

ufacturers. As we went from vacuum cubes to transistors and from small to very large

scale integration, we witnessed the growth in size and range of the computational

problems that we could solve. The state-of-the-art in VLSI technology can’t satisfy

the growing computational demands in many scientific and engineering applications.

Without high performance computers, many of these challenges can’t be solved within

a reasonable time period.

In the last decade, as progress in VLSI has led to small size, low cost, and high

performance processors, it has become practical to build parallel computers containing

a very large number of processors. In parallel computation, a collection of processors

cooperate to solve a problem by working simultaneously on different parts of the prob

lem. The two major components of a parallel machine are the processors and the

interconnection network that ties them together. A main concern in the development

l

of such a system with this many processors is fault-tolerance. Since the probability of

one or more processors or links becoming fault in such complex systems is significant,

it is desirable to build some fault-tolerance features into the architecture.

Although parallel processing is not a new concept, its deviation from the tradi

tional Von Neumann computational model has introduced many new problems. The

extra complexity required for data communication among the processors can degrade

system performance and make programming on a parallel processing system much

harder than on a uniprocessor system. If each of the processors works autonomously,

the synchronization among different processes will further increase the complexity of

the system. Unless we have a clear understanding of these problems and the efficient

tools to solve them, the full power of parallel processing cannot be achieved.

This dissertation adds to the growing body of work that addresses highly parallel

computing for models of parallel machines. We specifically investigate relations and

transformations between various interconnection networks and explore their efficiency

in parallel computation. Both faulty and fault-free parallel architectures are consid

ered.

1.1 Flynn’s Taxonomy

Parallel machines can be categorized by their interconnection network topolo

gies. Also, we classify parallel machines as either shared memory or message passing

machines. Within each of these categories, we further divide them into vector versus

MIMD within the shared memory category and static versus dynamic within the

3

message passing category. Message passing designs offer higher levels of parallelism

through the interconnection of thousands of processors via an interconnection net

work. In such systems, there is no global memory or program space. The design of

message passing parallel machines places great demand on communication speed, data

partitioning, and routing.

The most widely accepted classification of parallel computation models is the

one proposed by Flynn [F], who viewed the Von Neumann model as a single stream of

instructions controlling a single stream of data (SISD). Flynn viewed parallelism as a

single stream of instructions controlling a multiple stream of data (SIMD) or a multi

ple stream of instructions controlling a multiple stream of data (MIMD). Figure 1.1

shows SIMD and MIMD paradigms. Traleaven [T] classified MIMD machines fur

ther. The data mechanism was divided into shared-memory and message-passing

approaches. The terms multicomputer and multiprocessor, respectively, are usually

used to distinguish these two approaches.

In SIMD machines, all processors operate under the control of a single instruc

tion stream issued by a central control processor. All processors do the same instruc

tion, or nothing, each on a different datum. SIMD is the most useful paradigm for

massively parallel scientific computing. Many scientific applications naturally fall

into the SIMD paradigm such as image processing and particle simulation. In SIMD

machines, a single instruction stream is acted upon by many processors in a lock step

fashion. Only one instruction counter is used to sequence through a single copy of the

program. The data that is processed by each processing element differs from one

4

CP

Pn

P2

Interconnection
Network

(a) SIMD

Pn

P2

Interconnection
Network

(b) MIMD

Figure 1.1: SIMD and MIMD paradigms.

processor to another. Therefore, a single program and a single control unit simultane

ously act on many different collections of data by controlling a collection of homoge

neous processors. SIMD is the basic paradigm of synchronous data parallel comput

ing. The classic example of parallel SIMD computers is the ILLIAC-IV, with 64 iden

tical processing elements each receiving the same stream of instructions to be exe

cuted on its own data item.

In MIMD machines, processors operate under the control of their own stream of

instructions which allows great flexibility. Each processor is fully programmable and

capable of executing its own program. MIMD is the most general model of paral

lelism. Synchronization is achieved explicitly and locally rather than through a global

synchronization mechanism. This provides a lot of flexibility, but it also means that

the software that is needed to program the machine is more complex and much harder

to implement. MIMD is useful when the problem allows multiple heterogeneous tasks

to be performed at the same time. This is most likely to occur when the number of

tasks to be performed is not known and the tasks perform different operations from

one another.

MIMD is general enough to contain SIMD, because we can emulate SIMD

behavior by restricting MIMD through careful programming. However, there may be

severe performance penalties inherent in simulation of one form on a machine of dif

ferent form.

6

1.2 A Taxonomy of Topologies

Interconnection networks and their combinatorial properties have been the topic

of many recent research in the area of parallel processing ([AJ], [AK], [CLe], [FS],

[Gou], [II], [K], [Lei], [LE], [Si], [Sn]). An efficient interconnection structure should

have a low number of links per node, a small intemode distance, and a large number

of alternate paths between a pair of nodes for fault-tolerance. In a parallel machine,

the average intemode distance, message traffic density, and fault-tolerance are very

much dependent on the diameter and the degree of the network. There is a tradeoff

between the diameter and the degree of a network. A network with a low degree has a

large diameter and a network with a low diameter usually has a large degree. A ring

structure and a completely connected structure represent the two extremes. The diam

eter multiplied by the degree is usually a good criterion to measure the efficiency of an

interconnection structure [AJ].

Most of the communication problems in parallel processing systems come from

the fundamental different approaches adopted by uniprocessor systems and parallel

processing systems to support interprocess communications. In a uniprocessor sys

tem, all processes reside in a single processor and all interprocess communications are

supported by main memory references. As a result, any process can easily send a mes

sage to any other process with a uniform delay determined principally by the main

memory clock cycle. On the other hand, in a parallel processing system, different pro

cesses usually reside in different processors. Interprocess communications are sup

ported by an interconnection network. The delay incurred in an interconnection

network is much greater than that in a uniprocessor. The delay time depends on the

number of processors and the communication pattern. We call the extra interprocess

communication time in a parallel processing system the communication delay.

The two main sources of the extra communication overhead in parallel process

ing are the time for the messages to go through one or more intermediate processors,

in the absence of a direct link between the two processors communicating, and the

contention for a single link by more than one message at the same time. These delays

result from the mismatch of the communication characteristics of the parallel pro

grams and those of the parallel processing system.

An interconnection topology of a set of processors is a mapping from the set of

processors onto the same set of processors. The mapping describes how to connect

processors to other processors, with each processor usually connected to a small num

ber of processors in a regular pattern. For example, a ring topology is a mapping that

connects a processor with label i to processors with labels i - 1 and i + 1. A complete

binary tree topology, is a mapping that associates processors to the nodes of a com

plete binary tree where the root processor is connected to two other processors, inte

rior processors are connected to three other processors, and leave processors are con

nected to only one processor. Most parallel machines are distinguished by their inter

connection topologies. While the speed and capacity of parallel machines may vary,

the most significant difference between them is their interconnection topologies.

Interconnection networks that provide communication between the processors

have ranged from the simple to the complex, representing the trade off between speed

and cost. At one extreme is the ring network, in which each processor is linked to

only two other processors. Messages are passed along the network from one processor

to another by hopping through intermediate processors. At the other extreme in con

nectivity is the all-to-all network, in which each processor has its own private link to

every other processor in the network. Between these two extremes, there is a number

of other networks with intermediate numbers of neighbors. Figure 1.2 shows some

popular interconnection networks.

Interconnection networks can be classified into dynamic and static networks.

Dynamic networks create links between processors as the program executes. Static

networks are fixed by design and can’t be changed after the machine is built. Parallel

machines based on the hypercube static interconnection structure are one of the most

popular- because they possess many attractive properties that are needed in parallel

processing.

1.3 Data Routing

In a parallel processing system, if more than one message must be sent from a

source to a destination at the same time, some links can be contended by more than

one message. Since each link can support the communication of only one message at

any instant, this contention introduces extra communication delay into the system. A

good data routing algorithm should support parallel communication in the system with

minimum delay.

x^x
Ring Tree

Hypercube Mesh

Cube-connected cycles Systolic array

Butterfly Linear array

Figure 1.2: Some popular interconnection networks.

10

Circuit switching and packet switching are the two principal kinds of data routing

mechanisms. In circuit switching, a physical path is established between the source

and the destination. In packet switching, data are put in packets and routed through

the interconnection network without establishing a physical connection path. Circuit

switching is generally much more suitable for bulk data transmission, while packet

switching is more efficient for many short messages.

In parallel processing systems for image processing, computer graphics, robot

vision, and scientific computation, communications are heavy and message sizes are

small. For these reasons, packet switching is usually preferred. There are two kinds

of control strategies for packet switching, centralized and distributed. In centralized

control, the decision to route packets is based on global information. In distributed

control, each processor decides how to route the data based on its local information.

1.4 Overview

The Parallel Random Access Machine (PRAM) is used as a standard theoretical

model for parallel computation. A PRAM is a synchronized machine with an

unbounded number of identical processors and a global memory which allows simul

taneous reads and writes from and into the same memory location ([AG], [Q], [U]).

Algorithms will run faster on this model than on real machines. Actual machines can’t

be built without a significant delay in access time. The best that one can hope for is

that access time is proportional to log N , where N is the number of processors [AG].

This led many institutions to design parallel machines based on the message passing

MIMD approach. The classic example of such an architecture is the MARK-II Cos

mic Cube.

Based on Kung’s sorting algorithm for meshes [TK] and Batcher’s merge sort for

cube connected machines, Nassimi and Sahni [NS] proved that a Random Access

Read (RAR) can be accomplished with complexity 0 (q 2n) on a q dimensional nq

mesh machine and Oilog2 AO on an TV cube connected or perfect shuffle machine.

Also, they proved that a Read Access Write (RAW) can be accomplished with com

plexity 0 (q 2n + dqn) on a q dimensional mesh machine and 0(log2N + dlog N) on

an N cube connected or perfect shuffle machine, where d is the maximum number of

data items written into any processor.

Many researchers have concentrated on tiding efficient ways to simulate PRAM

on other parallel machines. The first reasonable deterministic simulation of a PRAM

was proposed by Upfal and Wigderson [UW], Their simulation achieved

Oilog2 N log log N) time to simulate one step of a PRAM algorithm on an N proces

sor network. Alt et al. [AHMP] subsequently improved the time complexity to

/ - \ / i _ _ 2 » r \v \ io g /v

Valiant [V] reported a probabilistic routing algorithm that can perform any per

mutation on a hypercube machine of size N in 0(log N) steps. The algorithm consists

of two consecutive phases. In the first phase, it sends each packet p to a randomly

chosen node v. For each packet p, every node has the same probability of being cho

sen , which is The choices for the different packets are independent of each other.

In the second phase, it routes each packet p from the intermediate node v to its desti

nation node. At each instant, there is exactly one copy of each packet A packet

might be transmitted along an edge, waiting in a queue associated with an edge, or

stored as a loose packet in an intermediate node. For simplicity, the algorithm is

described in a synchronized fashion. It alternates between a transmitting mode and a

bookkeeping mode. In the transmitting mode, the packet at the head of each queue is

transmitted along the edge associated with it and stored as a loose packet at the recipi

ent node. In the bookkeeping mode, each loose packet is assigned to the queue of one

of the outgoing edges according to some random choice, unless it has nowhere further

to go in the current phase.

Valiant proved that this distributed randomized algorithm can route packets to

their destination in a hypercube machine without two packets passing through the

same communication link at the same time in 0(log N) with high probability. Each

packet carries with it O(log N) bits of information and no other communication

among the nodes is needed. This result implies that a hypercube machine can simulate

a PRAM with an increase in the execution time for each step. Each PRAM step can

be simulated in approximately 0(log N) steps on a network of size N. Therefore, we

can develop algorithms for the PRAM since we know how to translate them into algo

rithms for actual machines.

13

1.5 Preliminaries and Terminology

Several Structures have been proposed in the literature for interconnecting a large

network of processors. Many parallel machines that are based on these structures are

now commercially available. The Cosmic Cube [Se] is the first completed experimen

tal parallel machine based on the hypercube structure. It becomes the archetype of

early operative parallel machines. Since the Cosmic Cube, many machines based on

the hypercube structure have been built and made commercially available such as

Amet S/14, NCUBE/10, Intel BPSC, and the Connection Machine [H].

Parallel machines based on the hypercube topology have gained a great interest

in parallel computing because of their flexibility and suitability for general purpose

applications. Many of the properties of the hypercube that make it a desirable parallel

machine are a direct consequence of the graph theoretic properties of the hypercube

topology. The hypercube offers a rich interconnection topology with large bandwidth,

logarithmic diameter, simple routing and broadcasting of data, recursive structure that

is suited to divide and conquer applications, homogeneous and symmetric structure,

and the ability to simulate other interconnection networks with minimum overhead.

Also, it has a high fault-tolerance structure. Fault-tolerance and related issues are

becoming an important topic in the design and analysis of parallel machines.

The hypercube has been the topic of many recent research. Various researchers

have done extensive work in showing the parallel computational power of the hyper

cube machine in many directions. In one direction, many researchers have shown the

capability of the hypercube machine to simulate other networks such as rings, trees,

14

grids, and other interconnection networks with minimum overhead ([BCGS], [BCLR],

[BMS], [BSu], [MS], [SS], [Lei]). In another direction, researchers have shown the

power of the hypercube in solving many computational problems in parallel such as

sorting, merging, matrix multiplication, and parallel prefix ([A], [HB], [LE], [Lei], [P],

[Q], [QD], [St]). In a third direction, researchers have shown the robustness and fault-

tolerance of the hypercube, focusing on the hypercube’s ability to simulate, compute,

route, and reconfigure itself in the presence of faults ([AGr], [BS], [HLNa], [HLNb],

[WCM], [CL]).

Finally, many researchers have proposed modifications on the hypercube struc

ture to improve its computational power ([BH], [EBSS], [ENS], [EL], [PV], [YN]).

Bhuyan and Agrewal [BA] proposed a generalized hypercube structure. Preparata and

Vuillemin [PV] introduced the cube-connected cycles in which the degree of the diam

eter was reduced to 3. Latifi and El-Amaway [EL] proposed the folded hypercube to

reduce the diameter and the traffic congestion with little hardware overhead. Youssef

and Narahari [YN] proposed the Banyan-hypercube network which combines the

advantageous features and properties of Banyans and hypercubes and thus reduce the

communication overhead.

A hypercube of dimension n, denoted by Qn, is an undirected graph consisting of

2" vertices, each vertex corresponds to an n-bit binary string, labeled from 0 to 2" - 1

and such that there is an edge between any two vertices if and only if the binary repre

sentation of their labels differ in exactly one bit position. Each vertex is incident to n

other vertices, one for each bit position. The edges of the hypercube can be naturally

15

partitioned according to the dimensions that they traverse. An edge is called a dimen

sion i edge if it links two vertices that differ in the ith bit position.

Another version of the hypercube, called the twisted hypercube, was introduced

by Efe et. al. [EBSS]. Twisted hypercubes proved to contain the attractive properties

of the hypercube and a better communication capabilities. In parallel machines, the

communication cost dominates the computation cost. The overall performance of the

parallel machine depends heavily on the underlying interconnection network. In

twisted hypercubes, the diameter is reduced by a factor of two over that of the hyper

cube. Many of the hypercube’s attractive features such sa partitioning, routing, and

embedding are incorporated into the twisted hypercube and new gains are achieved in

diameter, average distance, and embedding efficiency ([ABc], [E], [Z]).

Two binary strings x = and y = y iy0» each of length two, are pair-related if

and only if (x ,y) e {(00,00),(10,10),(01,11),(11,01)}. Let G be any undirected

labeled graph, then Gb is obtained from G by prefixing every vertex label with b. We

define a twisted hypercube as follows.

A twisted hypercube of dimension n, denoted TQn, is an undirected graph consisting

of 2" vertices labeled from 0 to 2” - 1 and defined recursively as follows [EBSS].

(i) TQi is the complete graph of two vertices with labels 0 and 1.

(ii) For n > 1, TQn consists of two copies of TQn_x one prefixed by 0, TQ°n_x, and

the other by 1, TQln_v Two vertices u = 0un_2...uo e TQ°n_x and v = lv„_2...v0 e

TQl„-i are adjacent if and only if

16

1. m„_2 = v„_2, if n is even, and

2. for 0 < i < L (« - l)/2j, u2i+\uzi and v2l+1v2(- are pair-related.

Such an edge (u, v) is referred to as a dimension n edge, for all n > 1.

There exist a dilation two and expansion one embedding of the twisted hyper

cube into the hypercube and vice virsa [E]. Figure 1.3 shows hypercubes and twisted

hypercubes for n = 1,2, and 3. It is more convenient to view both the hypercube and

the twisted hypercube in this way, where the upper part consists of all nodes with even

labels and the lower part consists of all nodes with odd labels. An upper node is a

node that lies in the upper part of the structure, i.e., its least significant bit is a 0. A

lower node is a node that lies in the lower part of the structure, i.e., its least significant

bit is a 1. An upper link is a link that connects two upper nodes and a lower link is a

link that connects two lower nodes.

Trees are special kind of graphs which have a wide variety of applications in the

field of computer science. A k-ary tree of height n - 1 is an undirected graph that has

Ckn - 1)
—-— — vertices and consists of a root of degree k with no parent and k children,

interior nodes of degree k +1 with one parent and k children, and leaves of degree one

with one parent and no children. Spanning trees are very important in the context of

efficient communications and in the determination of distances between nodes in a

network. Binary trees are important tools in the evaluation of formulas and in the

study of branching of processes.

17

10

11

110010000

Oil

100

101

.00

01

10

11

100

101

Figure 1.3: Hypercubes and twisted hypercubes for n = 1,2, and 3.

The importance of complete binary trees comes from the fact that this class of

structures is useful in the solution of banded and sparse systems by direct elimination

and capture the essence of divide and conquer algorithms ([BI], [Gor], [HS]). A com

plete binary tree of height n - 1, denoted by CBn, is an undirected graph consisting of

2" - 1 vertices, such that every vertex of depth less than n - 1 has exactly two children

and every vertex of depth n - 1 is a leaf.

Quad trees are becoming an important representation technique in the domains of

image processing, computer graphics, and robotics [Sa]. This representation is based

18

on the principle of recursive decomposition. A complete quad tree of height n - 1,

(4” - 1)
denoted CQn, is an undirected graph consisting of — -— vertices, such that every

vertex of depth less than n - 1 has exactly four children and every vertex of depth

n - 1 is a leaf.

Rings are another special kind of graphs that has many real world applications

and are used in the solution of many computer science problems such as the passing

token problem and the Hamiltonian circuit problem [I]. A ring of size n, denoted R„,

is an undirected graph consisting of n vertices labeled from vj to v„ such that node v,

is a neighbor to node v(M)mod „, 1 < i < n .

1.6 Graph Embedding

In this dissertation, we use undirected graphs to model interconnection networks.

Each vertex represents a processor and each edge a communication link between pro

cessors. The embedding of a guest graph G = (VG, E G) into a host graph H =

(Vh , E h) is an injective mapping / from VG to VH, where VG, E G and VH, E H are the

vertex and edge sets of G and H, respectively.

Many computational problems in parallel processing can be formulated as graph

embedding problems. Embedding one interconnection network into another is very

useful in the area of parallel computing for portability of algorithms across various

architectures, layout of circuits in VLSI, and mapping logical data structures into com

puter memories ([BMS], [Len]). Also, the problem of organizing computations on a

19

network of processors can be formulated as a graph embedding problem [KS]. When

a process can be naturally decomposed into a collection of subprocesses that can be

executed simultaneously with occasional communication between them, a task graph

can be constructed by denoting each subprocess by a node and each communication

between two subprocesses during the computation by an edge.

The problem of simulating one interconnection network by another is a natural

graph embedding problem. Usually, it is assumed that the host network can grow arbi

trarily large. This assumption is not realistic and does not correspond to actual parallel

machines. In the real world, a parallel machine has a fixed number of processors.

Thus, the problem of efficiently simulating a large network is an important issue. This

type of embedding is called many-to-one, where more than one node in the guest

graph are mapped to a single node in the host graph. If the embedding maps a single

node in the guest graph to more than one node in the host graph, then the embedding is

one-to-many. In this dissertation the word embedding refers to one-to-one embedding,

where a single node in the guest graph is mapped to exactly one single node in the

host graph. Many variations of embeddings in interconnection networks have been

studied in the literature ([AR], [BCGS], [BCLR], [BI], [BLD], [BMS], [BSu], [DS],

[JLD], [Lei], [LEI], [MS]). These variations differ principally in the optimization

measures used in the embeddings.

20

1.7 Cost Functions

The quality of an embedding is often guided by some constraints which may dif

fer from one application to another. The most common measures are dilation, expan

sion, edge congestion, and load factor [HMR]. If u and v are two adjacent nodes in G,

denoted u - v, then the distance from u to v, d = (u , v), is the length of the shortest

path from u to v. The dilation D is the maximum distance in H between the images of

adjacent vertices of G

D = max {d (f(u) , /(v)), where « - v e £ c)

The expansion E is the ratio of the cardinality of the host vertex set to the cardinality

of the guest vertex set

Minimizing each of these measurements has a direct implication on the quality of

the simulation of the guest network by the the corresponding host network. The dila

tion of an embedding measures how far apart neighboring guest processors are placed

in the host network. Clearly if adjacent guest processors are placed far apart in the

host network, then there will be a significant degradation in simulation due to the long

length of the communication path between them. The expansion of an embedding

measures how much larger is the host network than the guest network during the

21

simulation. We want to minimize expansion, as we want to use the smallest possible

host network that has at least as many processors as in the guest network.

In reality, we usually have a fixed size host network and we may have to con

sider many-to-one embedding for larger guest networks. When the size of the guest

network is not equal to the size of the host network in terms of the number of proces

sors, then we try to find the smallest host network that has at least as many processors

as the guest network. Such a host network is referred to as the optimal host network.

There is a trade off between dilation, which measures the communication delay, and

expansion, which measures processor utilization, such that one can achieve lower

expansion at a cost of greater dilation and vice versa.

Another cost measure is the congestion which is the maximum number of edges

of the guest graph routed through a single edge of the host graph. Edge congestion is

a measurement of possible degradation due to communication delay. If a particular

link in the the host network is needed for several different communication messages,

then the messages will suffer some delay time since the link can’t pass more than one

message at a time. This will add extra time to the communication cost between pro

cessors.

In embeddings that are many-to-one maps, an important measure is load factor

which is the maximum number of guest processors to be simulated by a single proces

sor in the host interconnection network. This has been considered by many

researchers, for instance ([BL], [DS]). Clearly, it is very important to minimize the

load factor in the simulation of one network by another, as the distinct processors in

22

the guest network assigned to the same processor in the host network will be running

sequentially. An unbalanced processor load will degrade the simulation time as lightly

used processors must wait for heavily used processors to finish their tasks. Thus, the

amount of time needed to simulate one step of the guest network is proportional to the

maximum number of processors assigned to the same host network.

1.8 Fault-Tolerance

One of the most important issues related to parallel machines is fault-tolerance.

As the number of processors in parallel machines becomes larger, models without

faults are becoming increasingly unrealistic. A fault is a processor or a link that fails.

We use a strong fault model where a faulty node can neither compute nor communi

cate with its neighbors. A node fault will completely distroy the node and all links

incident to it. We model a faulty link by making one of the nodes incident to the link

faulty. An interconnection network containing faulty components is called a faulty

network and a one without faulty components is called a fault-free network.

Fault-tolerant network architectures have emerged as an important area of study

in parallel processing ([AGr], [BS], [CL], [HLNa], [HLNb], [LBT], [PM], [WCM]).

The fault-tolerance o f a network is the capability of the network to compute, route,

simulate other networks, and reconfigure itself in the presence of faults. Clearly, if all

the immediate neighbors of a nonfaulty node become faulty, the network will become

disconnected. Many researchers studied the implementation of algorithms that are

designed for fault-free machines on faulty machines. The efficiency of the

23

implementation is usually measured by its slowdown. The slowdown S is the ratio

between the algorithm’s time requirements on the faulty machine and the algorithm’s

time requirements on the fault-free machine

c _ Time o f algorithm on a faulty machine
*3 11 1

Time o f algoritm on a fault — free machine

A significant difference between multiprocessor machines and other parallel

machines is that these machines use message passing instead of shared memory for

communication between processors. Each processor has a private local memory. This

type of architecture can be scaled up to a very large number of processors compared to

multicomputer designs based on globally shared memory. This model has some desir

able characteristics with respect to fault-tolerance and error confinement as well. A

faulty processor can be prevented from corrupting data in other processors if the faults

are detected quickly. Contrast this to a shared memory multiprocessor where a faulty

processor can potentially write into any location in memory and thereby corrupt an

entire system within a very short time.

One issue that is usually addressed in the design of fault-tolerance is the mecha

nism for detecting faulty processors. Many researchers suggested the use of off-line

testing of each processor, assuming there is a set of functional tests that can be run by

one processor on another. But it is very difficult to validate the completeness of the

functional testing strategies. Also, off-line testing can only detect permanent faults.

Intermediate and partial faults occur more frequently than permanent faults in parallel

24

machines. In order to detect these faults, it is necessary to have some kind of concur

rent fault detection features [AG]. This dissertation is not addressing the detection of

faults. Therefore, the faults are assumed to be known in advance.

Massively parallel message passing machines are receiving increasing attention

to meet the demand for high speed reliable computing. Hypercube interconnection

networks have emerged as one of the most effective and popular network architectures

for fault-free and faulty environments. The hypercube structure is highly fault-tolerant

and can handle a reasonable amount of interprocessor message traffic. When one or

more processors fail, the relatively large number of links often enables the nonfaulty

processors to continue communicating with one another. The ability of hypercube

machines to simulate, route, and reconfigure themselves in the presence of faults has

been addressed by many researchers ([BS], [CL], [HLNa], [PM], [WCM]).

1.9 Outline of the Dissertation

The capabilities of the twisted hypercube as a parallel machine is demonstrated in

Chapter 2. We show the capabilities of the twisted hypercube to provide efficient

broadcasting and routing and to perform basic parallel computations. The communi

cation time of several computations is reduced by a factor of two over that of the

hypercube. These include sorting, matrix multiplication, and associative computa

tions. Finally, an implementation of the parallel prefix operation on the twisted hyper

cube is presented.

25

In Chapter 3, we present dilation two and expansion one embeddings of complete

binary trees and complete quad trees into twisted hypercubes. We introduce two dif

ferent schemes to embed a complete binary tree into a twisted hypercube of approxi

mately the same size. The first scheme uses a recursive technique to embed the com

plete binary tree CBn into the twisted hypercube TQn based on the embedding of

CBn_x into TQn_]. The second scheme uses the inorder labeling of the complete binary

tree to embed it into the twisted hypercube. Finally, a recursive scheme to embed a

complete quad tree into its optimal twisted hypercube is presented.

In Chapter 4, we present optimal algorithms for embedding a ring into a twisted

hypercube with fault-free nodes, single faulty node, and multiple faults. We show that

a twisted hypercube TQn with 2” nodes can simulate a ring with 2" - / nodes in

the presence of / twisted hypercube faults. We use divide and conquer techniques and

a new data structure called a cube to achieve our results.

Chapter 5 presents new techniques to embed a ring of size 2" - 2 / into a hyper

cube of dimension n despite the presence of / < 2"~3 faults. The basic idea behind our

technique is to partition the whole structure into cubes, avoid the faults within the

cubes by using unused links, and construct the whole ring by connecting adjacent

cubes. Finally, we conclude with discussion and open problems in Chapter 6.

CHAPTER 2

Parallel Computation
on the Twisted Hypercube

This chapter addresses data communication and basic parallel computations on

the twisted hypercube. This chapter is organized as follows. Section 1 reviews some

of the work that has been done to show the capability of the twisted hypercube to per

form efficient broadcasting and routing of data. Section 2 addresses some of the basic

parallel operations on the twisted hypercube. Section 3 concludes the chapter.

2.1 Data Communication

One of the most important components of an interconnection network is its com

munication mechanism. In a parallel machine, communications become a bottleneck

due to a great amount of time that is spent in interchanging information between dif

ferent processors. It is very important to get the right data to the right place within a

reasonable time.

Broadcasting is the most essential communication operation in an interconnec

tion network. The height of the broadcast tree of a network is at most its diameter.

Since the twisted hypercube reduces the diameter by a factor of two, the height of its

broadcast tree is also reduced by a factor of two. The broadcast tree of any network

27

can be easily found by running a breadth first algorithm. The breadth first spanning

tree constructed by the breadth first algorithm represents the broadcast tree of the net

work [Lei]. Efe [E] and Zheng [Z] independently introduced broadcasting and routing

algorithms for the twisted hypercube. Figure 2.1 shows the broadcast tree of a twisted

hypercube for n = 3.

2.2 Basic Operations

This section demonstrates the ability of the twisted hypercube to perform many

of the basic operations that are needed in designing parallel algorithms. These opera

tions usually appear as subproblems in solving other major problems. Sorting is the

most common subtask activity performed on parallel computers. It is the heart of

many other computations. Many problems involve a sort so that later access of

000

,001010

110 101 Oil 111

Figure 2.1: Broadcasting in a twisted hypercube.

28

information can be done efficiently. In [E], the author shows that the twisted hyper

cube can reduce the communication steps for the rank sort by a factor of two. The

rank sort is considered to be the fastest sorting algorithm implemented on the hyper

cube machine. Like sorting, matrix multiplication is a fundamental operation that

appears in many numerical computations. Efe [E] shows that the twisted hypercube

can reduce the communication time of the matrix multiplication algorithm by a factor

of two.

2.2.1 Associative Computations

Associative operations are used frequently and appear as subproblems in solving

other problems. They include addition, multiplication, finding the smallest, finding the

largest, and others. Let + be the addition operation on some domain X. For a given

tuple {*0 , * i, —, *k- \ } e X, the addition operation is to compute the summation y0 =

x0 + x x + ... + x k_lt

We assume that each processor Ph 0 < i < 2" - 1 , contains the value The

computation is considered to be complete when the final summation y0 is at processor

0. The symbol <=' denotes a data transfer from a processor to an adjacent processor

by a link through dimension j . The function BIT(y') returns the j ,h bit of the node’s

label. The addition operation is performed by the following algorithm.

29

ADDITION (X)
begin

for all Ph 0 < / < 2" - 1, do
yt <- Xi

for j n to 1 do
for all P,, 0 < i < 2j - 1, do

if BYT(j) = 1
then tempk W y,, where Pk is a neighbor through dimension /.
if BIT(y) = 0
then yi <— y, + tempi

end for
end for

end

Figure 2.2 shows the addition operation on a twisted hypercube of dimension 3.

The initial value jc, and the current sum y, of each node are given for each phase.

Algorithm ADDITION takes n communication steps which is the same time that takes

to run the same procedure in a hypercube machine. But since the height of the broad

cast tree of the twisted hypercube is reduced by a factor of two, then the number of

communication steps of the addition operation is also reduced by a factor of two ([E],

[Z]). Since some of the nodes in the broadcast tree might have up to n children, the

binary adders must be replaced by (n + l)-adders. Figure 2.3 shows the implementa

tion of the addition operation via the paths of the broadcast tree. The number of steps

is reduced from 3 to 2 communication steps.

(6,6)(4 ,4)(7 ,7)(3 ,3)

(5 ,5)(9 ,9)(2 ,2)(8 ,8)

(a) Initial values

(3 ,9) (7 , 11) (4 .4) (6 ,6)

(8 , 17) (2 ,7) (9 ,9) (5 ,5)

(b) After step 1

(6 ,6)(7 , 11) (4 ,4)(3 ,20)

(9 .9) (5 ,5)(8 ,24) (2 ,7)

(c) After step 2

(3 ,44) (7 , 11) (4 ,4) (6 ,6)

(5 ,5)(8 ,24) (2 ,7) (9 ,9)

(d) After step 3

Figure 2.2: The addition operation on a twisted hypercube of dimension 3.

31

3

95 24

(a) Initial values

3

(b) After step 1

44

o

o

(c) After step 2

Figure 2.3: The addition operation via the broadcast tree.

32

2.2.2 Parallel Prefix

In this section, we implement the parallel prefix operation on a twisted hyper

cube. The prefix operation is a very important operation that appears frequently in

designing parallel algorithms. It was first introduced by Ladner and Fischer [LF] to

solve the carry look-ahead problem for binary addition. The prefix operation was used

by many researchers to solve a variety of problems in the field of computer science. In

[Lei], the prefix operation was used to solve recurrence equations, to find convex hulls

of images, to route packets in interconnection networks, and to solve the problem of

computing carries. In [A], the prefix sum was used to solve the job sequencing prob

lem with deadlines and the knapsack problem. Plaxton [P] used the prefix operation to

implement a fast sorting algorithm called smooth sort, which was designed to run on

the hypercube.

Let ® be a binary associative operation on some domain X. For a given tuple

{ jc0, x lt ..., x k_ i} e X , the prefix problem is to compute each of the partial sums,

assuming © is addition, yf = x0 © Xi © ... © xh 0 < i < k - 1. We assume that each

processor Ph 0 < i < 2" - 1, contains the value x h The computation is considered to

be complete when the partial sum y, = x0 © x x © ... © x { has been completed at pro

cessor i, 0 < / < 2” - 1. The local variables y, and f, accumulate the partial and total

sums, respectively. The symbol <=7 denotes a data transfer from a processor to an

adjacent processor by a link through dimension j . The function BITO') returns the j ,h

bit of the node’s label.

33

PREFIX (X)
begin

for all Pi, 0 < / < 2" - 1, do
y* <- Xi
t i < - Xi

end for
for j <- 1 to n do

for all Pit 0 < i < 2” - 1, do
tempk <=j t{, where Pk is a neighbor through dimension j .
ti <— t{ © tempi
if BTT(j) = 1
then yi <— y, © tempi

end for
end for

end

It is obvious that the algorithm runs in n time steps, where n is the dimension of

the twisted hypercube. During the j th step, each node sends its current total sum to its

adjacent node through dimension j r . The partial and total sums of each node are

updated based on the value of the j th bit of its label. Figure 2.4 shows the prefix com

putation on a twisted hypercube of dimension 3. The initial value jc,, the current par

tial sum y, , and the current total sum of each node are given for each phase.

2.3 Summary

This chapter demonstrated the capabilities of the twisted hypercube as a parallel

machine to provide efficient broadcasting and routing and to perform basic parallel

computations. The communication time of several computations is reduced by a fac

tor of two over that of the hypercube. These include sorting, matrix multiplication,

and associative computations. Finally, an implementation of the parallel prefix

(3 ,3 ,3) (7 ,7 ,7) (4 ,4 ,4) (6 ,6 ,6)

(9 ,9 ,9) (5 ,5 ,5)(8 ,8 ,8) (2 ,2 ,2)

(a) Initial values

(3 ,3, 11) (7 ,7 ,9) (4 ,4 , 13) (6 ,6 , 11)

(8 ,11,11) | (2 ,9,9) (9 , 13, 13) 1 (5 , 11, 11)

(b) After step 1

(7 , 18,20) (4 , 15,24) (6 ,6 ,24)(3 ,3 ,20)

(8 , 11 ,2 0) (2 ,20 ,20) (9 ,24 ,24) (5 , 11,24)

(c) After step 2

(3 ,3 ,4 4) (7 , 18,44) (4 ,35 ,44)

(8 , 11,44) (2 ,20 ,44) (9 ,44 ,44)

(6 .26 .44)

(5 .31 .44)

(d) After step 3

Figure 2.4: The prefix operation on a twisted hypercube of dimension 3.

35

operation on the twisted hypercube is presented. At the end of the computation, each

processor will have its initial value, the partial sum, and the total sum.

C H A P T E R 3

Embedding Trees
into Twisted Hypercubes

3.1 Introduction

Embedding trees into other interconnection networks attracted the attention of

many researchers: in [BCLR], [BI], and [MS] embeddings trees into hypercubes were

considered; in [BLD] the authors have considered embedding complete binary trees

into hypercubes; in [LEI] the authors have considered embedding binary trees into 3-D

mesh arrays; [DS] considered simulation of binary trees and X-trees on pyramid net

works; [HJ] addressed embedding quad trees into hypercubes; and [KHI] considered a

reconfigurable embedding of a complete quad tree into a faulty hypercube environ

ment.

It is well known that the complete binary tree CBn with 2" - 1 nodes is not a sub

graph of the hypercube Qn with 2” nodes. This means that a unit dilation and unit

expansion embedding from CBn into Qn is not possible. The proof is straightforward

by the use of bipartite graphs. Both complete binary trees and hypercubes are bipartite

graphs, their nodes can be assigned two colors so that adjacent nodes are not assigned

the same color. Coloring Qn produces equal number of nodes in each color class,

where coloring of CBn gives unequal number of nodes in each color class. Therefore,

36

37

CB„ can’t be a subgraph of Q„ since it has more nodes in one color class than the

number of nodes of Qn in the same color class, i.e., 2"-1 + 2"~3 + • • • > 2"-1.

The complete binary tree CBn can be embedded into Qn such that exactly one of

its edges is assigned to a path of length two in the hypercube and all other edges are

assigned to paths of length one in the hypercube. So, CBn can be embedded into Qn

with dilation two and expansion one ([BCLR], [BI], [Lei], [W]). Bhatt and Ispen [BI],

Barasch et. al. [BLD], and Wu [W] gave recursive dilation two and expansion one

embeddings of complete binary trees into hypercubes based on a structure called two-

rooted complete binary tree.

It is an open problem whether all binary trees can be embedded into their optimal

hypercube with dilation two or into their next to optimal hypercube with dilation one.

Bhatt et. al. [BCLR] showed that arbitrary binary trees can be embedded into hyper

cubes with constant expansion and dilation 10. The constants were subsequently

reduced by Monien and Sudborough [MS], giving a dilation 5 and expansion one

embedding and a dilation 3 and constant expansion embedding.

T » i t i l 1 c o n t a r u r a r o V i a r M n o m t v t K n r l / - » / - > r + •* /-» /* r*X ll U U i9 v u a p u / l WV- t n u U U U V C U li.J.l/11 /U L O V U U llL d i d U l l U L U e U t n p i t / l L U liia i y U & g d

and complete quad trees into twisted hypercubes ([ABa], [ABe]). The remainder of

this chapter is organized as follows. Section 2 describes two different schemes to

embed a complete binary tree into a twisted hypercube of the same size. Section 3

introduces a recursive technique to embed a quad tree into its optimal twisted hyper

cube. Section 4 concludes the chapter.

38

3.2 Embedding Complete Binary Trees into Twisted Hypercubes

This section describes our schemes to embed a complete binary tree CBn into a

twisted hypercube TQn with dilation two and unit expansion. In the first scheme, we

use a recursive algorithm to embed CB„ into TQn based on the embedding of CB„_i

into TQn-\. In the second scheme, we use the inorder labeling to embed CBn into

T Q n -

3.2.1 The Recursive Embedding

The complete binary trees CBX, CB2, CB3, and CB4 can be embedded with dila

tion one into TQX, TQ2, TQ3, and TQ4, respectively, as shown in Figure 3.1. The com

plete binary tree CB5 can be embedded with dilation two into TQ5 as shown in Figure

3.2. For n > 5, we use a recursive algorithm to embed CB„ into TQn based on the

embedding of CBn_x into TQn_x. The base of the recursive algorithm is CB5.

We proceed in four steps. In the first step, CBn is partitioned to a left complete

binary subtree LCBn_x with root Ir, a right complete binary subtree RCBn-X with root

rr, and a root r. In the second step, TQ„ is partitioned to two subcubes, TQ°n_x and

TQX„~i- In the third step, LCBn_x is embedded into TQ°„_X, RCBn_x is embedded into

TQxn_j , and r is embedded into the extra unused node in TQxn_x. In the fourth step,

we construct CBn by joining LCBn_x, r, and RCBn_x. This is done by finding the paths

r~lr and r~rr, each of length two. Our embedding is such that all edges in the lowest

four levels in the complete binary tree CBn are mapped to paths of length one in the

39

00 10

'01 11

“000 010 110 100
bl

b2
,001 ,011 101

0100oooo
b2

c2
£001 O i l £101 101 1011

1000

1001

b2

Figure 3.1: Embedding CB into TQ for n = 1, 2, 3, and 4.

40

Figure 3.2: Embedding CB into TQ for n - 5 .

41

twisted hypercube TQn and all other edges in higher levels are mapped to paths of

length two as shown in Figure 3.3. Now we present a formal description of the recur

sive algorithm described above.

Algorithm 3.1

Let be the binary string of length n with a 1 in position i and 0 in all other positions,

0k be the binary string of length k with 0 in all positions, and © be the XOR operator.

For n = 1, 2, 3, and 4, a dilation one embedding is shown in Figure 3.1. For n = 5, a

dilation two embedding is shown in Figure 3.2. For n > 5, the algorithm is as follows.

Step 1: Partition CBn to LCBn_x, RCBn_j, and r.

Step 2: Partition TQn to TQ°„_X and TQln_x.

Step 3: (i) Embed LCBn_x and RCB„_X into TQ°n_x and TQln_x, respectively. Ir and

rr will appear at addresses O110„_51O and 1110„_51O, respectively.

(ii) Translate the embedding inTQ }n_x by complementing the (n - l) th bit

of each node. Formally, if a tree node was embedded at address x then

after the translation it will appear at address x® 5n_x. The root rr will

appear at address rr®8n_x, i.e., rr will appear at address 1O10„_51O. The

extra unused node u will appear at address u®8n_x,i.e., u will appear at

address 11O0„_51O.

(iii) Embed the root r into the unused node 11O0„_51O in TQln_x.

42

Figure 3.3: The recursive embedding of CB into TQ.

43

Step 4: Construct CBn from LCBn_x, r, and RCBn_x by finding the shortest two paths

r~lr and r~rr, each of length two. Let x and y be the extra nodes that r~lr

and r~rr go through, respectively, x will appear at address r®8n and y will

appear at address r®Sn_2- The shortest paths from r to Ir and from r to rr are

1 1 O0 „_5 1 O -O 1 O0 „_5 1 O - O110„_51O and 11O0„_51O - 1110„_51O - 1O10„_51O,

respectively.

Theorem 3.1. For all n, Algorithm 3.1 embeds the complete binary tree CBn within

the twisted hypercube TQn with dilation two.

Proof: For n < 4, the existence of an embedding with dilation one is shown in Figure

3.1. For n = 5, the existence of an embedding with dilation two is shown in Figure

3.2. For n > 5, we prove this by induction on the height of the binary tree. Our induc

tion basis is CB5. Assume the theorem is true for an embedding of CBn_x in TQn_x.

We now prove that the theorem is true for the embedding of CBn into TQn. In TQn,

consider the two subcubes TQ°n_x and TQxn_x. By induction hypothesis, there exist a

dilation two embedding of CBn_x into TQ°n_x and TQln_x. We assume that the two

embeddings are isomorphic, one is obtained from the other by complementing the

(n - I)'* bit. Since the number of nodes in CBn_x is less than the number of nodes in

TQn-x by one, then TQ°n_x and TQ1̂ , contain two extra unused nodes located at

addresses 0000,,_510 and 11O0„_51O, respectively. Now we can use the extra unused

node in TQxn_x, the CBn_x of TQ°n_lf and the CBn_x of TQxn_x to construct the com

plete binary tree CBn.

Next we prove that the dilation of this embedding is two. We use the routing

algorithm of [EBSS] to show that the length of the shortest path from the root of CBn

to any of its children is of length two. Let r~lr be the shortest path from the root r of

CBn to the root lr of the left complete binary subtree LCBn_x and r~rr be the shortest

path from the root r of CBn to the root rr of the right complete binary subtree RCB„_X.

r will appear at address 11O0„_51O, lr at address O110„_51O, and rr at address

1O10„_51O. Notice that if we group the addresses of r, lr, and rr into pairs of bits,

from right to left, then they are pair-related except for the left most three bits. By

using the routing algorithm of [EBSS], the shortest paths from 11O0„_51O to 011^„_510

and from 11O0„_51O to 1O10„_51O are 11O^„_51O-O1O0„_51O - O110„_51O and

11O0„_51O - 1110„_51O - 1O10„_51O, respectively. So, the dilation of this embedding

is two. □

It can be proved easily that the edge congestion of this embedding is two. It is

obvious that the edge congestion of the lowest four levels of the complete binary tree

is one, since the dilation of the embedding is one. In the next higher level, only two

hypercube edges are used twice as shown in Figure 3.2. In all higher levels, each edge

from a parent to any of its children is mapped to a path of length two. Consider the

shortest paths r~lr and r~rr. The shortest path from the root 11O0„_51O to the left root

0116»„_510 is 1 1 0 <9 „_5 10 - 010<9„_510 - 011#„_510 and from the root 11O0„_51O to the

right root 1O10„_51O is 11O£;)_510 - 111 6»„_510 - 1O10„_51O. Notice that the path r~lr

uses an edge through dimension n from the root r to an intermediate node x and an

edge through dimension (n-3) from x to the left root r, while the path r~rr uses an

45

edge through dimension (n-3) from the root r to an intermediate node y and an edge

through dimension (n-1) from y to the right root rr. Therefore, the maximum number

of times a hypercube edge is used is two. So, the edge congestion of this embedding

is two.

3.2.2 The Inorder Embedding

Another way to embed the complete binary tree CBn into the twisted hypercube

TQ„ is the inorder labeling of the complete binary tree as shown in Figure 3.4. The

nodes of the complete binary tree are numbered inorder, each node of the complete

o

oo ,110

Figure 3.4: The inorder embedding of CB into TQ for n = 1, 2, and 3.

46

binary tree is mapped to the node in the twisted hypercube with the corresponding

address.

As illustrated in Figure 3.5, in the lowest level, each edge from a left child to its

parent is mapped to the corresponding twisted hypercube edge between the images of

the two nodes, while the edge between a right child to its parent is mapped to a path of

length two, from the right child to the left child and from the left child to the parent.

In the next level, each edge from a left child, or a right child, to its parent is mapped to

the corresponding twisted hypercube edge between the images of the two nodes. In all

higher levels, each edge from a left child, or a right child, to its parent is mapped to a

path of length two. Notice that the inorder embedding is simpler, but it is less efficient

in terms of the number of edges in the complete binary tree that are mapped to paths of

length two in the twisted hypercube.

Theorem 3.2. For all n, the inorder labeling of the complete binary tree CBn embeds

CBn within the twisted hypercube TQn with dilation two.

Proof: Let fik be the binary string of length k with 1 in all positions. For n < 3, the

inorder embedding is shown in Figure 3.4. For n > 3, we prove the theorem by induc

tion on the height of the binary tree. Our induction basis is CB3, a dilation two

embedding of CB3 into TQ3 is shown in Figure 3.4. Assume the theorem is true for an

embedding of CBn_x in TQn_x. We now prove that the theorem is true for the embed

ding of CBn in TQn. In TQn, consider the two subcubes TQ°n_x and TQxn_x. By

induction hypothesis, we can embed CBn_x into TQ°„_X and TQxn_x, with dilation two.

47

Figure 3.5: The inorder embedding of CB into TQ.

48

Since the number of nodes in CBn_x is less than the number of nodes in TQ„_y by one,

then r 0 o„_i and TQX n_x contain two extra unused nodes located at addresses 01 p n_2

and 11 Pn-2 , respectively. Now we can use the extra unused node in TQ°n_x, the C£„_i

of TQ°n_i, and the CBn_x of TQln_x to construct the complete binary tree CBn with

2" - 1 nodes.

Next we prove that the dilation of this embedding is two. We again use the rout

ing algorithm of [EBSS] to show that the length of the shortest path from the root of

CBn to any of its children is of length two. Let r~lr be the shortest path from the root

r of CBn to the root lr of the left complete binary subtree LCBn_x and r~rr be the

shortest path from the root r of CBn to the root rr of the right complete binary subtree

RCB„_X. r will appear at address 01 p n_2, lr at address 00/?„_2, and rr at address

lOy0„_2. Notice that r, lr, and r r are identical except for the left most two bits. By

using the routing algorithm of [EBSS], the shortest paths from 01/?„_2 to 00/?„_2 and

from 01 Pn-2 t0 10/?„_2 are of length two. So, the dilation of this embedding is two. □

It is obvious that the edge congestion of this embedding is two. In the lowest

Ipypl pnr-h prjffo from o nafPUt i*c Ipft ohilH ic mcinnoH to thp rnirpcnnnHinn tw/ietpiitv f VI) \J A tL m U jpUiW'lit fcV M. VO ivi. i. WAAA.AV* 111 kV U1V W ll VÛ /VI1UU1̂

hypercube edge between the images of the two nodes, while the edge from a parent to

its right child is mapped to a path of length two, from the parent to the left child and

from the left child to the right child. This means that the only edge in this level that is

used twice is the edge from a parent to its left child. In the next higher level, each

edge from a child to its parent is mapped to the corresponding twisted hypercube edge

between the images of the nodes, i.e., each edge is used exactly once. In all higher

49

levels, each edge from a child to its parent is mapped to a path of length two. Con

sider the shortest paths r~lr and r~rr. Without loss of generality, consider the case

when n is even. The shortest path r~lr from the root 01/?„_2 to the left root 00/?„_2 is

n -2

01 # ,- 2 -0 0 (0 1) 2 -00/?„_2 and the shortest path r~rr from the root 01/?„_2 to the right

n-2 n -2

child 10yf?„_2 is 0 ip n_2- \ l ($ \) ~ -10/?„_2, where (0 1) ~ means the repetition of the 01

. n — 2
pair -- - ■ times. Notice that the path r~lr uses an edge through dimension (n-1) from

the root r to an intermediate node x and an edge through dimension (n-1) from x to

the left root r, while the path r~rr uses an edge through dimension n from the root r

to an intermediate node y and an edge through dimension (n-1) from y to the right root

rr. Therefore, the maximum number of times a hypercube edge is used is two. So,

the edge congestion of this embedding is two.

3.3 Embedding Complete Quad Trees into Twisted Hypercubes

This section describes our scheme to embed a complete quad tree CQn into its

optimal twisted hypercube TQ2n_x with dilation two and expansion one. We proceed

in four steps. In the first step, CQ„ is partitioned into a left left complete quad tree

LLCQn_x with root llr, a left complete quad tree LCQn_x with root lr, a right complete

quad tree RCQ„_X with root rr, a right right complete quad tree RRCQn with root rrr,

and a root r as shown in Figure 3.6. In the second step, TQ2n_x is partitioned into four

subcubes TQ°°2n_3, TQ012n_3, TQu 2n_3, and TQl02n_3. In the third step, LLCQn_x is

embedded into TQ°°2n_3, LCQn_x is embedded into TQ012n_3, RCQn_x is embedded

50

r

nr

Figure 3.6: Partitioning CQ.

into TQn 2n-3> RRCQn_x is embedded into TQl02n-^, and the root r is embedded into

one of the unused nodes in TQ00̂ -!- In the fourth step, we construct CQn by finding

the paths r~llr, r~lr, r~rr, and r~rrr, each of at most length two. The resulting

embedding is such that only 37.5% of the edges in the lowest level of the complete

quad tree and 50% of the edges in higher levels are mapped to paths of length two in

the twisted hypercube. The rest of the edges of the complete quad tree are mapped to

paths of length one in the twisted hypercube as shown in Figure 3.7. Now we present

a formal description of the recursive algorithm described above.

51

Figure 3.7: The recursive embedding of CQ into TQ.

52

110U00 010110 ,100010noo

O ilOil 101 001001

100

101

(a) Standard (b) Alternate

Figure 3.8: Embedding CQ into TQ for n - 2 .

Algorithm 3.2

Let Si be the binary string of length n with a 1 in position i and 0 in all other positions,

0k be the binary string of length k with 0 in all positions, and ® be the XOR operator.

For n = 1, CQi consists of exactly one node and can be embedded into TQX with two

nodes. For n = 2, a dilation two embedding is shown in Figure 3.8. For n > 2, the

algorithm is as follows.

Step 1: Partition CQn to LLCQn_x, LCQn_x, RCQ„_X, RRCQn_u and r.

53

Step 2: Partition TQ2n_x to 7 £ ° V 3, ^ 112, - 3 . and TQ10̂ .

Step 3: (i) Embed LLCQn„x into TQ°°2n_3, LCQn_x into TQ01̂ ,--}, RCQn_x into

TQu 2n-3 , and RRCQn_x into TQ102n_3. Hr, lr, rr, and rrr will appear at

addresses 0 0 0 #2„_4 , 0 1 0 #2n_4 , 1 1 0 ^ - 4 , and lOO0 2„-4 , respectively.

(ii) Translate the embeddings in TQ00̂ ^ and TQl02n_3 by complementing

the (2n - 3)lh bit of each node. Formally if a tree node was embedded at

address x then after the translation it will appear at address x® S2n_3.

After the translation the left left root llr and the right right root rrr will

appear at addresses OO102„_3 and 1O102„_4, respectively. Therefore, the

final position of llr, lr, rr, and rrr are OOIO^^, 0106^,^, 11O02„_4, and

1 0 1 ^ _ 4 , respectively.

(iii) Embed the root r into the node with label 0 in TQqo2ji_3.

Step 4: Construct CQ„ from LLCQ„_X, LCQn_x, RCQn_x, RRCQn_x, and r by finding

the four paths r~llr, r~lr, r~rr, and r~rrr. The edges r — llr and r — lr of

CQ„ are mapped to paths of length one in TQ2n_x, while the edges r - r r and

r - rrr are mapped to paths of length two. The shortest paths from r to rr

and from r to rrr are OOO0 2„_ 4 -O1O02„_4 - 11O02„_4 and 000d2n̂ -

100/92m_4 - lO1 0 2n_4 , respectively.

Theorem 3.3: For all n, Algorithm 3.2 embeds the complete quad tree CQn within

the twisted hypercube with dilation two.

Figure 3.9: Embedding CQ into TQ for n = 3.

55

Proof: For n = 1, CQX can be easily embedded into TQ\. For n = 2, the existence of

an embedding with dilation two is shown in Figure 3.8. For n > 2, we prove this by

induction on the height of the complete quad tree CQn. Our induction basis is CQ3, a

dilation two embedding of CQ3 into TQ5 is shown in Figure 3.9. Assume the theorem

is true for an embedding of C<2„-i in TQ2n_3. We now prove that the theorem is true

for the embedding of CQn in TQln_l . In TQ2n-\, consider the four subcubes 7B002b_3,

TQ012„_3, TQn 2n_3 > and TQw2n_3. By induction hypothesis, there exist a dilation two

embedding from C£>„-i to TQ°°2n_3, TQ012^-3 . TQu 2n_3, and TQ102n_3. Since the num

ber of nodes in CQ„^ is less than the number of nodes in TQ ^,^, then TQ°°2n_3,

TQ012n-3, TQn 2 n -3 ’ and TQ102n_3 contain extra unused nodes. Now we can use the

unused node with label 0 in TQ°°2n-3 > the CQn. x of TQ00̂ ^ , the Cj2„-i of TQ012n_3,

the Cj2„-i of 7 2 112,1-3 , and the CQn_x of TQ102n_3 to construct the complete quad tree

CQn.

Next we prove that the dilation of this embedding is two. Thus, we need to show

that the length of the shortest path from the root r to any of its four children is at most

two. Clearly, the length of the paths r~llr and r~lr is one since they are mapped to

edges in the twisted hypercube. Let r~rr be the shortest path from the root r of CQn

to the root rrr of the right complete quad subtree RCQ„_i and r - r r r be the shortest

path from the root r of CQ„ to the root rrr of the right right complete quad subtree

RRCQ„_j. r will appear at address 0 0 0 ^ - 4 , rr will appear at address 11 0 6 >2„^4, and

rrr will appear at address 1 O1 0 2/i-4 - Notice that if we group the addresses of r, rr,

56

and rrr into pairs of bits, from right to left, then they are pair-related except for the left

most three bits. By using the routing algorithm of [EBSS], the shortest path from

000f?2«-4 to 110#2*-4 is OOO02„-4 ~ 01002/1-4 “ 1106>2„-4 and from OOO02n-4 to lO102/>-4

is 0 0 0 $2/i—4 - lO O ^ ^ - 1 0 1 ^2n-4 - So, the length of the paths r~rr and r~rrr are two.

Therefore, the dilation of this embedding is two. □

It can be proved easily that the edge congestion of this embedding is two. It is

obvious that the edge congestion of the lowest level of the complete quad tree is two,

since one of the hypercube edges has to be used twice as shown in Figure 3.8. In all

higher levels, each edge from a parent to any of its left children is mapped to a path of

length one, while an edge from a parent to any of its right children is mapped to a path

of length two. Clearly, the edge congestion of the paths r~llr and r~lr is one since

their dilation is one. Now, consider the paths r~rr and r~rrr. The shortest path from

the root OOO0 2« - 4 to the right root 1 1 0 6 > 2„ _ 4 is 0 0 0 0 ^ - 4 ~ OlO0 2n̂ t - llO 0 2« - 4 and from

the root OOO0 2n- 4 to the right right root lO102n-A is OOO0 2 n - 4 - 1 0 0 ^ - 4 - 1 0 1 #2„-4 -

Notice that the path r~rr uses an edge through dimension (n-1) from the root r to an

intermediate node x and an edge through dimension n from x to the right root rr,

while the path r~rrr uses an edge through dimension n from the root r to an interme

diate node y and an edge through dimension (n-3) from y to the right right root rrr.

Therefore, the maximum number of times a hypercube edge is used is two. So, the

edge congestion of this embedding is two.

57

3.4 Summary

In this chapter, two different schemes were used to embed the complete binary

tree CBn into the twisted hypercube TQn. In the first scheme, we used a recursive

algorithm to embed CB„ into TQ„ based on the embedding of CBn_x into TQn_x. The

resulting embedding is such that all edges in the lowest four levels of the complete

binary tree are mapped to paths of length one in the twisted hypercube and all other

edges in higher levels of the complete binary tree are mapped to paths of length two in

the twisted hypercube. In the second scheme, we used the inorder binary labeling of

the complete binary tree CB„ to embed CB„ into the twisted hypercube TQ„. The

inorder embedding is simpler and more natural than the recursive embedding, but it is

less efficient in terms of the number of edges that are mapped to paths of length two.

For complete quad trees, we used a recursive algorithm that embeds CQ„ into

TQn based on the embedding of C<2„_i into TQn_x. The resulting embedding is such

that 37.5% of the edges in the lowest level and 50% of the edges in higher levels of the

complete quad tree are mapped to paths of length two in the twisted hypercube and the

rest of edges are mapped to paths of length one.

C H A P T E R 4

Embedding Rings
into Faulty Twisted Hypercubes

4.1 Introduction

The ability of a network to simulate, compute, route, and reconfigure itself

despite the presence of faults is an important issue in parallel processing. The twisted

hypercube was proposed as an alternative to the hypercube. One of the important fea

tures of the hypercube is its ability to simulate other networks in the presence of faults.

If the twisted hypercube is considered as an alternative, it is necessary to show that its

performance in the presence of faults is at least as good as that of the hypercube.

Rosenberg and Snyder [RS] showed that given any ring and any connected graph

of the same size, the ring can be embedded into the graph with dilation cost < 3. They

also proved that this bound is optimal. It is well known that rings can be embedded

into hypercubes with dilation one using cyclic Gray Codes. Saad and Schultz [SS]

used Gray Codes to embed a ring of size / into a hypercube of size 2” with dilation

one when I is even and 4 < / < 2". Latifi and Zheng [LZ] generalized the cyclic Gray

Code method to embed rings into twisted hypercubes. They identified n\ distinct

n\
Hamiltonian paths and — + (n -2) ! distinct Hamiltonian circuits in a twisted hyper-

cube.

58

59

Embedding rings into hypercubes in the presence of faults have been addressed

by many researchers. Provost and Melhem [PM] have given distributed algorithms

despite single, double, and multiple faults wasting up to 50% of the processors in the

worst case. Chan and Lee [CL] improved the previous result by wasting only one

nonfaulty processor for every faulty processor with some restriction on the number of

faults. In this chapter, we consider the problem of embedding rings into twisted

hypercubes in the presence of single and multiple faulty processors [ABb].

The remainder of this chapter is organized as follows. In section 2, we describe

our schemes to embed a ring of size 2" into a fault-free twisted hypercube of the same

size. Section 3 addresses embeddings in the presence of faulty nodes. Our emphasis

will be on the multiple fault case. Section 4 concludes the chapter.

4.2 Fault-Free Embeddings

Given a ring R2„ with 2" nodes, consider the problem of assigning the ring nodes

to the nodes of the twisted hypercube such that adjacency is preserved. That is, given

any two adjacent nodes in the ring, their images by this embedding should be neigh

bors in the twisted hypercube through some dimension i, where 1 < i < n. We can

view such an embedding as a sequence of dimensions crossed by adjacent nodes. Let

us call such a sequence the embedding sequence, denoted by ES = (d t , d 2, ..., d2n),

where dt e {1,..., n} for all 1 < i < 2".

60

1 V5 V2

1 1

1 V6 VI

(a) Type A (b) Type B

Figure 4.1: The embedding sequence.

4.2.1 The Embedding Sequence

Figure 4.1 shows an embedding of the ring R 23 into the twisted hypercube TQ3.

It is more convenient to view the embedded ring as well as the twisted hypercube in

the way shown in Figure 4.1. All twisted hypercube nodes with even labels are in the

upper level and all nodes with odd labels are in the lower level. The embedding

sequence of R2i is ES = (1, 3 ,1 ,2 ,1 , 3 ,1 ,2). For example, in Figure 4.1.a, notice that

nodes Vi and v2 are connected by a link through dimension 1, v2 and v3 are connected

by a link through dimension 3, v3 and v4 are connected by a link through dimension 1,

v4 and v5 are connected by a link through dimension 2, and so on. The embedding

sequence ES can be generated using the following algorithm.

61

Algorithm 4.1

Let n be the dimension of the twisted hypercube and let the vertical bar be the con

catenation operator.

Step 1: ES <— 1

Step 2: For i <- 3 to n do

ES <— ES | i | ES

Step 3: ES ES 12 1 ES 12

The embedding sequence is generated by applying Algorithm 4.1 on n, where n

is the dimension of the twisted hypercube. The number of nodes in the twisted hyper

cube is equal to the number of nodes in the embedded ring which is 2" nodes. Thus,

the embedding sequence of the ring R# is ES = (1 ,3 ,1 ,4 , 1 ,3 ,1 , 2 ,1 , 3 ,1 ,4 ,1 , 3,

1, 2).

Theorem 4.1: For every n, Algorithm 4.1 will generate the embedding sequence to

construct a ring of size 2" in a fault-free twisted hypercube of dimension n.

Proof: We prove this by induction on the dimension of the twisted hypercube. Our

induction basis is TQ2, a ring of size 4 can be easily constructed in TQ2 using the

embedding sequence ES = (1, 2, 1,2). Assume the theorem is true for the construction

of a ring of size 2”-1 in a twisted hypercube of dimension n-1. We now prove that the

theorem is true for the construction of R2n in TQn. Consider the two twisted subcubes

T<2°„_i and TQln_x. By induction hypothesis, we can construct a ring of size 2”_1 in

62

both TQ°n_x and TQln_x. Let their embedding sequence be

ES = 5„_1|2 |5„_1|2

where Sn_x is a sequence of dimensions recursively defined as following

S2 = l

Sn-1 = Sn-2 |n I Sn-2

Now we combine two rings, each of size 2"-1, to come up with a ring of size 2". This

is done by replacing the first link that goes through dimension 2 of the first ring and

the second link that goes through dimension 2 of the second ring by two links that go

through dimension n. The embedding sequence of the new ring R2n is

ES = | n | 12 1 Sn_i | n | S„_x 12

= Sm\ 2 \ S m\2

which is the same embedding sequence generated by Algorithm 4.1. □

Notice that the same embedding sequence may result in different embeddings of

R2n into TQn depending on the twisted hypercube node that initiates the ring construc

tion. Among all different embeddings, we are interested in two kinds. The first

embedding is when the node that initiates the ring construction in the twisted hyper

cube is the upper left most node, node with label 0. The second embedding is when

the node that initiates the ring construction in the twisted hypercube is the lower left

most node, node with label 1. Let us call the first embedding type A embedding and

the second embedding type B embedding. Figure 4.2 shows both type A and type B

embeddings for the ring R2* into the twisted hypercube TQ4.

63

4

1

33 3 3

(a) Type A embedding

3 3

1

44

(b) Type B embedding

Figure 4.2: Fault-free embedding.

4.2.2 Divide-Conquer Embeddings

This section introduces a data structure, that is fundamental to the embeddings

given in this chapter called a cube. A cube is a twisted subcube of dimension 3 that

consists of two adjacent blocks as shown in Figure 4.3.b. A block is a set of four

nodes in a twisted hypercube that form a ring of size 4 that has the embedding

sequence ES = (1, 2, 1, 2) as shown in Figure 4.3.a. Notice that cubes overlap while

blocks do not and a twisted hypercube of dimension n, TQn, contains 2"-2 cubes and

64

L_

• •

L_

(a) The block

• #

I
I I

(b) The cube

Figure 4.3: Blocks and cubes.

2"-2 blocks. A ring of size 8, R2i , can be embedded into a cube. In a cube, if we use

the twisted lower links that go through dimension 3 to connect the two blocks, after

removing the lower two links that go through dimension 2, then the embedding is of

type A and if we use the upper links that go through dimension 3 to connect the two

blocks, after removing the upper two links that go through dimension 2, then the

embedding is of type B as shown in Figure 4.1. The cube is used in this section to

introduce new techniques to embed a ring into a twisted hypercube. In the next sec

tion, this technique is generalized to embed a ring into a faulty twisted hypercube.

65

Now, given a ring R2«, we can embed it into the twisted hypercube TQn by the follow

ing algorithm.

Algorithm 4.2

Step 1: Partition TQn into 2”-3 node disjoint cubes.

Step 2: Embed the ring R2i into each cube using type A, or type B, embedding.

Step 3: Connect the 2”-3 rings, each of size 8, through the upper links, or the twisted

lower links, to come up with type A, or type B, embedding.

Theorem 4.2: For every n, Algorithm 4.2 will embed a ring of size 2" in a fault-free

twisted hypercube of dimension n.

Proof: We consider only type A embedding. Type B embedding can be proved in a

similar way. We prove this by induction on the dimension of the twisted hypercube.

Our induction basis is TQ3, the embedding of a ring of size 23 into a twisted hyper

cube of dimension 3 is shown in Figure 4.1.a. Assume the theorem is true for the con

struction of a ring of size 2"-1 in a twisted hypercube of dimension n -1. We now

prove that the theorem is true for the construction of R2n in TQn. Consider the two

twisted subcubes TQ0, ^ and TQ ln_x. By assumption we can construct a ring of size

2n_1 in both TQ°„_X and TQln_x. Now we combine two rings, each of size 2”-1, to

come up with a ring of size 2". This is done by replacing the first link that goes

through dimension 2 of the first ring and the second link that goes through dimension

2 of the second ring by two upper links that go through dimension n. □

66

In the next section, we will use the same concept with minor variations to embed

a ring to a faulty twisted hypercube without wasting any nonfaulty nodes.

4.3 Fault-Tolerant Embeddings

One of the special significant features of the hypercube is its capability to simu

late other interconnection networks in the presence of faults. Accordingly, if the

twisted hypercube is to be considered as an alternative, it is necessary to show that it is

at least as good as the hypercube regarding fault-tolerance. In this section, we are

interested in answering the following question. Given that some faults are present,

does the twisted hypercube have the ability to simulate rings efficiently? Like the

hypercube, the twisted hypercube is maximally fault-tolerant. While even one faulty

processor in the twisted hypercube will degrade its overall performance, it is still capa

ble of simulating rings without wasting any nonfaulty nodes. In the hypercube, you

have to waste a nonfaulty node for every faulty node [CL]. In the next section, we

extend Algorithm 4.2 to handle a single faulty node.

4.3.1 Embedding in the Presence of a Single Fault

The idea behind our technique to embed a ring into a faulty twisted hypercube is

to use some of the unused links to skip a faulty node. As mentioned in the previous

section, Figure 4.1 shows two kinds of embeddings of a ring R 23 into a twisted hyper

cube TQ3. Notice that some of the links are not part of the embedding. As an

67

illustration, in Figure 4 .l.a, the links between nodes Vj and v5 through dimension 3, v2

and v7 through dimension 2, v3 and v6 through dimension 2, and v4 and v8 through

dimension 3 are unused links. We can use these unused links to avoid a faulty node.

Therefore, if node v, in a twisted hypercube TQ„ is faulty, a ring can be

constructed by using some of the unused links to skip the faulty node without disturb

ing the construction of the rest of the ring. A faulty node is either an upper node or a

lower node.

The basic idea behind our technique is to identify the faulty node and the cube

that contains it, then avoid the fault by using the unused links. Figure 4.4 shows all

possible locations of a faulty node within a cube and the links that need to be used to

avoid it in the process of constructing the ring. Part (a) shows how to handle an upper

faulty node, while part (b) shows how to handle a lower faulty node. Notice that part

(a) simulates type B embedding within a cube since it does not disturb the construction

of the rest of the ring, the twisted lower links can be used to connect it with adjacent

rings when type B embedding is used. On the other hand, part (b) simulates type A

embedding within a cube since it does not disturb the construction of rest of the the

ring, the upper links can be used to connect it with adjacent rings when type A embed

ding is used. Figure 4.5.a shows how to handle an upper faulty node, while Figure

4.5.b shows how to handle a lower faulty node. Notice that the upper faulty node is in

the second cube, while the lower faulty node is in the first cube. The location of the

cube that contains the faulty node might be the first, the last, or some where in

between. Our technique works for all three cases by using the appropriate links. The

68

(a) Upper faulty node

(b) Lower faulty node

Figure 4.4: All possible locations of a faulty node.

69

following algorithm embeds a ring R2n.x into a twisted hypercube TQn in the presence

of a faulty node.

A lgorithm 4.3

Step 1: Partition TQn into 2”"3 node disjoint cubes.

Step 2: Locate the cube that contains the faulty node and identify whether it is an

upper or a lower node.

Step 3: (i) If it is an upper node then

a. Choose the appropriate embedding from Figure 4.4.a.

(a) Upper faulty node

(b) Lower faulty node

Figure 4.5: Single fault embedding.

70

b. Embed the ring R23 into each of the fault-free cubes using type B

embedding.

c. Connect all the rings, one of size 7 and the rest of size 8, using the

twisted lower links to come up with the ring R2n-\-

(ii) If it is a lower node then

a. Choose the appropriate embedding from Figure 4.4.b.

b. Embed the ring R23 into each of the fault-free cubes using type A

embedding.

c. Connect all the rings, one of size 7 and the rest of size 8, using the

upper links to come up with the ring /f2«-i -

Theorem 4.3: For every n, Algorithm 4.3 will embed a ring of size 2"-1 into a

twisted hypercube of dimension n in the presence of a faulty node.

The theorem can be proved easily by extending the proof of theorem 4.2. In the

next section, we will use the same concept with minor variations to embed a ring into

a faulty twisted hypercube with multiple faults.

4.3.2 Embedding in The Presence of Multiple Faults

In this section, we describe our scheme to embed a ring 7?2"-/> where / is the

number of faults, into a twisted hypercube TQn in the presence of / faults such that

each cube has at most one faulty node. A cube might be an overlap cube as shown in

71

Figure 4.3.b. The maximum number of faults that can be handled by our technique is

/ = 2"~3. The idea is to generalize Algorithm 4.3 to handle multiple faults. The fol

lowing algorithm embeds a ring into a twisted hypercube TQn in the presence

of / faults.

Algorithm 4.4

Step 1: Partition TQ„ into 2"-2 blocks.

Step 2: Identify the blocks with faulty nodes.

Step 3: Group each faulty block with the adjacent unfaulty block to its left to form a

faulty cube.

Step 4: Embed a ring of size 7 into each of the faulty cubes by choosing an appropri

ate embedding from Figure 4.4 and embed a ring of size 4 into each of the

blocks.

Step 5: Construct a ring of size 2" - / by connecting the rings, either R-j or R4, using

the appropriate links, either upper links or twisted lower links as shown in

Figure 4.6.

Theorem 4.4: For every n, Algorithm 4.4 will embed a ring of size 2” - / into a

twisted hypercube of dimension n in the presence of / faulty nodes such that each

cube has at most one faulty node.

72

Figure 4.6: Multiple faults embedding.

73

Proof: Without loss of generality, we assume that the left most block has no faulty

node. The existence of an adjacent unfaulty block to the left of any faulty block fol

lows directly from our assumption that each cube has at most one faulty node. In the

process of constructing the ring R2«-f, any two adjacent cubes with a fault are one of

the following cases

Case 1: A cube with upper fault followed by a cube with upper fault.

Case 2: A cube with upper fault followed by a cube with lower fault.

Case 3: A cube with lower fault followed by a cube with lower fault.

Case 4: A cube with lower fault followed by a cube with upper fault.

Figure 4.7 shows all four cases in the process of constructing the ring. We use the

twisted lower links with an upper faulty cube followed by either an upper or a lower

faulty cube and the upper links with a lower faulty cube followed by either a lower or

an upper faulty cube. The way we grouped the faulty blocks with unfaulty blocks to

form cubes always guarantees the existence of such links. The other cases are an

upper or a lower faulty cube followed by a block and a block followed by a block or a

faulty cube. We use the twisted lower links with an upper faulty cube followed by a

block and the upper links with a lower faulty cube followed by a block. For the case

of a block followed by a block or a faulty cube, we use the appropriate links, either

upper or twisted lower links, since both are available. □

74

(a) Upper followed by upper

(b) Upper followed by lower

(c) Lower followed by lower

(d) Lower followed by upper

Figure 4.7: All possible cases of two adjacent faulty cubes.

75

4.4 Summary

In this chapter, we presented optimal algorithms for embedding a ring into a

twisted hypercube with fault-free nodes, single faulty node, and multiple faults. We

showed the capability of the twisted hypercube to simulate rings efficiently in the pres

ence of faults. While even one faulty processor will degrade its over all performance,

like any other network, but it is still capable of constructing a Hamiltonian circuit

within the nonfaulty processors.

A twisted hypercube TQn with 2" nodes can simulate a ring with 2" - /

nodes in the presence of / twisted hypercube faulty nodes with some restrictions on

the location of the faults. In the hypercube, the simulation of rings achieved by wast

ing a nonfaulty processor for every faulty processor. The simulation of rings by

twisted hypercube is more efficient since it is achieved without wasting any nonfaulty

processors.

CHAPTER 5

F ault-Tolerance Embedding
of Rings into Hypercubes

5.1 Introduction

The hypercube has been the focus of many recent research activities. Extensive

work has been done to show that the hypercube is a powerful architecture capable of

simulating other interconnection networks such as rings, meshes, trees, stars, and oth

ers with minimum overhead ([BCGS], [BCLR], [BMS], [BSu], [MS], [SS], [Lei]). It

has also been shown that the hypercube machine is robust and fault-tolerant and has

the ability to simulate, route, and reconfigure itself despite the presence of either faulty

links or nodes ([BS], [CL], [HLNa], [HLNb], [PM], [WCM]).

The problem of embedding rings into other interconnection networks has been

addressed by many researchers. Rosenberg and Snyder [RS] addressed the problem of

embedding rings into general graphs. They showed a dilation 3 embedding of a ring

into a general graph of the same size. In [JLD] and [NSK], the authors considered

embedding cycles, rings, and Hamiltonians into star networks. Saad and Schultz [SS]

used Gray Codes to show the existence of a Hamiltonian circuit in a hypercube struc

ture. Chan and Shin [CS] used Gray Codes to identify n! distinct Hamiltonian paths in

a hypercube network.

77

Embedding rings into hypercubes despite the presence of faults have been

addressed by many researchers. Provost and Melhem [PV] have given distributed

algorithms in the presence of single, double, and multiple faults wasting up to 50% of

the processors in the worst case. Chan and Lee [CL] improved the result by wasting

Tl | 1o n l y o n e n o n f a u l t y p r o c e s s o r f o r e v e r y f a u l t y p r o c e s s o r a n d a l l o w i n g u p t o L J
2

faults. This chapter uses a new technique to embed a ring of size 2" - 2 / into a hyper

cube of dimension n despite the presence of / faults. It wastes only one nonfaulty

processor for every faulty processor and allows up to 2”-3 faults with some restriction

on the location of the faults [ABd].

The remainder of this chapter is organized as follows. In section 2, we describe

our scheme to embed a ring of size 2” into a fault-free hypercube of the same size.

Section 3 addresses embedding in the presence of faulty nodes. Our emphasis will be

on the multiple fault case. Section 4 concludes the chapter.

5.2 Fault-Free Embeddings

Given a ring R2- with 2" nodes. Consider the problem of assigning the ring

nodes to the nodes of the hypercube such that adjacency is preserved. In the hyper

cube, two nodes are adjacent if the binary representation of their labels differ in

exactly one bit position, say in position i. We call the link that connects the two adja

cent nodes a link through dimension i. The least significant bit in the binary represen

tation of a label is referred to as position 1 and the most significant bit as position n.

78

v l v8 v6v7

v2 v3 v5v4

Figure 5.1: The embedding sequence.

Now given any two adjacent nodes in the ring, their images by this embedding should

be neighbors in the hypercube through some dimension i, where 1 < i < n. We can

view such an embedding as a sequence of dimensions crossed by adjacent nodes. We

call such a sequence the embedding sequence, denoted by ES = (dx, d2, ..., d2n), where

di e { 1 , n } for all 1 < i < 2".

Figure 5.1 shows an embedding of the ring Rp into the hypercube Q$. It is more

convenient to view the embedded ring as will as the hypercube in the way shown in

Figure 5.1. We view the hypercube as two levels where all nodes with even labels are

in the upper level and all nodes with odd labels are in the lower level. The embedding

sequence of R2i is ES = (1, 2, 3, 2, 1, 2, 3, 2). For example, in Figure 5.1, notice that

nodes v l and v2 are connected by a link through dimension 1, v2 and v3 are connected

by a link through dimension 2, v3 and v4 are connected by a link through dimension 3,

v4 and v5 are connected by a link through dimension 2, and so on. The embedding

sequence ES can be generated using the following algorithm.

79

Algorithm 5.1

Let n be the dimension of the hypercube and let the vertical bar be the concatenation

operator.

Step 1: ES <- 2

Step 2: For i <- 3 to n do

ES <— ES | i | ES

Step 3: ES <— 1 |E S | 1 |ES

The embedding sequence is generated by applying Algorithm 5.1 on n, where n

is the dimension of the hypercube. The number of nodes in the hypercube is equal to

the number of nodes in the embedded ring which is 2” nodes. Thus, the embedding

sequence of the ring R2* is ES = (1, 2, 3, 2, 4, 2, 3, 2, 1, 2, 3, 2, 4, 2, 3, 2) and the

embedding sequence of the ring R2s is ES = (1, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2 ,4 , 2, 3, 2,

1, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2). Notice that the same embedding sequence

may result in different embeddings of R2n into Qn depending on the hypercube node

that initiates the ring construction. Among all different embeddings, we are interested

in the embedding where the node that initiates the ring construction in the hypercube

is node with label 0.

Theorem 5.1: For every n, Algorithm 5.1 will generate the embedding sequence to

construct a ring of size 2" in a fault-free hypercube of dimension n.

80

Proof: We prove this by induction on the dimension of the hypercube. Our induction

basis is Q2, a ring of size 4 can be easily constructed in Q2 using the embedding

sequence ES = (1, 2, 1, 2). Assume the theorem is true for the construction of a ring

of size 2"_1 in a hypercube of dimension n -1. We now prove that the theorem is true

for the construction of R 2n in Qn. Consider the two subcubes and Qln_ By

induction hypothesis, we can construct a ring of size 2"-1 in both Q°„_j and Qln-i. Let

their embedding sequence be

ES = 1 1 S„_, 11 1 S„_,

where Sn is a sequence of dimensions recursively defined as follows:

S2 = 2

*5n-1 = *5n-2 | n | *5/1-2

Now we combine two rings, each of size 2"_1, to come up with a ring of size 2". This

is done by replacing the second link that goes through dimension 1 of the first ring and

the first link that goes through dimension 1 of the second ring by two links that go

through dimension n. The embedding sequence of the new ring R 2n is

ES = 1 15„_i | n 15„_! 11 1 S„_i | n |

= 1 1*5„ 11 1<5„

which is the same embedding sequence generated by Algorithm 5.1. □

5.2.1 Divide-Conquer Embeddings

This section introduces a data structure, that is fundamental to the embeddings

given in this chapter, called a cube. A cube is a subcube of dimension 3 that consists

81

Figure 5.2: The cube.

of two adjacent blocks as shown in Figure 5.2. A block is a set of four nodes in a

hypercube that form a ring of size 4 that has the embedding sequence ES = (1, 2 ,1 , 2).

Notice that cubes overlap and a hypercube of dimension n, Qn, contains 2"-2 cubes. A

ring of size 8, R23, can be embedded into a cube by the embedding sequence ES = (1,

2, 3 ,2 , \ , 2, 3, 2). The cube is used to introduce new techniques to embed a ring into a

twisted hypercube. These new techniques are generalized in later sections to embed a

ring into a faulty twisted hypercube. The next algorithm uses a divide-conquer tech

nique to embed a ring R2« into a hypercube Qn.

Algorithm 5.2

Step 1: Partition Q„ into 2”-3 node disjoint cubes.

Step 2: Embed the ring R# into each cube using the embedding sequence ES = (1, 2,

3, 2 , 1, 2, 3, 2).

82

Step 3: Connect the 2”-3 rings, each of size 8, through the upper, or lower, links to

come up with a ring of size R2*.

Theorem 5.2: For every n, Algorithm 5.2 will embed a ring of size 2" in a fault-free

hypercube of dimension n.

Proof: We prove this by induction on the dimension of the hypercube. Our induction

basis is £?3, the embedding of a ring of size 23 into a hypercube of dimension 3 is

shown in Figure 5.1. Assume the theorem is true for the construction of a ring of size

2”_1 in a hypercube of dimension n-1. We now prove that the theorem is true for the

(a) Using upper links

(b) Using lower links

Figure 5.3: Fault-free embedding.

83

construction of R2« in Qn. Consider the two subcubes {2°„_i and Qxn_j. By assumption

we can construct a ring of size 2"_1 in both Q°n_{ and Qxn_ N o w we combine two

rings, each of size 2"-1, to come up with a ring of size 2". This is done by replacing

the first link that goes through dimension 2 in the upper part of the first ring and the

last link that goes through dimension 2 in the upper part of the second ring by two

upper links that go through dimension n, or by replacing the last link that goes through

dimension 2 in the lower part of the first ring and the first link that goes through

dimension 2 in the lower part of the second ring by two lower links that go through

dimension n, as shown in Figure 5.3. □

5.3 Fault-Tolerance Embeddings

One of the special significant features of the hypercube is its ability to simulate

other interconnection networks in the presence of faults. In this section, we are inter

ested in answering the following question. Given that some nodes of the hypercube are

faulty, does the hypercube have the ability to simulate rings efficiently? The hyper

cube is maximally fault-tolerant. While even one faulty processor will degrade its

overall performance, it is still capable of simulating rings by wasting only one non

faulty processor for every faulty processor.

5.3.1 Embedding in the Presence of a Single Fault
i

The idea behind our technique to embed a ring into a faulty hypercube is to use

some of the unused links to skip a faulty node. As an illustration, in Figure 5.1, the

84

links between nodes vj and v6 through dimension 3, v2 and v5 through dimension 3, v3

and v8 through dimension 1, and v4 and v7 through dimension 1 are unused links. We

can use these unused links to avoid a faulty node. But since the hypercube does not

contain odd cycles, we have to waste a nonfaulty processor for every faulty processor.

Therefore, if node v, in a hypercube Qn is faulty, a ring /?2«_2 can be constructed by

using some of the unused links to skip the faulty node without disturbing the construc

tion of the rest of the ring.

The basic idea behind our technique is to identify the faulty node and the cube

that contains it, then avoid the fault by using the unused links. Figure 5.4 shows all

possible locations of an upper faulty node within a cube and the links that need to be

used to avoid it in the process of constructing the ring, while Figure 5.5 shows the case

of a lower faulty node. Figure 5.6.a shows how to handle an upper faulty node, while

Figure 5.6.b shows how to handle a lower faulty node. The location of the cube that

contains the faulty node might be the first, the last, or some where in the middle. Our

technique works for all three cases by using the appropriate links. The following algo

rithm embed a ring J?2«_2 into a hypercube Q„ in the presence of a faulty node.

Algorithm 5.3

Step 1: Partition Qn into 2”~3 node disjoint cubes.

Step 2: Locate the cube that contains the faulty node and identify whether it is an

upper or a lower fault.

85

*

o 9----* -

9

(a) Standard (b) Alternate

Figure 5.4: All possible locations of an upper faulty node within a cube.

irrj f f U

i: ' J i-—i o •

• •— # o f: f:
(a) Standard (b) Alternate

Figure 5.5: All possible locations of a lower faulty node within a cube.

(a) Upper faulty node

(b) Lower faulty node

Figure 5.6: Single fault embedding.

Step 3: (i) If it is an upper fault then

a. Choose the appropriate embedding from Figure 5.4.a.

b. Embed the ring R 2 3 into each of the fault-free cubes using the embed

ding sequence ES = (1, 2, 3, 2 ,1 , 2, 3, 2).

c. Connect all the rings, one of size 6 and the rest of size 8, using the

lower links to come up with the ring R2n-2.

(ii) If it is a lower fault then

a. Choose the appropriate embedding from Figure 5.5.a.

88

b. Embed the ring /?23 into eac^ of the fault-free cubes using the embed

ding sequence ES = (1, 2, 3, 2, 1, 2, 3, 2).

c. Connect all the rings, one of size 6 and the rest of size 8, using the

upper links to come up with the ring /?2«-i *

Theorem 5.3: For every n, Algorithm 5.3 will embed a ring of size 2” - 2 into a

hypercube of dimension n in the presence of a faulty node.

The theorem can be proven easily by induction by extending the proof of theo

rem 5.2. In the next section, we will use the same concept with minor variations to

embed a ring into a faulty hypercube with multiple faults.

5.3.2 Embedding in The Presence of Multiple Faults

In this section, we describe our scheme to embed a ring /? 2n_2 / , where / is the

number of faults, into a hypercube Q„ in the presence of / faults such that each cube

has at most one faulty node. The maximum number of faults that can be handled by

our technique is / = 2"-3. The idea is to generalize Algorithm 5.3 to handle multiple

faults. The following algorithm embeds a ring /?2"-2/ into a hypercube Qn in the pres

ence of / faults.

89

Algorithm 5.4

Step 1: Partition Q„ into 2"~3 node disjoint cubes.

Step 2: Identify the cubes with faulty nodes.

Step 3: Embed a ring of size 6 into each of the faulty cubes by choosing an appropri

ate embedding from Figures 5.4 and 5.5 and a ring of size 8 into each of the

unfaulty cubes.

Step 4: Construct a ring of size 2" - 2 / by connecting the rings, either R6 or /?8,

using the appropriate links, either upper or lower links as shown in Figure

5.7.

Theorem 5.4: For every n, Algorithm 5.4 will embed a ring of size 2" - 2 / into a

hypercube of dimension n in the presence of / faulty nodes such that each cube has at

most one faulty node.

Proof: In the process of constructing the ring any two adjacent cubes with a

fault are one of the following cases

Case 1: A cube with upper fault followed by cube with upper fault.

Case 2: A cube with upper fault followed by cube with lower fault.

Case 3: A cube with lower fault followed by cube with lower fault.

Case 4: a cube with lower fault followed by cube with upper fault.

90

Figure 5.7: Multiple faults embedding.

Figure 5.8 shows all four cases in the process of constructing the ring. Notice

that the decision of whether to use a standard or alternate ring depends about the posi

tion of the faulty node within a cube, whether it is in the left or right block and

whether it is an upper or a lower fault. Also, the position of the faults in adjacent

cubes affect the type of ring to be used. We use the lower links with an upper fol

lowed by an upper, the upper links with a lower followed by a lower, and in the case

of an upper followed by a lower or a lower followed by an upper we might use the

upper or the lower links depending on the location of the faults. Since we are wasting

one good processor for every faulty processor, the size of the embedded ring is

2" - I f . □

5.4 Summary

This chapter has presented new techniques to embed a ring of size 2” - 2 / in a

hypercube of dimension n despite the presence of / < 2"-3 faults. The new divide-

conquer technique uses a new data structure called cube. The basic idea behind the

technique is to identify faulty nodes and the cubes that contains them, avoid the faults

within the cube by using the unused links, and construct the ring connecting adjacent

cubes. Our technique has some restrictions on the distribution of the faults. It allows

up to 2"~3 faults such that each cube has at most one fault.

92

(a) Upper followed by upper

(b) Upper followed by lower

(c) Lower followed by lower

(d) Lower followed by upper

Figure 5.8: All possible cases of two adjacent faulty cubes.

CHAPTER 6

Concluding Remarks

One of the most important factors that govern the performance of a parallel

machine is the underlying interconnection network. Many interconnection networks

have been introduced in the literature. The most important features of these intercon

nection networks are the diameter and the node degree. Another important feature of a

network is fault-tolerance. Hypercubes have gained wide spread acceptance due to

their many attractive properties. The twisted hypercube preserves many of the proper

ties of the hypercube and reduces the diameter by a factor of two. This dissertation

explored the efficiency and the fault-tolerance of the twisted hypercube in parallel

computation and investigated relations and transformations between the twisted hyper

cube and various interconnection networks. These include complete binary trees,

complete quad trees, fault-free rings, faulty rings, and hypercubes.

We have presented different schemes to embed complete binary trees and com

plete quad trees into the twisted hypercube. For complete binary trees, we have pre

sented two different schemes to embed a complete binary tree CBn into a twisted

hypercube TQ„. In the first scheme, we used a recursive algorithm to embed CB„ into

TQn based on the embedding of CBn_x into TQn_x. The resulting embedding is such

that all edges in the lowest four levels of the complete binary tree are mapped to paths

of length one in the twisted hypercube and all other edges in higher levels of the com

plete binary tree are mapped to paths of length two in the twisted hypercube. In the

second scheme, we used the inorder binary labeling of the complete binary tree CBn to

embed CBn into the twisted hypercube TQn. The inorder embedding is simpler and

more natural than the recursive embedding, but it is less efficient in terms of the num

ber of edges that are mapped to paths of length two. For complete quad trees, we have

presented a recursive algorithm that embeds CQ„ into TQn based on the embedding of

CQn-\ into TQn_x. The resulting embedding is such that 37.5% of the edges in the

lowest level and 50% of the edges in higher levels of the complete quad tree are

mapped to paths of length two in the twisted hypercube and the rest of edges are

mapped to paths of length one.

Interesting results have been presented on the fault-tolerance of the twisted

hypercube. We have presented optimal algorithms for embedding a ring into a twisted

hypercube with fault-free nodes, single faulty node, and multiple faults. We have

shown the capability of the twisted hypercube to simulate rings efficiently in the pres

ence of faults. While even one faulty processor will degrade its over all performance,

like any other network, but a Hamiltonian circuit can be constructed on the nonfaulty

processors. We have shown that a twisted hypercube TQ„ with 2” nodes can simulate

a ring /?2n- / with 2" - / nodes in the presence of / twisted hypercube faults. In the

hypercube, the simulation of rings achieved by wasting a nonfaulty processor for

every faulty processor. The simulation of rings by twisted hypercube is more efficient

since it is achieved without wasting any nonfaulty processors.

We have presented new techniques to embed a ring of size 2" - 2 / in a hyper

cube of dimension n despite the presence of / < 2"-3 faults. The new divide-conquer

technique uses a new data structure called cube. Our algorithm for multiple faults

allows up to 2"-3 faults such that each cube has at most one fault.

In future work, we intend to study the embedding of other parallel architectures

into the twisted hypercube. It may also be possible to improve on some of our results

such as embedding complete binary tress into twisted hypercubes. It has been conjec

tured that the complete binary tree CB„ is a subgraph of the twisted hypercube TQn.

An interesting obvious problem left open is whether the number of faults that can be

tolerated by the twisted hypercube can be improved further. Another interesting prob

lem will be to adapt our techniques of embedding rings into faulty twisted hypercubes

on other parallel architectures.

Bibliography

[A]

[ABa]

[ABb]

[ABc]

[ABd]

[ABe]

[AG]

[AGr]

[AHMP]

[AJ]

S. Akl, The Design and Analysis of Parallel Algorithms, Prentice-Hall,
1989.

E. Abuelrub and S. Bettayeb, "Embedding Complete Binary Trees into
Twisted Hypercubes," Proc. ISCA International Conference on Computer
Applications in Design, Simulation and Analysis, pp. 1-4,1993.

E. Abuelrub and S. Bettayeb, "Embedding Rings into Faulty Twisted
Hypercubes," Proc. 31st ACM Southeastern Regional Conference, pp.
48-55,1993.

E. Abuelrub and S. Bettayeb, "Embeddings in the Twisted Hypercube,"
Technical Report, Department of Computer Science, Louisiana State Uni
versity, 1993.

E. Abuelrub and S. Bettayeb, "Fault-Tolerance Embedding of Rings into
Hypercubes," submitted fo r publication.

E. Abuelrub and S. Bettayeb, "Embedding Complete Quad Trees into
Twisted Hypercubes," submitted fo r publication.

G. Almasi and A. Gottlieb, Highly Parallel Computing, Ben
jamin/Cummings, 1989.

J. Armstrong and F. Gray, "Fault Diagnosis in a Boolean n-Cube of Micro
processor," IEEE Transactions on Computers, vol. C-30, no. 8, pp.
587-590, August 1981.

H. Alt, T. Hagerup, K. Mehlhom, and F. Preparata, "Deterministic Simula
tion of Idealized Parallel Computers on More Realistic Ones," SIAM Jour
nal on Computing, pp. 8089-835, October 1987.

G. Anderson and E. Jensen, "Computer Interconnection Structures: Taxon
omy, Characteristics, and Examples," Computing Surveys, vol. 7, pp.
197-213, December 1975.

96

97

[AK]

[AR]

[BA]

[BCGS]

[BCLR]

[BH]

[BI]

[BL]

[BLD]

[BMS]

[BS]

S. Akers and B. Krishnamurthy, "Group Graphs as Interconnection Net
works," IEEE Transactions on Computers, vol. 38, pp. 555-565,1989.

R. Aleliunas and A. Rosenberg, "On embedding Rectangular Grids in
Square Grids," IEEE Transactions on Computers, vol. C-31, pp. 907-913,
September 1982.

L. Bhuyan and D. Agrawal, "Generalized Hypercube and Hyperbus Struc
tures for a Computer Network," IEEE Transactions on Computers, vol.
C-33, no. 4, pp. 323-333, April 1984.

S. Bettayeb, B. Cong, M. Girou, and I. Sudborough, "Embedding Permuta
tion Networks into Hypercubes," LATIN 9 2 ,1992.

S. Bhatt, F. Chung, F. Leighton, and A. Rosenberg, "Optimal Simulations
of Tree Machines," Proc. 27th Annual IEEE Foundations o f Computer Sci
ence Conference, pp. 274-282, 1986.

R. Beivide and E. Herrada, "Optimal Distance Networks of Low Degree
for Parallel Computing," IEEE Transactions on Computers, vol. C-40, no.
10, pp. 1109-1123, October 1991.

S. Bhatt and I. Ispen, "How to Embed Trees in Hypercubes," Technical
Report, Department of Computer Science, Yale University, 1985.

H. Bodlaender and J. Leeuwen, "Simulation of Large Networks on Smaller
Networks," Information and Control, vol. 71, pp. 143-180,1986.

L. Barasch, S. Lakshmivarahan, and S. Dhall, "Embedding Arbitrary
Meshes and Complete Binary Trees in Generalized Hypercubes," Proc. 1st
IEEE Symposium on Parallel and Distributed Processing, 1989.

S. Bettayeb, Z. Miller, and I. Sudborough, "Embedding Grids into Hyper
cubes," Journal o f Computer and System Sciences, vol. 45, no. 3, pp.
340-366, December 1992.

B. Becker and H. Simon, "How Robust is the n-Cube," Information and
Computation, no. 2, pp. 162-178, May 1988.

98

[BSu]

[CL]

[CLe]

[CS]

[DS]

[E]

[EBSS]

[EL]

[ENS]

[F]

[FS]

S. Bettayeb and I. Sudborough, "Grid Embedding into Ternary Hyper
cubes," Proc. 1989 ACM South Central Regional Conference, pp. 62-64,
1989.

M. Chan and S. Lee, "Distributed Fault-Tolerance Embeddings of Rings
into Hypercubes," Journal o f Parallel and Distributed Computing, no. 11,
pp. 63-71, 1991.

G. Chartrand and L. Lesniak, Graphs and Digraphs, Wadsworth & Brooks,
1986.

M. Chen and K. Shin, "Processor Allocation in an n-Cube Multiprocessor
Using Gray Codes," IEEE Transactions on Computers, vol. C-36, no. 12,
pp. 396-407, December 1987.

A. Dingle and I Sudborough, "Simulating Binary Trees and X-Trees on
Pyramid Networks," Proc. 1st IEEE Symposium on Parallel and Dis
tributed Processing, pp. 210-219, 1989.

K. Efe, "The Crossed Cube Architecture for Parallel Computation," IEEE
Transactions on Parallel and Distributed Systems, vol. 3, no. 5, pp.
513-524, September 1992.

K. Efe, P. Blackwell, T. Shiau, and W. Slough, "A Reduced Diameter Inter
connection Network," Technical Report, Department of Computer Science,
University of Missouri, 1988.

A. El-Amawy and S. Latifi, "Properties and Performance of Folded Hyper
cubes," IEEE Transactions on Parallel and Distributed Systems, vol. 2, no.
1, pp. 31-42, January 1991.

A. Esfahanian, L. Ni, and B. Sagan, "On Enhancing Hypercube Multipro
cessors," Proc. 1988 International Conference on Parallel Processing, pp.
86-89,1988.

M. Flynn, "Some Computer Organizations and Their Effectiveness," IEEE
Transactions on Computers, vol. C-21, no. 9, September 1972.

R. Finkel and M. Solomon, "Processor Interconnection Strategy," IEEE
Transactions on Computers, vol. C-33, pp. 1180-1194, December 1984.

99

[Gor]

[Gou]

[GW]

[H]

[HB]

[HJ]

[HLNa]

[HLNb]

[HMR]

[HS]

m

[H]

D. Gordon, "Efficient Embeddings of Binary Trees in VLSI Arrays," IEEE
Transactions on Computers, vol. C-36, no. 9, pp. 1009-1018, September
1987.

R. Gould, Graph Theory, Benjamin/Cummings, 1988.

A. Gupta and H. Wang, "Optimal Embeddings of Ternary Trees into
Boolean Hypercubes," Proc. 4th IEEE Symposium on Parallel and Dis
tributed Processing, pp. 230-235, 1992.

W. Hills, The Connection Machine, M IT Press, 1985.

K. Hwang and F. Briggs, Computer Architecture and Parallel Processing,
McGraw-Hill, 1984.

C. Ho and S. Johnson, "Dilation d Embedding of a Hyper-Pyramid into a
Hypercube," Proc. Supercomputing 89, pp. 294-303,1989.

J. Hastad, F. Leighton, and M Newman, "Reconfiguring a Hypercube in the
Presence of Faults," Proc. 19th Annual ACM STOC, pp. 274-284,1987.

J. Hastad, F. Leighton, and M Newman, "Fast Computation Using Faulty
Hypercubes," Proc. 19th Annual ACM STOC, pp. 251-263,1987.

J. Hong, K. Mehlhom, and A. Rosenberg, "Cost Trade-Offs in Graph
Embeddings, with Applications," Journal o f the Association Computer
Machinary, vol. 30, no. 4, pp. 709-728, October 1983.

E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms, Com
puter Science Press, 1989.

O. Ibe, "Reliability Comparison of Token-Ring Network Schemes," IEEE
Transactions on Reliability, vol. 41, no. 2, pp. 288-283, June 1992.

M. Imase and M. Itoh, "Design to Minimize Diameter on Building Block
Network," IEEE Transactions on Computers, vol. C-30, no. 6, pp.
439-448, 1981.

1 0 0

[JLD]

[K]

[KHI]

[KS]

[LBT]

[LE]

[LEI]

[Lei]

[Len]

[LF]

[LZ]

J Jwo, S. Lakshmivarahan, and S. Dhall, "Embedding of Cycles and Grids
in Star Graphs," Proc. 2nd IEEE Symposium on Parallel and Distributed
Processing, pp. 540-547, 1990.

K. Kwon, "Parallel Computation on the Hypercube-Like Machine," PhD
Thesis, Department of Computer Science, Louisiana State University,
1991.

N. Krishnakumar, V. Hegde, and S. Iyengar, "Fault Tolerant Based Embed
dings of Quadtrees into Hypercubes," Proc. International Conference o f
Parallel Processing, 1991.

H. Kung and D. Stevenson, "A Software Technique for Reducing the Rout
ing Time on a Parallel Computer with a Fixed Interconnection Network,"
High Speed Computer and Algorithm Optimization, Academic Press, pp.
423-433,1987.

C. Liang, S. Battachanya, and W. Tsai, "Distributed Fault-Tolerant Routing
on Hypercubes: Algorithms and Performance Study," Proc. 3rd IEEE Sym
posium on Parallel and Distributed Processing, pp. 474-481,1991.

T. Lewis and H. El-Rewini, Introduction to Parallel Computing, Prentice-
Hall, 1992.

S. Latifi and A. El-Amawy, "Efficient Approach to Embed Binary Trees in
3-D Rectangular Arrays," IEEE Proceedings, vol. 137, no. 2, pp. 159-163,
March 1990.

F. Leighton, Introduction to Parallel Algorithms and Architecture: Arrays,
Trees, Hypercubes, Morgan Kaufmann, 1992.

T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, John
Wiley & Sons, 1990.

R. Lander and M. Fischer, "Parallel Prefix Computation," Journal o f the
ACM, vol. 27, pp. 831-838,1980.

S. Latifi and S. Zheng, "Optimal Simulation of Linear Array and Ring
Architectures on Multiply-Twisted Hypercubes," Proc. 11th International
Conference on Computers and Communications, 1992.

1 0 1

[MS]

[NS]

[NSK]

[P]

[PM]

[PV]

[Q]

[QD]

[U]

[UW]

[RS]

[Sa]

B. Monien and I. Sudborough, "Simulating Binary Trees on Hypercubes,"
Proc. 3rd Aegean Workshop on Computing, Lecture Notes in Computer
Science, pp. 170-180, 1988.

D. Nassimi and S. Sahni, "Data Broadcasting in SIMD Computers," IEEE
Transactions on Computers, vol. C-30, no. 2, pp. 101-106, February 1981.

M. Nigam, S. Sahni, and B. Krishnamurthy, "Embedding Hamiltonian and
Hypercubes in Star Interconnection Graphs," Proc. International Confer
ence on Parallel Processing, pp. 340-343,1990.

C. Plaxton, "Efficient Computation on Sparse Interconnection Networks,"
PhD Thesis, Department of Computer Science, Stanford University, 1989.

F. Provost and R. Melhem, "Distributed Fault-Tolerant Embedding of
Binary Trees and Rings in Hypercubes," Proc. International Workshop on
Defect and Fault-Tolerance in VLSI Systems, 1989.

F. Preparata and J. Vuillemin, "The Cube-Connected Cycles: A Versatile
Network for Parallel Computation," Communications o f the ACM, vol. 24,
no. 5, pp. 300-309, May 1981.

M. Quinn, Designing Efficient Algorithms for Parallel Computers,
McGraw-Hill, 1987.

M. Quinn and N. Deo, "Parallel Graph Algorithms," ACM Computing Sur
veys, vol. 16, no. 3, pp. 319-348, September 1984.

J. Ullman, Computational Aspects of VLSI, Computer Science Press,
1984.

E. Upfal and A. Wigderson, "How to Share Memory in a Distributed Sys
tem," Journal o f the ACM, pp. 116-127, January 1987.

A. Rosenberg and L. Snyder, "Bounds on the Costs of Data Encodings,"
Math. Systems Theory, vol. 12, pp. 9-39, 1978.

H. Samet, "The Quadtree and Related Hierarchical Data Structures," Com
puting Surveys, vol. 16, no. 2, pp. 187-260, June 1984.

1 0 2

[Se] C. Seitz, "The Cosmic Cube," Communications o f the ACM, vol. 28, no. 1,
pp. 22-33, January 1985.

[Si] H. Siegel, Interconnection Networks for Large-Scale Parallel Processing,
Lexington Books, 1985.

[Sn] L. Snyder, "Introduction to the Configurable Highly Parallel Computer,"
Computer, pp. 47-56, January 1982.

[St] H. Stone, High-Performance Computer Architecture, Addison-Wesely,
1987.

[SS] Y. Saad and M. Schultz, "Topological Properties of the Hypercube," IEEE
Transactions on Computers, vol. C-37, no. 7, pp. 867-872, July 1988.

[T] P. Treleaven, "Control-Driven, Data-Driven, and Demand-Driven Com
puter Architecture," Parallel Computing, no. 2,1985.

[V] L Valiant, "A Scheme for Fast Parallel Communications," SIAM J. Com
puting, vol. 11, no. 2, pp. 350-361, 1982.

[TK] C. Thompson and H. Kung, "Sorting in a Mesh-Connected Parallel Com
puter," Communications o f the ACM, vol. 20, no. 4, pp. 263-271, April
1977.

[W] A. Wu, "Embedding of Tree Networks into Hypercubes," Journal o f Paral
lel and Distributed Computing, vol. 2, no. 3, pp. 238-249, August 1985.

[WCM] A. Wang, R. Cypher, and E. Mayr, "Embedding Complete Binary Trees in
Faulty Hypercubes," Proc. 3rd IEEE Symposium on Parallel and Dis
tributed Processing, pp. 112-119, 1991.

[YN] A. Youssef and B. Narahari, "The Banyan-Hypercube Networks," IEEE
Transactions on Parallel and Distributed Systems, vol. 1, no. 2, pp.
160-169, April 1990.

[Z] S. Zheng, "SIMD Data Communication Algorithms for Multiply-Twisted
Hypercubes," Proc. 5th International Parallel Processing Symposium, pp.
120-125, 1991.

Vita

Emadeddin Abuelrub received his BS degrees in Computer Engineering and

Computer Science from Oklahoma State University in 1984 and 1985, respectively.

He received his MS degree in Computer Science from Alabama A&M University in

1987. He joined the PhD program in the Department of Computer Science at

Louisiana State University in 1989, where he worked on parallel algorithms and map

pings on parallel machines. His other research interests include the design and analy

sis of algorithms, graph algorithms, and parallel and VLSI computations.

103

DOCTORAL EXAMINATION AND DISSERTATION REPORT

Candidate: Emadeddin Abuelrub

Major Field: Computer Science

Title of Dissertation: Interconnection Networks Embeddings and Efficient
Parallel Computations

Approved:

Major Professor and Chairman

Dean of the Graduate School

EXAMINING COMMITTEE:

\A^CX.

a p. ______

i_y

Date of Examination:

05/ 14/93

	Interconnection Networks Embeddings and Efficient Parallel Computations.
	Recommended Citation

	00001.tif

